[1]
La Rosa, R.; Johansen, H.K.; Molin, S. Convergent metabolic specialization through distinct evolutionary paths in Pseudomonas aeruginosa. MBio, 2018, 9(2), e00269-e00218.
[2]
Driscoll, J.A.; Brody, S.L.; Kollef, M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 2007, 67(3), 351-368.
[3]
Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; Garber, R.L.; Goltry, L.; Tolentino, E.; Westbrock-Wadman, S.; Yuan, Y.; Brody, L.L.; Coulter, S.N.; Folger, K.R.; Kas, A.; Larbig, K.; Lim, R.; Smith, K.; Spencer, D.; Wong, G.K.; Wu, Z.; Paulsen, I.T.; Reizer, J.; Saier, M.H.; Hancock, R.E.; Lory, S.; Olson, M.V. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 2000, 406(6799), 959-964.
[4]
Ruppé, E.; Cherkaoui, A.; Lazarevic, V.; Emonet, S.; Schrenzel, J. Establishing genotype-to-phenotype relationships in bacteria causing hospital-acquired pneumonia: A prelude to the application of clinical metagenomics. Antibiotics, 2017, 6(4), E30.
[5]
Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance, 2015, 22, 41-59.
[6]
Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev., 2009, 22(4), 582-610.
[7]
Rosenthal, V.D.; Al-Abdely, H.M.; El-Kholy, A.A.; AlKhawaja, S.A.A.; Leblebicioglu, H.; Mehta, Y.; Rai, V.; Hung, N.V.; Kanj, S.S.; Salama, M.F.; Salgado-Yepez, E.; Elahi, N.; Morfin, R.O.; Apisarnthanarak, A.; De Carvalho, B.M.; Ider, B.E.; Fisher, D.; Buenaflor, M.C.S.G.; Petrov, M.M.; Quesada-Mora, A.M.; Zand, F.; Gurskis, V.; Anguseva, T.; Ikram, A.; de Moros, D.A.; Duszynska, W.; Mejia, N.; Horhat, F.G.; Belskiy, V.; Mioljevic, V.; Di Silvestre, G.; Furova, K.; Ramos-Ortiz, G.Y.; Gamar Elanbya, M.O.; Satari, H.I.; Gupta, U.; Dendane, T.; Raka, L.; Guanche-Garcell, H.; Hu, B.; Padgett, D.; Jayatilleke, K.; Ben Jaballah, N.; Apostolopoulou, E.; Prudencio Leon, W.E.; Sepulveda-Chavez, A.; Telechea, H.M.; Trotter, A.; Alvarez-Moreno, C.; Kushner-Davalos, L. International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module. Am. J. Infect. Control, 2016, 44(12), 1495-1504.
[8]
Carmeli, Y.N.; Troillet, A.; Karchmer, W.; Samore, M.H. Health and economic outcomes of antibiotic resistant Pseudomonas aeruginosa. Arch. Intern. Med., 1999, 159(10), 1127-1132.
[9]
Gasink, L.B.; Fishman, N.O.; Weiner, M.G.; Nachamkin, I.; Bilker, W.B.; Lautenbach, E. Fluoroquinolone-resistant Pseudomonas aeruginosa: Assessment of risk factors and clinical impact. Am. J. Med., 2006, 119(6), 526.e19-526.e25.
[10]
Tapper, M.L.; Armstrong, D. Bacteremia due to Pseudomonas aeruginosa complicating neoplastic disease: A progress report. J. Infect. Dis., 1974, 130, 14-23.
[11]
Todeschini, G.; Franchini, M.; Tecchio, C.; Meneghini, V.; Pizzolo, G.; Veneri, D.; Murari, C.; Ricetti, M.M.; Perona, G. Improved prognosis of Pseudomonas aeruginosa bacteremia in 127 consecutive neutropenic patients with hematologic malignancies. Int. J. Infect. Dis., 1999, 3(2), 99-104.
[12]
Chatzinikolaou, I.; Abi-Said, D.; Bodey, G.P.; Rolston, K.V.
Tarrand, J.J.; Samonis, G. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. Arch. Intern. Med., 2000, 160(4), 501-509.
[13]
Zhang, Y.; Chen, X.L.; Huang, A.; Liu, S.; Liu, W.; Zhang, N.; Lu, X. Mortality attributable to carbapenem-resistant Pseudomonas aeruginosa bacteremia: A meta-analysis of cohort studies. Emerg. Microbes Infect., 2016, 5(3), e27.
[14]
Girão, E.; Levin, A.S.; Basso, M.; Gobara, S.; Gomes, L.B.; Medeiros, E.A.S.; Barone, A.A.; Costa, S.F. Trends and outcome of 1121 nosocomial blood- stream infections in intensive care units in a Brazilian hospital, 1999—2008. Int. J. Infect. Dis., 2008, 12(6), 145-146.
[15]
Vitkauskiene, A.; Skrodeniene, E.; Dambrauskiene, A.; Macas, A.; Sakalauskas, R. Pseudomonas aeruginosa bacteremia: Resistance to antibiotics, risk factors, and patient mortality. Medicina, 2010, 46(7), 490-495.
[16]
Lodise, T.P.; Patel, N.; Kwa, A.; Graves, J.; Furuno, J.P.; Graffunder, E.; Lomaestro, B.; McGregor, J.C. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: Impact of delayed appropriate antibiotic selection. Antimicrob. Agents Chemother., 2007, 51(10), 3510-3515.
[17]
Cheng, V.; Abdul-Aziz, M.H.; Roberts, J.A.; Shekar, K. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J. Thorac. Dis., 2018, 10(5), 629-641.
[18]
Peña, C.; Suarez, C.; Gozalo, M.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M. Granados. A.; Calbo, E.; Rodríguez-Baño, J.; Rodríguez, F.; Tubau, F.; Martínez-Martínez, L.; Oliver, A. Spanish Network for Research in Infectious Diseases REIPI: Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob. Agents Chemother., 2012, 56(3), 1265-1272.
[19]
Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett., 2017, 364(15), fnx124.
[20]
Valentini, M.; Gonzalez, D.; Mavridou, D.A.; Filloux, A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr. Opin. Microbiol., 2018, 41, 15-20.
[21]
Hogardt, M.; Heesemann, J. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int. J. Med. Microbiol., 2010, 300(8), 557-562.
[22]
Hogardt, M.; Hoboth, C.; Schmoldt, S.; Henke, C.; Bader, L.; Heesemann, J. Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis. J. Infect. Dis., 2007, 195(1), 70-80.
[23]
Al-Wrafy, F.; Brzozowska, E.; Górska, S.; Gamian, A. Pathogenic factors of Pseudomonas aeruginosa - the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig. Med. Dosw., 2017, 71, 78-91.
[24]
Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med., 2005, 171(11), 1209-1223.
[25]
Kipnis, E.; Sawa, T.; Wiener-Kronish, J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med. Mal. Infect., 2006, 36(2), 78-91.
[26]
Gómez-Zorrilla, S.; Morandeira, F.; Castro, M.J.; Tubau, F.; Periche, E.; Cañizares, R.; Dominguez, M.A.; Ariza, J.; Peña, C. acute inflammatory response of patients with Pseudomonas aeruginosa infections: A prospective study. Microb. Drug Resist., 2017, 23(4), 523-530.
[27]
Tseng, B.; Reichhardt, C.; Merrihew, G.; Araujo-Hernandez, S.; Harrison, J.J.; MacCoss, M.J.; Parsek, M.R. A Biofilm matrix-associated protease inhibitor protects Pseudomonas aeruginosa from proteolytic attack. MBio, 2018, 9(2), pii:e00543-e18.
[29]
Hathroubi, S.; Mekni, M.A.; Domenico, P.; Nguyen, D.; Jacques, M. Biofilms: Microbial shelters against antibiotics. Microb. Drug Resist., 2017, 23(2), 147-156.
[30]
Galdino, A.C.M.; Branquinha, M.H.; Santos, A.L.S.; Viganor, L.V. Pseudomonas aeruginosa and its arsenal of proteases: Weapons to battle the host. In: Pathophysiological aspects of proteases; Verlag Gmb, H., Ed.; Springer: Singapore, 2017; Vol. 1, pp. 381-397.
[31]
Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis., 2013, 67(3), 159-173.
[32]
Crousilles, A.; Maunders, E.; Bartlett, S.; Fan, C.; Ukor, E.F.; Abdelhamid, Y.; Baker, Y.; Floto, A.; Spring, D.R.; Welch, M. Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol., 2015, 10(11), 1825-1836.
[33]
Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol., 2017, 7, 39.
[34]
Rawlings, N.D.; Morton, F.R.; Kok, C.Y.; Kong, J.; Barrett, A.J. MEROPS: The peptidase database. Nucleic Acids Res., 2008, 36, 320-325.
[35]
Thayer, M.M.; Flaherty, K.M.; McKay, D.B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J. Biol. Chem., 1991, 266(5), 2864-2871.
[36]
Hangauer, D.G.; Monzingo, A.F.; Matthews, B.W. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry, 1984, 23(24), 5730-5741.
[37]
Tang, B.; Nirasawa, S.; Kitaoka, M.; Marie-Claire, C.; Hayashi, K. General function of N-terminal propeptide on assisting protein folding and inhibiting catalytic activity based on observations with a chimeric thermolysin-like protease. Biochem. Biophys. Res. Commun., 2003, 301(4), 1093-1098.
[38]
Yeats, C.; Rawlings, N.D.; Bateman, A. The PepSY domain: A regulator of peptidase activity in the microbial environment? Trends Biochem. Sci., 2004, 29(4), 169-172.
[39]
Rawlings, N.D.; Barrett, A.J. Evolutionary families of metallopeptidases. Methods Enzymol., 1995, 248, 183-228.
[40]
Banbula, A.; Potempa, J.; Travis, J.; Fernandez-Catalan, C.; Mann, K.; Huber, R.; Bode, W.; Medrano, F. Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution. Structure, 1998, 6(9), 1185-1193.
[41]
Bever, A.; Iglewski, B.H. Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J. Bacteriol., 1988, 170(9), 4309-4314.
[42]
Han, M.; Wang, X.; Dingb, H.; Jinb, M.; Yub, L.; Wangb, J.; Yua, X. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb. Technol., 2014, 54, 32-37.
[43]
Rawlings, N.D.; Salvesen, G. Handbook of Proteolytic Enzymes, 3rd ed; Waltham Academic Press, 2012.
[44]
Miyoshi, S.; Shinoda, S. Microbial metalloproteases and pathogenesis. Microbes Infect., 2000, 2(1), 91-98.
[45]
Viglio, S.; Zanaboni, G.; Lupi, A.; Gianelli, L.; Luisetti, M.; Casali, L.; Cetta, G.; Iadarola, P. Micellar electrokinetic chromatography for analyzing active site specificity of Pseudomonas aeruginosa elastase. Electrophoresis, 1999, 20(7), 1578-1585.
[46]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28, 235-242.
[47]
Saulnier, J.M.; Curtil, F.M.; Duclos, M.C.; Wallach, J.M. Elastolytic activity of Pseudomonas aeruginosa elastase. Biochim. Biophys. Acta, 1989, 995(3), 285-290.
[48]
Yang, J.; Zhao, H.L.; Ran, L.Y.; Li, C.Y.; Zhang, X.Y.; Su, H.N.; Shi, M.; Zhou, B.C.; Chen, X.L.; Zhang, Y.Z. Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Sci. Rep., 2015, 23(5), e9936.
[49]
Bruce, M.C.; Poncz, L.; Klinger, J.D.; Stern, R.C.; Tomashefski, J.F.; Dearborn, D.G. Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am. Rev. Respir. Dis., 1985, 132(3), 529-535.
[50]
Erickson, D.L.; Endersby, R.; Kirkham, A.; Stuber, K.; Vollman, D.D.; Rabin, H.R.; Mitchell, I.; Storey, D.G. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect. Immun., 2002, 70(4), 1783-1790.
[51]
Heck, L.W.; Morihara, K.; McRae, W.B.; Miller, E.J. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect. Immun., 1986, 51(1), 115-118.
[52]
Beaufort, N.; Corvazier, E.; Hervieu, A.; Choqueux, C.; Dussiot, M.; Louedec, L.; Cady, A.; de Bentzmann, S.; Michel, J.B.; Pidard, D. The thermolysin-like metalloproteinase and virulence factor LasB from pathogenic Pseudomonas aeruginosa induces anoikis of human vascular cells. Cell. Microbiol., 2011, 13(8), 1149-1167.
[53]
Reboud, E.; Elsen, S.; Bouillot, S.; Golovkine, G.; Basso, P.; Jeannot, K.; Attrée, I.; Huber, P. Phenotype and toxicity of the recently discovered exlA-positive Pseudomonas aeruginosa strains collected worldwide. Environ. Microbiol., 2016, 18(10), 3425-3439.
[54]
Azghani, A.O.; Miller, E.J.; Peterson, B.T. Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability. Lung, 2000, 178(5), 261-269.
[55]
Beaufort, N.; Corvazier, E.; Mlanaoindrou, S.; de Bentzmann, S.; Pidard, D. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: Implication of matrilysis and receptor cleavage. PLoS One, 2013, 8(9), e75708.
[56]
Nomura, K. Obata. K.; Keira; T.; Miyata, R.; Hirakawa, S.; Takano, K.; Kohno, T.; Sawada, N.; Himi, T.; Kojima, T. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir. Res., 2014, 15, 21.
[57]
Golovkine, G.; Faudry, E.; Bouillot, S.; Voulhoux, R.; Attrée, I.; Huber, P. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog., 2014, 10(3), e1003939.
[58]
Golovkine, G.; Reboud, E.; Huber, P. Pseudomonas aeruginosa takes a multi-target approach to achieve junction breach. Front. Cell. Infect. Microbiol., 2018, 7, 532.
[59]
Golovkine, G.; Faudry, E.; Bouillot, S. Elsen. S.; Attrée, I.; Huber, P. Pseudomonas aeruginosa transmigrates at epithelial cell-cell junctions, exploiting sites of cell division and senescent cell extrusion. PLoS Pathog., 2016, 12(1), e1005377.
[60]
Clark, C.A.; Thomas, L.K.; Azghani, A.O. Inhibition of protein kinase C attenuates Pseudomonas aeruginosa elastase-induced epithelial barrier disruption. Am. J. Respir. Cell Mol. Biol., 2011, 45(6), 1263-1271.
[61]
Komori, Y.; Nonogaki, T. Nikai, T. Hemorrhagic activity and muscle damaging effect of Pseudomonas aeruginosa metalloproteinase (elastase). Toxicon, 2001, 39(9), 1327-1332.
[62]
Dulon, S.; Leduc, D.; Cottrell, G.S.; D’Alayer, J.; Hansen, K.K.; Bunnett, N.W.; Hollenberg, M.D.; Pidard, D.; Chignard, M. Pseudomonas aeruginosa elastase disables proteinase-activated receptor 2 in respiratory epithelial cells. Am. J. Respir. Cell Mol. Biol., 2005, 32(5), 411-419.
[63]
Pressler, T.; Frederiksen, B.; Skov, M.; Garred, P.; Koch, C.; Høiby, N. Early rise of anti-pseudomonas antibodies and a mucoid phenotype of Pseudomonas aeruginosa are risk factors for development of chronic lung infection-a case control study. J. Cyst. Fibros., 2006, 5(1), 9-15.
[64]
Caballero, E.; Drobnic, M.E.; Pérez, M.T.; Manresa, J.M.; Ferrer, A.; Orriols, R. Anti-Pseudomonas aeruginosa antibody detection in patients with bronchiectasis without cystic fibrosis. Thorax, 2001, 56(9), 669-674.
[65]
Lanotte, P.; Mereghetti, L.; Lejeune, B.; Massicot, P.; Quentin, R. Pseudomonas aeruginosa and cystic fibrosis: Correlation between exoenzyme production and patient’s clinical state. Pediatr. Pulmonol., 2003, 36(5), 405-412.
[66]
Suarez-Cuartin, G.; Smith, A.; Abo-Leyah, H.; Rodrigo-Troyano, A.; Perea, L.; Vidal, S.; Plaza, V.; Fardon, T.C.; Sibila, O.; Chalmers, J.D. Anti-Pseudomonas aeruginosa IgG antibodies and chronic airway infection in bronchiectasis. Respir. Med., 2017, 128, 1-6.
[67]
Potempa, J.; Pike, R.N. Corruption of innate immunity by bacterial proteases. J. Innate Immun., 2009, 1, 70-87.
[68]
Doring, G.; Dalhoff, A.; Vogel, O.; Brunner, H.; Droge, U.; Botzenhart, K. In vivo activity of proteases of Pseudomonas aeruginosa in a rat model. J. Infect. Dis., 1984, 149(4), 532-537.
[69]
Bainbridge, T.; Fick, R.B. Functional importance of cystic fibrosis immunoglobulin G fragments generated by Pseudomonas aeruginosa elastase. J. Lab. Clin. Med., 1989, 114(6), 728-733.
[70]
Heck, L.W.; Alarcon, P.G.; Kulhavy, R.M.; Morihara, K.; Russell, M.W.; Mestecky, J.F. Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J. Immunol., 1990, 144(6), 2253-2257.
[71]
Lomholt, J.A.; Kilian, M. Degradation of uniquely glycosylated secretory immunoglobulin A in tears from patients with Pseudomonas aeruginosa keratitis. Invest. Ophthalmol. Vis. Sci., 2008, 49(11), 4939-4944.
[72]
Kuang, Z.; Hao, Y.; Walling, B.E.; Jeffries, J.L.; Ohman, D.E.; Lau, G.W. Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS One, 2011, 6(11), e27091.
[73]
Parmely, M.; Gale, A.; Clabaugh, M.; Horvat, R.; Zhou, W.W. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect. Immun., 1990, 58(9), 3009-3014.
[74]
Horvat, R.T.; Clabaugh, M.; Duval-Jobe, C.; Parmely, M.J. Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin. Infect. Immun., 1989, 57(6), 1668-1674.
[75]
Theander, T.G.; Kharazmi, A.; Pedersen, B.K.; Christensen, L.D.; Tvede, N.; Poulsen, L.K.; Odum, N.; Svenson, M.; Bendtzen, K. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infect. Immun., 1988, 56(7), 1673-1677.
[76]
Leidal, K.G.; Munson, K.L.; Johnson, M.C.; Denning, G.M. Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. J. Interferon Cytokine Res., 2003, 23(6), 307-318.
[77]
Folkesson, A.; Jelsbak, L.; Yang, L.; Johansen, H.K.; Ciofu, O.; Høiby, N.; Molin, S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat. Rev. Microbiol., 2012, 10(12), 841-851.
[78]
Lorè, N.I.; Cigana, C.; De Fino, I.; Riva, C.; Juhas, M.; Schwager, S.; Eberl, L.; Bragonzi, A. Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PLoS One, 2012, 7(4), e35648.
[79]
LaFayette, S.L.; Houle, D.; Beaudoin, T.; Wojewodka, G.; Radzioch, D.; Hoffman, L.R.; Burns, J.L.; Dandekar, A.A.; Smalley, N.E.; Chandler, J.R.; Zlosnik, J.E.; Speert, D.P.; Bernier, J.; Matouk, E.; Brochiero, E.; Rousseau, S.; Nguyen, D. Cystic fibrosis-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses. Sci. Adv., 2015, 1(6), e1500199.
[80]
Schultz, D.R.; Miller, K.D. Elastase of Pseudomonas aeruginosa: Inactivation of complement components and complement-derived chemotactic and phagocytic factors. Infect. Immun., 1974, 10(1), 128-135.
[81]
Mariencheck, W.I.; Alcorn, J.F.; Palmer, S.M. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am. J. Respir. Cell Mol. Biol., 2003, 28(4), 528-537.
[82]
Heimer, S.R.; Evans, D.J.; Mun, J.J.; Stern, M.E.; Fleiszig, S.M. Surfactant protein D contributes to ocular defense against Pseudomonas aeruginosa in a murine model of dry eye disease. PLoS One, 2013, 8(6), e65797.
[83]
McCormick, C.C.; Hobden, J.A.; Balzli, C.L.; Reed, J.M.; Caballero, A.R.; Denard, B.S.; Tang, A.; O’Callaghan, R.J. Surfactant protein D in Pseudomonas aeruginosa keratitis. Ocul. Immunol. Inflamm., 2007, 15(5), 371-379.
[84]
Schmidtchen, A.; Frick, I.M.; Andersson, E.; Tapper, H.; Björck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol., 2002, 46(1), 157-168.
[85]
Strempel, N.; Neidig, A.; Nusser, M.; Geffers, R.; Vieillard, J.; Lesouhaitier, O.; Brenner-Weiss, G.; Overhage, J. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One, 2013, 8(12), e82240.
[86]
Casilag, F.; Lorenz, A.; Krueger, J.; Klawonn, F.; Weiss, S.; Häussler, S. The LasB elastase of Pseudomonas aeruginosa acts in concert with alkaline protease apra to prevent flagellin-mediated immune recognition. Infect. Immun., 2015, 84(1), 162-171.
[87]
Chakrabarty, A.M. Nucleoside diphosphate kinase: Role in bacterial growth, virulence, cell signalling and poly-saccharide synthesis. Mol. Microbiol., 1988, 28(5), 875-882.
[88]
Kamath, S.; Kapatral, V.; Chakrabarty, A.M. Cellular function of elastase in Pseudomonas aeruginosa: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol. Microbiol., 1998, 30(5), 933-941.
[89]
Tielen, P.; Rosenau, F.; Wilhelm, S.; Jaeger, K.E.; Flemming, H.C.; Wingender, J. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology, 2010, 156(7), 2239-2252.
[90]
Overhage, J.; Lewenza, S.; Marr, A.K.; Hancock, R.E. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J. Bacteriol., 2007, 189(5), 2164-2169.
[91]
Yu, H.; He, X.; Xie, W.; Xiong, J.; Sheng, H.; Guo, S.; Huang, C.; Zhang, D.; Zhang, K. Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can. J. Microbiol., 2014, 60(4), 227-235.
[92]
Overhage, J.; Bains, M.; Brazas, M.D.; Hancock, R.E.W. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol., 2008, 190(8), 2671-2679.
[93]
Klausen, M.; Heydorn, A.; Ragas, P.; Lambertsen, L.; Aaes-Jørgensen, A.; Molin, S.; Tolker-Nielsen, T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol., 2003, 48(6), 1511-1524.
[94]
Köhler, T.; Curty, L.K.; Barja, F.; van Delden, C.; Pechère, J.C. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol., 2000, 182(21), 5990-5996.
[95]
Cowell, B.A.; Twining, S.S.; Hobden, J.A. Kwong. M.S.; Fleiszig, S.M. Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology, 2003, 149(8), 2291-2299.
[96]
Tang, H.B.; DiMango, E.; Bryan, R.; Gambello, M.; Iglewski, B.H.; Goldberg, J.B.; Prince, A. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun., 1996, 64(1), 37-43.
[97]
Tan, M.W.; Rahme, L.G.; Sternberg, J.A.; Tompkins, R.G.; Ausubel, F.M. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2408-2413.
[98]
Bassetti, M.; Poulakou, G.; Ruppe, E.; Bouza, E.; Van Hal, S.J.; Brink, A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensive Care Med., 2017, 43(10), 1464-1475.
[99]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[100]
Ventola, C.L. The antibiotic resistance crisis- part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[101]
Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A. New antibiotics for bad bugs: Where are we? Ann. Clin. Microbiol. Antimicrob., 2013, 12, 22.
[102]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. WHO Pathogens Priority List Working Group Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[103]
Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov., 2010, 9(2), 117-128.
[104]
Cegelski, L.; Marshall, G.R.; Eldridge, G.R.; Hultgren, S.J. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol., 2008, 6(1), 17-27.
[105]
Culp, E.; Wrigh, G.D. Bacterial proteases, untapped antimicrobial drug target. J. Antibiot., 2017, 70(4), 366-377.
[106]
Quinn, T.C. HIV epidemiology and the effects of antiviral therapy on long-term consequences. AIDS, 2008, 22(3), 7-12.
[107]
Haq, S.K.; Atif, S.M.; Khan, R.H. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: Natural and engineered phytoprotection. Arch. Biochem. Biophys., 2004, 431(1), 145-159.
[108]
Supuran, C.T.; Scozzafava, A.; Clare, B.W. Bacterial protease inhibitors. Med. Res. Rev., 2002, 22(4), 329-372.
[109]
Kantyka, T.; Plaza, K.; Koziel, J.; Florczyk, D.; Stennicke, H.R.; Thogersen, I.B.; Enghild, J.J.; Silverman, G.A.; Pak, S.C.; Potempa, J. Inhibition of Staphylococcus aureus cysteine proteases by human serpin potentially limits staphylococcal virulence. Biol. Chem., 2011, 392(5), 483-489.
[110]
Suleman, L. Extracellular bacterial proteases in chronic wounds: A potential therapeutic target? Adv. Wound Care, 2016, 5(10), 455-463.
[111]
Cathcart, G.R.; Quinn, D.; Greer, B.; Harriott, P.; Lynas, J.F.; Gilmore, B.F.; Walker, B. Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: A potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrob. Agents Chemother., 2011, 55(6), 2670-2678.
[112]
Kocabiyik, S.; Ergin, E.; Turkoglu, S. Effects of metals on elastase from Pseudomonas aeruginosa SES-938-1. Biol. Trace Elem. Res., 1995, 50(1), 25-31.
[113]
Aoki, N.; Ishii, Y.; Tateda, K.; Saga, T.; Kimura, S.; Kikuchi, Y.; Kobayashi, T.; Tanabe, Y.; Tsukada, H.; Gejyo, F.; Yamaguchi, K. Efficacy of calcium-EDTA as an inhibitor for metallo-β-lactamase in a mouse model of Pseudomonas aeruginosa pneumonia. Antimicrob. Agents Chemother., 2010, 54(11), 4582-4588.
[114]
Lin-Tan, D.T.; Lin, J.L.; Yen, T.H.; Chen, K.H.; Huang, Y.L. Long-term outcome of repeated lead chelation therapy in progressive non- diabetic chronic kidney diseases. Nephrol. Dial. Transplant., 2007, 22(10), 2924-2931.
[115]
Kessler, E.; Israel, M.; Landshman, N.; Chechick, A.; Blumberg, S. In vitro inhibition of Pseudomonas aeruginosa elastase by metal-chelating peptide derivatives. Infect. Immun., 1982, 38(2), 716-723.
[116]
Garner, A.L.; Struss, A.K.; Fullagar, J.L.; Agrawal, A.; Moreno, A.Y.; Cohen, S.M.; Janda, K.D. 3-Hydroxy-1-alkyl-2-methylpyridine-4(1H)-thiones: Inhibition of the Pseudomonas aeruginosa virulence factor lasb. ACS Med. Chem. Lett., 2012, 3(8), 668-672.
[117]
Zhu, J.; Cai, X.; Harris, T.L.; Gooyit, M.; Wood, M.; Lardy, M.; Janda, K.D. Disarming Pseudomonas aeruginosa virulence factor LasB by leveraging a Caenorhabditis elegans infection model. Chem. Biol., 2015, 22(4), 483-491.
[118]
Kany, A.M.; Sikandar, A.; Haupenthal, J.; Yahiaoui, S.; Maurer, C.K.; Proschak, E.; Köhnke, J.; Hartmann, R.W. Binding mode characterization and early in vivo evaluation of fragment-like thiols as inhibitors of the virulence factor lasB from Pseudomonas aeruginosa. ACS Infect. Dis., 2018, 4(6), 988-997.
[119]
Kessler, E.; Spierer, A.; Blumberg, S. Opthalmic preparations. U.S. patent 4,613,587. 1986.
[120]
Kawaharajo, K.; Homma, J.Y.; Aoyagi, T.; Umezawa, H. Effect of phosphoramidon on protection against corneal ulcer caused by elastase and protease from Pseudomonas aeruginosa. Jpn. J. Exp. Med., 1982, 52(5), 271-272.
[121]
Kessler, E.; Spierer, A. Inhibition by phosphoramidon of Pseudomonas aeruginosa elastase injected intracorneally in rabbit eyes. Curr. Eye Res., 1984, 3(8), 1075-1078.
[122]
Williams, P.; Camara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol., 2009, 12(2), 182-191.
[123]
Anderson, R.M.; Zimprich, C.A.; Rust, L. A second operator is involved in Pseudomonas aeruginosa elastase (lasB) activation. J. Bacteriol., 1999, 181(20), 6264-6270.
[124]
Givskov, M.; de Nys, R.; Manefield, M.; Gram, L.; Maximilien, R.; Eberl, L.; Molin, S.; Steinberg, P.D.; Kjelleberg, S. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol., 1996, 178(22), 6618-6622.
[125]
Chu, W.; Zhou, S.; Jiang, Y.; Zhu, W.; Zhuang, X. Fu. J. Effect of traditional Chinese herbal medicine with anti-quorum-sensing activity on Pseudomonas aeruginosa. Evid. Based Complement. Alternat. Med., 2013, 2013, 648257.
[126]
Husain, F.M.; Ahmad, I.; Khan, M.S.; Al-Shabib, N.A. Trigonella foenum-graceum (seed) extract interferes with quorum sensing regulated traits and biofilm formation in the strains of Pseudomonas aeruginosa and Aeromonas hydrophila. Evid. Based Complement. Alternat. Med., 2015, 2015, 879540.
[127]
Mustafi, S.; Veisaga, M.L.; López, L.A.; Barbieri, M.A. A novel insight into dehydroleucodine mediated attenuation of Pseudomonas aeruginosa virulence mechanism. BioMed Res. Int., 2015, 2015, 216097.
[128]
Singh, V.K.; Mishra, A.; Jha, B. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol., 2017, 7, e337.
[129]
Gala, V.C.; John, N.R.; Bhagwat, A.M.; Datar, A.G.; Kharkar, P.S.; Desai, K.B. Attenuation of quorum sensing-regulated behaviour by Tinospora cordifolia extract & identification of its active constituents. Indian J. Med. Res., 2016, 144(1), 92-103.
[130]
Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; Chen, Y. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One, 2017, 12(4), e0176883.
[131]
Rasamiravaka, T.; Jedrzejowski, A.; Kiendrebeogo, M.; Rajaonson, S.; Randriamampionona, D.; Rabemanantsoa, C.; Andriantsimahavandy, A.; Rasamindrakotroka, A.; Duez, P.; El Jaziri, M.; Vandeputte, O.M. Endemic Malagasy dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Microbiology, 2013, 159(5), 924-938.
[132]
Kumar, L.; Chhibber, S.; Kumar, R.; Kumar, M.; Harjai, K. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia, 2015, 102, 84-95.
[133]
Zhou, L.; Zheng, H.; Tang, Y.; Yu, W.; Gong, Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett., 2013, 35(4), 631-637.
[134]
Rathinam, P.; Vijay Kumar, H.S.; Viswanathan, P. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling, 2017, 33(8), 624-639.
[135]
Vandeputte, O.M.; Kiendrebeogo, M.; Rasamiravaka, T.; Stévigny, C.; Duez, P.; Rajaonson, S.; Diallo, B.; Mol, A.; Baucher, M.; El Jaziri, M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology, 2011, 157, 2120-2132.
[136]
Gilabert, M.; Marcinkevicius, K.; Andujar, S.; Schiavone, M.; Arena, M.E.; Bardón, A. Sesqui- and triterpenoids from the liverwort Lepidozia chordulifera inhibitors of bacterial biofilm and elastase activity of human pathogenic bacteria. Phytomedicine, 2015, 22(1), 77-85.
[137]
Sepahi, E.; Tarighi, S.; Ahmadi, F.S.; Bagheri, A. Inhibition of quorum sensing in Pseudomonas aeruginosa by two herbal essential oils from Apiaceae family. J. Microbiol., 2015, 53(2), 176-180.
[138]
Das, M.C.; Sandhu, P.; Gupta, P.; Rudrapaul, P.; De, U.C.; Tribedi, P.; Akhter, Y.; Bhattacharjee, S. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin. Sci. Rep., 2016, 6, 23347.
[139]
Rasamiravaka, T.; Vandeputte, O.M.; Pottier, L.; Huet, J.; Rabemanantsoa, C.; Kiendrebeogo, M.; Andriantsimahavandy, A.; Rasamindrakotroka, A.; Stévigny, C.; Duez, P.; El Jaziri, M. Pseudomonas aeruginosa biofilm formation and persistence, along with the production of quorum sensing-dependent virulence factors, are disrupted by a triterpenoid coumarate ester isolated from Dalbergia trichocarpa, a tropical legume. PLoS One, 2015, 10(7), e0132791.
[140]
García-Contreras, R.; Martínez-Vázquez, M.; Velázquez Guadarrama, N.; Villegas Pañeda, A.G.; Hashimoto, T.; Maeda, T.; Quezada, H.; Wood, T.K. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog. Dis., 2013, 68(1), 8-11.
[141]
Singh, B.N.; Singh, H.B.; Singh, A.; Singh, B.R.; Mishra, A.; Nautiyal, C.S. Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology, 2012, 158, 529-538.
[142]
Adonizio, A.; Kong, K.F.; Mathee, K. inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by south florida plant extracts. Antimicrob. Agents Chemother., 2008, 52, 198-203.
[143]
Vandeputte, O.M.; Kiendrebeogo, M.; Rajaonson, S.; Diallo, B.; Mol, A.; El Jaziri, M.; Baucher, M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 2010, 76(1), 243-253.
[144]
Zhang, A.; Chu, W.H. anti-quorum sensing activity of forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa. Pharmacogn. Mag., 2017, 13(50), 321-325.
[145]
Husain, F.M.; Ahmad, I.; Al-Thubiani, A.S.; Abulreesh, H.H.; AlHazza, I.M.; Aqil, F. Leaf Extracts of Mangifera indica L. Inhibit quorum sensing-regulated production of virulence factors and biofilm in test bacteria. Front. Microbiol., 2017, 8, 727.
[146]
Alasil, S.M.; Omar, R.; Ismail, S.; Yusof, M.Y. Inhibition of quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by culture extract from novel bacterial species of Paenibacillus using a rat model of chronic lung infection. Int. J. Bacteriol., 2015, 2015, 671562.
[147]
Musthafa, K.S.; Saroja, V.; Pandian, S.K.; Ravi, A.V. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J. Biosci., 2011, 36(1), 55-67.
[148]
Christiaen, S.E.; Matthijs, N.; Zhang, X.H.; Nelis, H.J.; Bossier, P.; Coenye, T. Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Pathog. Dis., 2014, 70(3), 271-279.
[149]
Pattnaik, S.S.; Ranganathan, S.; Ampasala, D.R.; Syed, A.; Ameen, F.; Busi, S. Attenuation of quorum sensing regulated virulence and biofilm development in Pseudomonas aeruginosa PAO1 by Diaporthe phaseolorum SSP12. Microb. Pathog., 2018, 118, 177-189.
[150]
Sakata, K.; Yajima, H.; Tanaka, K.; Sakamoto, Y.; Yamamoto, K.; Yoshida, A.; Dohi, Y. Erythromycin inhibits the production of elastase by Pseudomonas aeruginosa without affecting its proliferation in vitro. Am. Rev. Respir. Dis., 1993, 148(4), 1061-1065.
[151]
Imperi, F.; Massai, F.; Ramachandran, C.; Longo, F.; Zennaro, E.; Rampioni, G.; Visca, P.; Leoni, L. New life for an old drug: The anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob. Agents Chemother., 2013, 57(2), 996-1005.
[152]
Gupta, P.; Chhibber, S.; Harjai, K. Sub-inhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation e reduction of virulence. Indian J. Med. Res., 2016, 143(5), 643-651.
[153]
Husain, F.M.; Ahmad, I. Doxycycline interferes with quorum sensing-mediated virulence factors and biofilm formation in gram-negative bacteria. World J. Microbiol. Biotechnol., 2013, 29(6), 949-957.
[154]
X, Z.G.; Gao, Y.; He, J.G.; Xu, W.F.; Jiang, M.; Jin, H.S. Effects of azithromycin on Pseudomonas aeruginosa isolates from catheter-associated urinary tract infection. Exp. Ther. Med., 2015, 9(2), 569-572.
[155]
Santos, A.L.S.; Galdino, A.C.M.; Mello, T.P.; Ramos, L.S.; Branquinha, M.H.; Bolognese, A.M.; Columbano, J.; Roudbary, M. What are the advantages of living in a community? A microbial biofilm perspective! Mem. Inst. Oswaldo Cruz, 2018, 113(9), e180212.
[156]
Alipour, M.; Suntres, Z.E.; Lafrenie, R.M.; Omri, A. Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J. Antimicrob. Chemother., 2010, 65(4), 684-693.
[157]
Rodriguez-Esteban, R. A drug-centric view of drug development: how drugs spread from disease to disease. PLOS Comput. Biol., 2016, 12(4), e1004852.
[158]
Ulusoy, S.; Bosgelmez-Tinaz, G. Nonsteroidal anti-inflammatory drugs reduce the production of quorum sensing regulated virulence factors and swarm in motility in human pathogen Pseudomonas aeruginosa. Drug Res., 2013, 63(8), 409-413.
[159]
Prithiviraj, B.; Bais, H.P.; Weir, T.; Suresh, B.; Najarro, E.H.; Dayakar, B.V.; Schweizer, H.P.; Vivanco, J.M. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infect. Immun., 2005, 73(9), 5319-5328.
[160]
El-Mowafy, S.A.; Galil, K.H.; El-Messery, S.M.; Shaaban, M.I. Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb. Pathog., 2014, 74, 25-32.
[161]
Abbas, H.A.; Elsherbini, A.M.; Shaldam, M.A. Repurposing metformin as a quorum sensing inhibitor in Pseudomonas aeruginosa. Afr. Health Sci., 2017, 17(3), 808-819.
[162]
Müh, U.; Schuster, M.; Heim, R.; Singh, A.; Olson, E.R.; Greenberg, E.P. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob. Agents Chemother., 2006, 50(11), 3674-3679.
[163]
Xu, G.; Xiong, W.; Hu, Q.; Zuo, P.; Shao, B.; Lan, F.; Lu, X.; Xu, Y.; Xiong, S. Lactoferrin-derived peptides and lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa. J. Appl. Microbiol., 2010, 109(4), 1311-1318.
[164]
Laux, D.C.; Corson, J.M.; Givskov, M.; Hentzer, M.; Møller, A.; Wosencroft, K.A.; Olson, J.C.; Krogfelt, K.A.; Goldberg, J.B.; Cohen, P.S. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA. Microbiology, 2002, 148(6), 1709-1723.
[165]
Kalishwaralal, K. BarathManiKanth, S.; Pandian, S.R.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces, 2010, 79, 340-344.
[166]
Ali, S.S.; Morsy, R.; El-Zawawy, N.A.; Fareed, M.F.; Bedaiwy, M.Y. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomedicine, 2017, 12, 6059-6073.
[167]
García-Lara, B.; Saucedo-Mora, M.A.; Roldan-Sanchez, J.A.; Pérez-Eretza, B.; Ramasamy, M.; Lee, J.; Coria-Jimenez, R.; Tapia, M.; Vareia-Guerrero, V.; García-Conteras, R. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett. Appl. Microbiol., 2015, 61(3), 299-305.
[168]
Jha, A.K.; Orasad, K.; Prasad, K.; Kulakarni, A.R. Plant system: Natures nanofactory. Colloids Surf. B Biointerfaces, 2009, 73(2), 219-223.
[169]
Al-Shabib, N.A.; Husain, F.M.; Ahmed, F.; Khan, R.A.; Ahmad, I.; Alsharaeh, E.; Khan, M.S.; Hussain, A.; Rehman, M.T.; Yusuf, M.; Hassan, I.; Khan, J.M.; Ashraf, G.M.; Alsalme, A.; Al-Ajmi, M.F.; Tarasov, V.V.; Aliev, G. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep., 2016, 6, 36761.
[170]
Prateeksha, A.; Singh, B.R.; Shoeb, M.; Sharma, S.; Naqvi, A.H.; Gupta, V.K.; Singh, B.N. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front. Cell. Infect. Microbiol., 2017, 7, 93.
[171]
Singh, B.R.; Singh, B.N.; Singh, A.; Khan, W.; Naqvi, A.H.; Singh, H.B. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci. Rep., 2015, 5, 13719.
[172]
Chojnacki, M.; Philbrick, A.; Wucher, B.; Reed, J.N.; Tomaras, A.; Dunman, P.M.; Wozniak, R.A.F. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Antimicrob. Agents Chemother., 2018, 63, e01929-e18.
[175]
Johnson, B.K.; Abramovitch, R.B. Small molecules that sabotage bacterial virulence. Trends Pharmacol. Sci., 2017, 38(4), 339-362.
[176]
Galdino, A.C.M.; Viganor, L.; Ziccardi, M.; Nunes, A.P.F.; Dos Santos, K.R.N.; Branquinha, M.H.; Santos, A.L.S. Hterogeneous production of proteases from Brazilian clinical isolates of Pseudomonas aeruginosa. Enferm. Infecc. Microbiol. Clin., 2017, 35(10), 630-637.
[177]
Bradbury, R.S.; Roddam, L.F.; Merritt, A.; Reid, D.W.; Champion, A.C. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J. Med. Microbiol., 2010, 59(8), 881-890.
[178]
Holban, A.M.; Chifiriuc, M.C.; Cotar, A.I.; Bleotu, C.; Grumezescu, A.M.; Banu, O.; Grumezescu, A.M.; Banu, O. lazar, V. Virulence markers in Pseudomonas aeruginosa isolates from hospital and acquired infections occurred in patients with underlying cardiovascular disease. Rom. Biotechnol. Lett., 2013, 18(6), 7243-7254.
[179]
Schmidtchen, A.; Wolff, H.; Hansson, C. Differential proteinase expression by Pseudomonas aeruginosa derived from chronic leg ulcers. Acta Derm. Venereol., 2001, 81(6), 406-409.