Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

姜黄素通过抑制Zeste Homolog-2(EZH2)增强剂对骨髓增生异常综合症的抗癌作用。

卷 19, 期 9, 2019

页: [729 - 741] 页: 13

弟呕挨: 10.2174/1568009619666190212121735

价格: $65

摘要

背景:zeste homolog-2(EZH2)的增强子,一种调节赖氨酸27(H3K27me3)的组蛋白H3甲基化的组蛋白甲基转移酶,参与了骨髓增生异常综合症(MDS)的发病机理。靶向表观遗传调节剂已被确定为MDS化疗的潜在治疗靶标。姜黄素是一种从姜黄中提取的天然化合物,被发现在各种肿瘤中具有广泛的抗癌活性。 方法:本研究旨在探讨姜黄素在体外和体内对骨髓增生异常综合症(MDS)的抑制作用和作用机理。 结果:我们的结果表明,姜黄素可以显着抑制人MDS衍生细胞系中的细胞增殖,并诱导细胞凋亡和细胞周期停滞。它减少了EZH2,DNA甲基转移酶3A(DNMT3a),ASXL1和下游H3K4me3,H3K27me3和HOXA9的表达,并抑制了EZH2和H3K27me3的核易位。姜黄素在异种移植小鼠模型中也显示出抗癌作用,并且体内的EZH2,H3K4me3和H3K27me3减少。 EZH2敲低可以降低H3K27me3水平,并在体外诱导姜黄素抗性,但在体内减弱白血病的转化。 结论:这些发现为姜黄素作为MDS的治疗剂提供了潜在的分子机制。

关键词: 骨髓增生异常综合症,姜黄素,EZH2,H3K27me3,HOXA9,骨髓增生异常综合症(MDS)。

图形摘要

[1]
Nimer, S.D. Myelodysplastic syndromes. Blood, 2008, 111, 4841-4851.
[2]
Fenaux, P.; Mufti, G.J.; Hellstrom-Lindberg, E.; Santini, V.; Finelli, C.; Giagounidis, A.; Schoch, R.; Gattermann, N.; Sanz, G.; List, A.; Gore, S.D.; Seymour, J.F. Bennett, Byrd, J.; Backstrom, L.; Zimmerman, D.; McKenzie, C.; Beach, L.; Silverman, R.; Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol., 2009, 10, 223-232.
[3]
Quintas-Cardama, A.; Garcia-Manero, F.P. Therapy with azanucleosides for myelodysplastic syndromes. Nat. Rev. Clin. Oncol., 2010, 7, 433-444.
[4]
Steensma, D.P.; Baer, M.R.; Slack, J.L.; Buckstein, R.; Godley, L.A.; Garcia-Manero, G.; Albitar, M.; Larsen, J.S.; Arora, S.; Cullen, M.T.; Kantarjian, H. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: The alternative dosing for outpatient treatment (ADOPT) trial. J. Clin. Oncol., 2009, 27, 3842-3848.
[5]
Jabbour, E.; Garcia-Manero, G.; Batty, N.; Shan, J.; O’Brien, S.; Cortes, J.; Ravandi, F.; Issa, J.P.; Kantarjian, H. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer, 2010, 116, 3830-3834.
[6]
Prebet, T.; Gore, S.D.; Esterni, B.; Gardin, C.; Itzykson, R.; Thepot, S.; Dreyfus, F.; Rauzy, O.B.; Recher, C.; Ades, L.; Quesnel, B.; Beach, C.L.; Fenaux, P.; Vey, N. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J. Clin. Oncol., 2011, 29, 3322-3327.
[7]
Lindsley, R.C. Uncoding the genetic heterogeneity of myelodysplastic syndrome. Hematology (Am. Soc. Hematol. Educ. Program), 2017, 447-452.
[8]
Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R.S.; Zhang, Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 2002, 298, 1039-1043.
[9]
Kleer, C.G.; Cao, Q.; Varambally, S.; Shen, R.; Ota, I.; Tomlins, S.A.; Ghosh, D.; Sewalt, R.G.; Otte, A.P.; Hayes, D.F.; Sabel, M.S. Livant, D.; Weiss, S.J.; Rubin, M.A.; Chinnaiyan, A.M. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA, 2003, 100, 11606-11611.
[10]
Liu, Y.; Yu, K.; Li, M.; Zeng, K.; Wei, J.; Li, X.; Liu, Y.; Zhao, D.; Fan, L.; Yu, Z.; Wang, Y.; Li, Z.; Zhang, W.; Bai, Q.; Yan, Q.; Guo, Y.; Wang, Z.; Guo, S. EZH2 overexpression in primary gastrointestinal diffuse large B-cell lymphoma and its association with the clinicopathological features. Hum. Pathol., 2017, 64, 213-221.
[11]
Varambally, S.; Dhanasekaran, S.M.M.; Zhou, T.R.; Barrette, C.; Kumar-Sinha, M.G.; Sanda, D.; Ghosh, K.J.; Pienta, R.G.; Sewalt, A.P.; Otte, M.A.; Rubin, A.M. Chinnaiyan, the polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002, 419, 624-629.
[12]
Kim, K.H.; Roberts, C.W. Targeting EZH2 in cancer. Nat. Med., 2016, 22, 128-134.
[13]
Ernst, T.; Chase, A.J.; Score, J.; Hidalgo-Curtis, C.E.; Bryant, C.; Jones, A.V.; Waghorn, K.; Zoi, K.; Ross, F.M.; Reiter, A.; Hochhaus, A.; Drexler, H.G.; Duncombe, A.; Cervantes, F.; Oscier, D.; Boultwood, J.; Grand, F.H.; Cross, N.C. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet., 2010, 42, 722-726.
[14]
Shirahata-Adachi, M.; Iriyama, C.; Tomita, A.; Suzuki, Y.; Shimada, K.; Kiyoi, H. Altered EZH2 splicing and expression is associated with impaired histone H3 lysine 27 tri-Methylation in myelodysplastic syndrome. Leuk. Res., 2017, 63, 90-97.
[15]
Muto, T.; Sashida, G.; Oshima, M.; Wendt, G.R.; Mochizuki-Kashio, M.; Nagata, Y.; Sanada, M.; Miyagi, S.; Saraya, A.; Kamio, A.; Nagae, G.; Nakaseko, C.; Yokote, K.; Shimoda, K.; Koseki, H.; Suzuki, Y.; Sugano, S.; Aburatani, H.; Ogawa, S.; Iwama, A. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J. Exp. Med., 2013, 210, 2627-2639.
[16]
Rastgoo, N.; Pourabdollah, M.; Abdi, J.; Reece, D.; Chang, H. Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia, 2018.
[17]
Gollner, S.; Oellerich, T.; Agrawal-Singh, S.; Schenk, T.; Klein, H.U.; Rohde, C.; Pabst, C.; Sauer, T.; Lerdrup, M.; Tavor, S.; Stolzel, F.; Herold, S.; Ehninger, G.; Kohler, G.; Pan, K.T.; Urlaub, H.; Serve, H.; Dugas, M.; Spiekermann, K.; Vick, B.; Jeremias, I.; Berdel, W.E.; Hansen, K.; Zelent, A.; Wickenhauser, C.; Muller, L.P.; Thiede, C.; Muller-Tidow, C. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat. Med., 2017, 23, 69-78.
[18]
Shahabipour, F.; Caraglia, M.; Majeed, M.; Derosa, G.; Maffioli, P.; Sahebkar, A. Naturally occurring anti-cancer agents targeting EZH2. Cancer Lett., 2017, 400, 325-335.
[19]
Lee, Y.H.; Song, N.Y.; Suh, J.; Kim, D.H.; Kim, W.; Ann, J.; Lee, J.; Baek, J.H.; Na, H.K.; Surh, Y.J. Curcumin suppresses oncogenicity of human colon cancer cells by covalently modifying the cysteine 67 residue of SIRT1. Cancer Lett., 2018.
[20]
He, Z.Y.; Shi, C.B.; Wen, H.; Li, F.L.; Wang, B.L.; Wang, J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest., 2011, 29, 208-213.
[21]
Li, W.; Jiang, Z.; Xiao, X.; Wang, Z.; Wu, Z.; Ma, Q.; Cao, L. Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-kappaB pathway in pancreatic cancer cells. Int. J. Oncol., 2018.
[22]
Devassy, J.G.; Nwachukwu, I.D.; Jones, P.J. Curcumin and cancer: barriers to obtaining a health claim. Nutr. Rev., 2015, 73, 155-165.
[23]
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65, 1631-1652.
[24]
Wu, G.Q.; Chai, K.Q.; Zhu, X.M.; Jiang, H.; Wang, X.; Xue, Q.; Zheng, A.H.; Zhou, H.Y.; Chen, Y.; Chen, X.C.; Xiao, J.Y.; Ying, X.H.; Wang, F.W.; Rui, T.; Liao, Y.J.; Xie, D.; Lu, L.Q.; Huang, D.S. Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget, 2016, 7, 26535-26550.
[25]
Hua, W.F.; Fu, Y.S.; Liao, Y.J.; Xia, W.J.; Chen, Y.C.; Zeng, Y.X.; Kung, H.F.; Xie, D. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur. J. Pharmacol., 2010, 637, 16-21.
[26]
Zeng, Y.; Weng, G.; Fan, J.; Li, Z.; Wu, J.; Li, Y.; Zheng, R.; Xia, P.; Guo, K. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells. Oncol. Rep., 2016, 36, 1233-1242.
[27]
Bao, B.; Ali, S.; Banerjee, S.; Wang, Z.; Logna, F.; Azmi, A.S.; Kong, D.; Ahmad, A.; Li, Y.; Padhye, S.; Sarkar, F.H. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res., 2012, 72, 335-345.
[28]
Ma, L.; Zhang, X.; Wang, Z.; Chen, Y.; Wei, J.; Hu, L. Establishment of a novel Myelodysplastic Syndrome (MDS) xenotransplantation model. Clin. Lab., 2016, 62, 1651-1659.
[29]
Nikoloski, G.; Langemeijer, S.M.; Kuiper, R.P.; Knops, R.; Massop, M.; Tonnissen, E.R.; van der Heijden, A.; Scheele, T.N.; Vandenberghe, P.; de Witte, T.; van der Reijden, B.A.; Jansen, J.H. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet., 2010, 42, 665-667.
[30]
Gangat, N.; Mudireddy, M.; Lasho, T.L.; Finke, C.M.; Nicolosi, M.; Szuber, N.; Patnaik, M.M.; Pardanani, A.; Hanson, C.A.; Ketterling, R.P.; Tefferi, A. Mutations and prognosis in myelodysplastic syndromes: karyotype-adjusted analysis of targeted sequencing in 300 consecutive cases and development of a genetic risk model. Am. J. Hematol., 2018, 93, 691-697.
[31]
Sashida, G.; Harada, H.; Matsui, H.; Oshima, M.; Yui, M.; Harada, Y.; Tanaka, S.; Mochizuki-Kashio, M.; Wang, C.; Saraya, A.; Muto, T.; Hayashi, Y.; Suzuki, K.; Nakajima, H.; Inaba, T.; Koseki, H.; Huang, G.; Kitamura, T.; Iwama, A. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat. Commun., 2014, 5, 4177.
[32]
Khan, S.N.; Jankowska, A.M.; Mahfouz, R.; Dunbar, A.J.; Sugimoto, Y.; Hosono, N.; Hu, Z.; Cheriyath, V.; Vatolin, S.; Przychodzen, B.; Reu, F.J.; Saunthararajah, Y.; O’Keefe, C.; Sekeres, M.A.; List, A.F.; Moliterno, A.R.; McDevitt, M.A.; Maciejewski, J.P.; Makishima, H. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia, 2013, 27, 1301-1309.
[33]
Yoshida, K.; Toden, S.; Ravindranathan, P.; Han, H.; Goel, A. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis, 2017, 38, 1036-1046.
[34]
Collins, C.T.; Hess, J.L. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene, 2016, 35, 1090-1098.
[35]
Gao, L.; Sun, J.; Liu, F.; Zhang, H.; Ma, Y. Higher expression levels of the HOXA9 gene, closely associated with MLL-PTD and EZH2 mutations, predict inferior outcome in acute myeloid leukemia. OncoTargets Ther., 2016, 9, 711-722.
[36]
Chowdhury, I.; Banerjee, S.; Driss, A.; Xu, W.; Mehrabi, S.; Nezhat, C.; Sidell, N.; Taylor, R.N.; Thompson, W.E. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF-kappaB signaling pathway. J. Cell. Physiol., (2018).
[37]
Eriksson, A.; Lennartsson, A.; Lehmann, S. Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis. Exp. Hematol., 2015, 43, 609-624.
[38]
Lin, M.E.; Hou, H.A.; Tsai, C.H.; Wu, S.J.; Kuo, Y.Y.; Tseng, M.H.; Liu, M.C.; Liu, C.W.; Chou, W.C.; Chen, C.Y.; Tang, J.L.; Yao, M.; Li, C.C.; Huang, S.Y.; Ko, B.S.; Hsu, S.C.; Lin, C.T.; Tien, H.F. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin. Epigenetics, 2018, 10, 42.
[39]
Boven, L.; Holmes, S.P.; Latimer, B.; McMartin, K.; Ma, X.; Moore-Medlin, T.; Khandelwal, A.R.; McLarty, J.; Nathan, C.O. Curcumin gum formulation for prevention of oral cavity head and neck squamous cell carcinoma. Laryngoscope, (2018).
[40]
Lao, C.D.; Ruffin, M.T.T.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6, 10.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy