Generic placeholder image

Recent Patents on Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-891X
ISSN (Online): 2212-4071

Systematic Review Article

Promising Role of Wolbachia as Anti-parasitic Drug Target and Eco-Friendly Biocontrol Agent

Author(s): Tooran Nayeri Chegeni and Mahdi Fakhar*

Volume 14, Issue 1, 2019

Page: [69 - 79] Pages: 11

DOI: 10.2174/1574891X14666190211162403

Abstract

Background: Wolbachia is the most common endosymbiotic bacteria in insectborne parasites and it is the most common reproductive parasite in the world. Wolbachia has been found worldwide in numerous arthropod and parasite species, including insects, terrestrial isopods, spiders, mites and filarial nematodes. There is a complicated relationship between Wolbachia and its hosts and in some cases, they create a mutual relationship instead of a parasitic relationship. Some species are not able to reproduce in the absence of infection with Wolbachia. Thus, the use of existing strains of Wolbachia bacteria offers a potential strategy for the control of the population of mosquitoes and other pests and diseases.

Methods: We searched ten databases and reviewed published papers regarding the role of Wolbachia as a promising drug target and emerging biological control agents of parasitic diseases between 1996 and 2017 (22 years) were considered eligible. Also, in the current study several patents (WO008652), (US7723062), and (US 0345249 A1) were reviewed.

Results: Endosymbiotic Wolbachia bacteria, which are inherited from mothers, is transmitted to mosquitoes and interferes with pathogen transmission. They can change the reproduction of their host. Wolbachia is transmitted through the cytoplasm of eggs and have evolved different mechanisms for manipulating the reproduction of its hosts, including the induction of reproductive incompatibility, parthenogenesis, and feminization. The extensive effects of Wolbachia on reproduction and host fitness have made Wolbachia the issue of growing attention as a potential biocontrol agent.

Conclusion: Wolbachia has opened a new window to design a costly, potent and ecofriendly drug target for effective treatment and elimination of vector-borne parasitic diseases.

Keywords: Endosymbiotic bacteria, vector-borne disease, biological control, wolbachia, drug target, genetic manipulation.

Graphical Abstract

[1]
Werren JH. Biology of Wolbachia. Annu Rev Entomol 1997; 42(1): 587-609.
[2]
Stouthamer R, Breeuwer JA, Hurst GD. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu Rev Microbiol 1999; 53(1): 71-102.
[3]
Werren JH, Baldo L, Clark ME. Wolbachia: Master manipulators of invertebrate biology. Nat Rev Microbiol 2008; 6(10): 741-51.
[4]
Yen JH, Barr AR. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol 1973; 22(2): 242-50.
[5]
Caspari E, Watson G. On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution 1959; 13(4): 568-70.
[6]
Fine PE. On the dynamics of symbiote-dependent cytoplasmic incompatibility in culicine mosquitoes. J Invertebr Pathol 1978; 31(1): 10-8.
[7]
Sinkins SP. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol 2004; 34(7): 723-9.
[8]
Blanford S, Chan BH, Jenkins N, Sim D, Turner RJ, Read AF, et al. Fungal pathogen reduces potential for malaria transmission. Science 2005; 308(5728): 1638-41.
[9]
Bargielowski I, Koella JC. A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis. PLoS One 2009; 4(3)e4676
[10]
Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HCJ, Sinden RE, et al. Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathog 2010; 6(10)e1001143
[11]
Aliota MT, Chen C-C, Dagoro H, Fuchs JF, Christensen BM. Filarial worms reduce Plasmodium infectivity in mosquitoes. PLoS Negl Trop Dis 2011; 5(2)e963
[12]
Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 2009; 326(5949): 134-6.
[13]
Smith DL, McKenzie FE. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 2004; 3(1): 13.
[14]
Rivero A, Vezilier J, Weill M, Read AF, Gandon S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLoS Pathog 2010; 6(8)e1001000
[15]
Ferguson HM, Read AF. Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol 2002; 18(6): 256-61.
[16]
Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez M-G. Anopheles mortality is both age-and Plasmodium-density dependent: Implications for malaria transmission. Malar J 2009; 8(1): 228.
[17]
Field L, James A, Turelli M, Hoffmann A. Microbe‐induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol 1999; 8(2): 243-55.
[18]
Dobson SL. Progress toward manipulating mosquito disease vector populations via releases of Wolbachia infected mosquitoes. Am J Trop Med Hyg 2005.
[19]
Dobson SL, Fox CW, Jiggins FM. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc Biol Sci 2002; 269(1490): 437-45.
[20]
Brelsfoard CL, Dobson SL. Wolbachia-based strategies to control insect pests and disease vectors. Asia Pac J Mol Biol Biotechnol 2009; 17(3): 55-63.
[21]
Hertig M, Wolbach SB. Studies on rickettsia-like micro-organisms in insects. J Med Res 1924; 44(3): 329.
[22]
Hertig M. The rickettsia, Wolbachia pipientis (gen. et sp. n.) and associated inclusions of the mosquito, Culex pipiens. Parasitology 1936; 28(04): 453-86.
[23]
O’Neill SL, Giordano R, Colbert A, Karr TL, Robertson HM. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 1992; 89(7): 2699-702.
[24]
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia? a statistical analysis of current data. FEMS Microbiol Lett 2008; 281(2): 215-20.
[25]
Bordenstein SR, Paraskevopoulos C, Dunning Hotopp JC, Sapountzis P, Lo N, Bandi C, et al. Parasitism and mutualism in Wolbachia: What the phylogenomic trees can and cannot say. Mol Biol Evol 2008; 26(1): 231-41.
[26]
Ros VI, Fleming VM, Feil EJ, Breeuwer JA. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl Environ Microbiol 2009; 75(4): 1036-43.
[27]
Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 2006; 72(11): 7098-110.
[28]
Breeuwer J, Stouthamer R, Barns S, Pelletier D, Weisburg W, Werren J. Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol 1992; 1(1): 25-36.
[29]
Stouthamer R, Breeuwert J, Luck R, Werren J. Molecular identification of microorganisms associated with parthenogenesis. Nature 1993; 361(6407): 66.
[30]
Chang NW, Wade MJ. The transfer of Wolbachia pipientis and reproductive incompatibility between infected and uninfected strains of the flour beetle, Tribolium confusum, by microinjection. Can J Microbiol 1996; 42(7): 711-4.
[31]
Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, et al. The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005; 3(4)e121
[32]
Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. PLoS Biol 2004; 2(3)e69
[33]
Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, et al. Genome evolution of Wolbachia strain w Pip from the Culex pipiens group. Mol Biol Evol 2008; 25(9): 1877-87.
[34]
Klasson L, Westberg J, Sapountzis P, Näslund K, Lutnaes Y, Darby AC, et al. The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 2009; 106(14): 5725-30.
[35]
Walker T, Johnson P, Moreira L, Iturbe-Ormaetxe I, Frentiu F, McMeniman C, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011; 476(7361): 450-3.
[36]
Espino C, Gómez T, González G, do Santos MB, Solano J, Sousa O, et al. Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol 2009; 75(2): 547-50.
[37]
Prout T. Some evolutionary possibilities for a microbe that causes incompatibility in its host. Evolution 1994; 48(3): 909-11.
[38]
O’Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, Dobson SL. Open release of male mosquitoes infected with a Wolbachia biopesticide: Field performance and infection containment. PLoS Negl Trop Dis 2012; 6(11)e1797
[39]
Yun Y, Peng Y, Liu F, Lei C. Wolbachia screening in spiders and assessment of horizontal transmission between predator and prey. Neotrop Entomol 2011; 40(2): 164-9.
[40]
Benedict MQ, Robinson AS. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol 2003; 19(8): 349-55.
[41]
McMeniman CJ, O’Neill SL. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis 2010; 4(7)e748
[42]
Mclaren DJ, Worms M, Laurence B, Simpson M. Micro-organisms in filarial larvae (Nematoda). Trans R Soc Trop Med Hyg 1975; 69(5-6): 509-14.
[43]
Vincent AL, Portaro J, Ash LR. A comparison of the body wall ultrastructure of Brugia pahangi with that of Brugia malayi. J Parasitol 1975; 61(3): 567-70.
[44]
Kozek WJ, Marroquin HF. Intracytoplasmic bacteria in Onchocerca volvulus. Am J Trop Med Hyg 1977; 26(4): 663-78.
[45]
Foster JM, Hoerauf A, Slatko BE, Taylor M. The Wolbachia Bacterial Endosymbionts of Filarial Nematodes. 2nd Ed. Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology 2013; pp. 308- 36.
[46]
Landmann F, Foster JM, Slatko B, Sullivan W. Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues. PLoS Negl Trop Dis 2010; 4(7)e758
[47]
Fischer K, Beatty WL, Jiang D, Weil GJ, Fischer PU. Tissue and stage-specific distribution of Wolbachia in Brugia malayi. PLoS Negl Trop Dis 2011; 5(5)e1174
[48]
Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, Sullivan W. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte. PLoS Pathog 2005; 1(2)e14
[49]
World malaria report . Available at: https: //www.who.int/malaria/publications/world_malaria_report_2013/en/ (Accessed on: 11 December 2013).
[50]
White NJ. Declining malaria transmission and pregnancy outcomes in Southern Mozambique. N Engl J Med 2015; 373(17): 1670-1.
[51]
Fact Sheet. World Malaria Report 2015 Available at.https: //www.who.int/malaria/media/world-malaria-report-2015/en/ (Accessed on: 9 December 2015).
[52]
Hughes GL, Ren X, Ramirez JL, Sakamoto JM, Bailey JA, Jedlicka AE, et al. Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction. PLoS Pathog 2011; 7(2)e1001296
[53]
Kokoza V, Ahmed A, Shin SW, Okafor N, Zou Z, Raikhel AS. Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 2010; 107(18): 8111-6.
[54]
Jin C, Ren X, Rasgon JL. The virulent Wolbachia strain wMelPop efficiently establishes somatic infections in the malaria vector Anopheles gambiae. Appl Environ Microbiol 2009; 75(10): 3373-6.
[55]
Trypanosomiasis, Human African (sleeping sickness). Available at https: //www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (Accessed on: 16 February 2018).
[56]
Brun R, Blum J, Chappuis F, Burri C. Human African trypanosomiasis. Lancet 2010; 375(9709): 148-59.
[57]
Alam U, Medlock J, Brelsfoard C, Pais R, Lohs C, Balmand S, et al. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog 2011; 7(12)e1002415
[58]
Gouteux J-P, Jarry M. Tsetse flies, biodiversity and the control of sleeping sickness. Structure of a Glossina guild in southwest Côte d’Ivoire. Acta Oecol 1998; 19(5): 453-71.
[59]
Jannin J. Tsetse biology and ecology: Their role in the epidemiology and control of trypanosomosis. Bull World Health Organ 1999; 77(5): 450.
[60]
Cheng Q, Ruel T, Zhou W, Moloo S, Majiwa P, O’neill S, et al. Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol 2000; 14(1): 44-50.
[61]
Lees RS, Gilles JR, Hendrichs J, Vreysen MJ, Bourtzis K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 2015; 10: 156-62.
[62]
Oliva CF, Vreysen MJ, Dupé S, Lees RS, Gilles JR, Gouagna L-C, et al. Current status and future challenges for controlling malaria with the sterile insect technique: Technical and social perspectives. Acta Trop 2014; 132: S130-9.
[63]
Hoerauf A, Mand S, Fischer K, Kruppa T, Marfo-Debrekyei Y, Debrah AY, et al. Doxycycline as a novel strategy against bancroftian filariasisdepletion of Wolbachia endosymbionts from Wuchereria bancrofti and stop of microfilaria production. Med Microbiol Immunol 2003; 192(4): 211-6.
[64]
Supali T, Djuardi Y, Pfarr KM, Wibowo H, Taylor MJ, Hoerauf A, et al. Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin Infect Dis 2008; 46(9): 1385-93.
[65]
Bandi C, Slatko B, O’Neill S. Wolbachia genomes and the many faces of symbiosis. Parasitol Today 1999; 15(11): 428-9.
[66]
Hoerauf A, Nissen-Pähle K, Schmetz C, Henkle-Dührsen K, Blaxter ML, Büttner DW, et al. Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J Clin Invest 1999; 103(1): 11.
[67]
Hoerauf A, Mand S, Adjei O, Fleischer B, Büttner DW. Depletion of Wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet 2001; 357(9266): 1415-6.
[68]
Hoerauf A, Volkmann L, Nissen‐Paehle K, Schmetz C, Autenrieth I, Büttner DW, et al. Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: Comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin. Trop Med Int Health 2000; 5(4): 275-9.
[69]
Langworthy NG, Renz A, Mackenstedt U, Henkle–Dührsen K. Bronsvoort MBdC, Tanya VN, et al Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proc R Soc Lond B 2000; 267(1448): 1063-9.
[70]
Wang J, Galgoci A, Kodali S, Herath KB, Jayasuriya H, Dorso K, et al. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 2003; 278(45): 44424-8.
[71]
Jennings LD, Foreman KW, Rush TS, Tsao DH, Mosyak L, Li Y, et al. Design and synthesis of indolo [2, 3-a] quinolizin-7-one inhibitors of the ZipA–FtsZ interaction. Bioorg Med Chem Lett 2004; 14(6): 1427-31.
[72]
Margalit DN, Romberg L, Mets RB, Hebert AM, Mitchison TJ, Kirschner MW, et al. Targeting cell division: small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc Natl Acad Sci USA 2004; 101(32): 11821-6.
[73]
McCall JW, Jun JJ, Bandi C. Wolbachia and the antifilarial properties of tetracycline. An untold story. Ital J Zool 1999; 66(1): 7-10.
[74]
Taylor M, Bandi C, Hoerauf A, Lazdins J. Wolbachia bacteria of filarial nematodes: A target for control? Parasitol Today 2000; 16(5): 179-80.
[75]
Rao RU. Endosymbiotic Wolbachia of parasitic filarial nematodes as drug targets. Indian J Med Res 2005; 122(3): 199.
[76]
Knudsen A, Romi R, Majori G. Occurrence and spread in Italy of Aedes albopictus, with implications for its introduction into other parts of Europe. J Am Mosq Control Assoc 1996; 12(2 Pt 1): 177-83.
[77]
Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 2010; 4(5)e646
[78]
Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 2000; 45(1): 371-91.
[79]
Ratzka C, Gross R, Feldhaar H. Endosymbiont tolerance and control within insect hosts. Insects 2012; 3(2): 553-72.
[80]
Mohanty I, Rath A, Mahapatra N, Hazra RK. Wolbachia: A biological control strategy against arboviral diseases. J Vector Borne Dis 2016; 53(3): 199.
[81]
Bourtzis K, Stauffer Ch, Riegler M. Insect population control. WO008652A1 (2006).
[82]
O'connor Jr, Thomas P, Saucier JM. Compositions and methods for detection of Wolbachia. US7723062 (2010).
[83]
Debec A, Serbus L, Landmann F, Sullivan W. Formulations for the prevention and treatment of Wolbachia - related disease. US0345249 A1 (2013).

© 2025 Bentham Science Publishers | Privacy Policy