[1]
Markopoulos, A.P. Finite Element Method in Machining Processes; Briefs in Applied Sciences and Technology / Manufacturing and Surface Engineering, Springer-Verlag London, 2013.
[2]
Karkalos, N.E.; Markopoulos, A.P. Modelling nano-metric manufacturing processes with molecular dynamics method: A review. Curr. Nanosci., 2017, 13(1), 3-20.
[3]
Lin, Y-C.; Shiu, Y-C. Effect of crystallographic orientation on single crystal copper nanogrooving behaviors by MD method. Int. J. Adv. Manuf. Technol., 2017, 89, 3207-3215.
[4]
Goel, S.; Luo, X.; Reuben, R.L. Shear instability of nanocrystalline silicon carbide during nanometric cutting. Appl. Phys. Lett., 2012, 100, 2319022.
[5]
Guo, X.; Li, Q.; Liu, T.; Zhai, C.; Kang, R.; Jin, Z. Molecular dynamics study on the thickness of damage layer in multiple grinding of monocrystalline silicon. Mater. Sci. Semicond. Process., 2016, 51, 15-19.
[6]
Karkalos, N.E.; Markopoulos, A.P.; Kundrák, J. Molecular dynamics model of nano-metric peripheral grinding. Procedia CIRP, 2017, 58, 281-286.
[7]
Eder, S.J.; Cihak-Bayr, U.; Pauschitz, A. Nanotribological simulations of multi-grit polishing and grinding. Wear, 2015, 340-341, 25-30.
[8]
Zong, W.J.; Cheng, X.; Zhang, J.J. Atomistic origins of material removal rate anisotropy in mechanical polishing of diamond crystal. Carbon, 2016, 99, 186-194.
[9]
Lin, Z-C.; Huang, J-C. A nano-orthogonal cutting model based on a modified molecular dynamics technique. Nanotechnology, 2004, 15, 510.