Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target

Author(s): Anna Clara M. Galdino, Matheus P. de Oliveira, Teodorico C. Ramalho, Alexandre A. de Castro, Marta H. Branquinha* and André L.S. Santos*

Volume 20, Issue 5, 2019

Page: [471 - 487] Pages: 17

DOI: 10.2174/1389203720666190207100415

Price: $65

Abstract

Pseudomonas aeruginosa is a non-fermentative, gram-negative bacterium that is one of the most common pathogens responsible for hospital-acquired infections worldwide. The management of the infections caused by P. aeruginosa represents a huge challenge in the healthcare settings due to the increased emergence of resistant isolates, some of them resistant to all the currently available antimicrobials, which results in elevated morbimortality rates. Consequently, the development of new therapeutic strategies against multidrug-resistant P. aeruginosa is urgent and needful. P. aeruginosa is wellrecognized for its extreme genetic versatility and its ability to produce a lush variety of virulence factors. In this context, pseudolysin (or elastase B) outstands as a pivotal virulence attribute during the infectious process, playing multifunctional roles in different aspects of the pathogen-host interaction. This protein is a 33-kDa neutral zinc-dependent metallopeptidase that is the most abundant peptidase found in pseudomonal secretions, which contributes to the invasiveness of P. aeruginosa due to its ability to cleave several extracellular matrix proteins and to disrupt the basolateral intercellular junctions present in the host tissues. Moreover, pseudolysin makes P. aeruginosa able to overcome host defenses by the hydrolysis of many immunologically relevant molecules, including antibodies and complement components. The attenuation of this striking peptidase therefore emerges as an alternative and promising antivirulence strategy to combat antibiotic-refractory infections caused by P. aeruginosa. The anti-virulence approach aims to disarm the P. aeruginosa infective arsenal by inhibiting the expression/activity of bacterial virulence factors in order to reduce the invasiveness of P. aeruginosa, avoiding the emergence of resistance since the proliferation is not affected. This review summarizes the most relevant features of pseudolysin and highlights this enzyme as a promising target for the development of new anti-virulence compounds.

Keywords: Pseudomonas aeruginosa, virulence, resistance, bacterial pathogen, pseudolysin, anti-virulence strategy.

Graphical Abstract

[1]
La Rosa, R.; Johansen, H.K.; Molin, S. Convergent metabolic specialization through distinct evolutionary paths in Pseudomonas aeruginosa. MBio, 2018, 9(2), e00269-e00218.
[2]
Driscoll, J.A.; Brody, S.L.; Kollef, M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 2007, 67(3), 351-368.
[3]
Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; Garber, R.L.; Goltry, L.; Tolentino, E.; Westbrock-Wadman, S.; Yuan, Y.; Brody, L.L.; Coulter, S.N.; Folger, K.R.; Kas, A.; Larbig, K.; Lim, R.; Smith, K.; Spencer, D.; Wong, G.K.; Wu, Z.; Paulsen, I.T.; Reizer, J.; Saier, M.H.; Hancock, R.E.; Lory, S.; Olson, M.V. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 2000, 406(6799), 959-964.
[4]
Ruppé, E.; Cherkaoui, A.; Lazarevic, V.; Emonet, S.; Schrenzel, J. Establishing genotype-to-phenotype relationships in bacteria causing hospital-acquired pneumonia: A prelude to the application of clinical metagenomics. Antibiotics, 2017, 6(4), E30.
[5]
Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance, 2015, 22, 41-59.
[6]
Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev., 2009, 22(4), 582-610.
[7]
Rosenthal, V.D.; Al-Abdely, H.M.; El-Kholy, A.A.; AlKhawaja, S.A.A.; Leblebicioglu, H.; Mehta, Y.; Rai, V.; Hung, N.V.; Kanj, S.S.; Salama, M.F.; Salgado-Yepez, E.; Elahi, N.; Morfin, R.O.; Apisarnthanarak, A.; De Carvalho, B.M.; Ider, B.E.; Fisher, D.; Buenaflor, M.C.S.G.; Petrov, M.M.; Quesada-Mora, A.M.; Zand, F.; Gurskis, V.; Anguseva, T.; Ikram, A.; de Moros, D.A.; Duszynska, W.; Mejia, N.; Horhat, F.G.; Belskiy, V.; Mioljevic, V.; Di Silvestre, G.; Furova, K.; Ramos-Ortiz, G.Y.; Gamar Elanbya, M.O.; Satari, H.I.; Gupta, U.; Dendane, T.; Raka, L.; Guanche-Garcell, H.; Hu, B.; Padgett, D.; Jayatilleke, K.; Ben Jaballah, N.; Apostolopoulou, E.; Prudencio Leon, W.E.; Sepulveda-Chavez, A.; Telechea, H.M.; Trotter, A.; Alvarez-Moreno, C.; Kushner-Davalos, L. International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module. Am. J. Infect. Control, 2016, 44(12), 1495-1504.
[8]
Carmeli, Y.N.; Troillet, A.; Karchmer, W.; Samore, M.H. Health and economic outcomes of antibiotic resistant Pseudomonas aeruginosa. Arch. Intern. Med., 1999, 159(10), 1127-1132.
[9]
Gasink, L.B.; Fishman, N.O.; Weiner, M.G.; Nachamkin, I.; Bilker, W.B.; Lautenbach, E. Fluoroquinolone-resistant Pseudomonas aeruginosa: Assessment of risk factors and clinical impact. Am. J. Med., 2006, 119(6), 526.e19-526.e25.
[10]
Tapper, M.L.; Armstrong, D. Bacteremia due to Pseudomonas aeruginosa complicating neoplastic disease: A progress report. J. Infect. Dis., 1974, 130, 14-23.
[11]
Todeschini, G.; Franchini, M.; Tecchio, C.; Meneghini, V.; Pizzolo, G.; Veneri, D.; Murari, C.; Ricetti, M.M.; Perona, G. Improved prognosis of Pseudomonas aeruginosa bacteremia in 127 consecutive neutropenic patients with hematologic malignancies. Int. J. Infect. Dis., 1999, 3(2), 99-104.
[12]
Chatzinikolaou, I.; Abi-Said, D.; Bodey, G.P.; Rolston, K.V.
Tarrand, J.J.; Samonis, G. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. Arch. Intern. Med., 2000, 160(4), 501-509.
[13]
Zhang, Y.; Chen, X.L.; Huang, A.; Liu, S.; Liu, W.; Zhang, N.; Lu, X. Mortality attributable to carbapenem-resistant Pseudomonas aeruginosa bacteremia: A meta-analysis of cohort studies. Emerg. Microbes Infect., 2016, 5(3), e27.
[14]
Girão, E.; Levin, A.S.; Basso, M.; Gobara, S.; Gomes, L.B.; Medeiros, E.A.S.; Barone, A.A.; Costa, S.F. Trends and outcome of 1121 nosocomial blood- stream infections in intensive care units in a Brazilian hospital, 1999—2008. Int. J. Infect. Dis., 2008, 12(6), 145-146.
[15]
Vitkauskiene, A.; Skrodeniene, E.; Dambrauskiene, A.; Macas, A.; Sakalauskas, R. Pseudomonas aeruginosa bacteremia: Resistance to antibiotics, risk factors, and patient mortality. Medicina, 2010, 46(7), 490-495.
[16]
Lodise, T.P.; Patel, N.; Kwa, A.; Graves, J.; Furuno, J.P.; Graffunder, E.; Lomaestro, B.; McGregor, J.C. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: Impact of delayed appropriate antibiotic selection. Antimicrob. Agents Chemother., 2007, 51(10), 3510-3515.
[17]
Cheng, V.; Abdul-Aziz, M.H.; Roberts, J.A.; Shekar, K. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J. Thorac. Dis., 2018, 10(5), 629-641.
[18]
Peña, C.; Suarez, C.; Gozalo, M.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M. Granados. A.; Calbo, E.; Rodríguez-Baño, J.; Rodríguez, F.; Tubau, F.; Martínez-Martínez, L.; Oliver, A. Spanish Network for Research in Infectious Diseases REIPI: Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob. Agents Chemother., 2012, 56(3), 1265-1272.
[19]
Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett., 2017, 364(15), fnx124.
[20]
Valentini, M.; Gonzalez, D.; Mavridou, D.A.; Filloux, A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr. Opin. Microbiol., 2018, 41, 15-20.
[21]
Hogardt, M.; Heesemann, J. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int. J. Med. Microbiol., 2010, 300(8), 557-562.
[22]
Hogardt, M.; Hoboth, C.; Schmoldt, S.; Henke, C.; Bader, L.; Heesemann, J. Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis. J. Infect. Dis., 2007, 195(1), 70-80.
[23]
Al-Wrafy, F.; Brzozowska, E.; Górska, S.; Gamian, A. Pathogenic factors of Pseudomonas aeruginosa - the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig. Med. Dosw., 2017, 71, 78-91.
[24]
Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med., 2005, 171(11), 1209-1223.
[25]
Kipnis, E.; Sawa, T.; Wiener-Kronish, J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med. Mal. Infect., 2006, 36(2), 78-91.
[26]
Gómez-Zorrilla, S.; Morandeira, F.; Castro, M.J.; Tubau, F.; Periche, E.; Cañizares, R.; Dominguez, M.A.; Ariza, J.; Peña, C. acute inflammatory response of patients with Pseudomonas aeruginosa infections: A prospective study. Microb. Drug Resist., 2017, 23(4), 523-530.
[27]
Tseng, B.; Reichhardt, C.; Merrihew, G.; Araujo-Hernandez, S.; Harrison, J.J.; MacCoss, M.J.; Parsek, M.R. A Biofilm matrix-associated protease inhibitor protects Pseudomonas aeruginosa from proteolytic attack. MBio, 2018, 9(2), pii:e00543-e18.
[28]
Roilides, E.; Simitsopoulou, M.; Katragkou, A.; Walsh, T.J. How biofilms evade host defenses. Microbiol. Spectr., 2015, 3(3)
[http://dx.doi.org/10.1128/microbiolspec.MB-0012-2014]
[29]
Hathroubi, S.; Mekni, M.A.; Domenico, P.; Nguyen, D.; Jacques, M. Biofilms: Microbial shelters against antibiotics. Microb. Drug Resist., 2017, 23(2), 147-156.
[30]
Galdino, A.C.M.; Branquinha, M.H.; Santos, A.L.S.; Viganor, L.V. Pseudomonas aeruginosa and its arsenal of proteases: Weapons to battle the host. In: Pathophysiological aspects of proteases; Verlag Gmb, H., Ed.; Springer: Singapore, 2017; Vol. 1, pp. 381-397.
[31]
Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis., 2013, 67(3), 159-173.
[32]
Crousilles, A.; Maunders, E.; Bartlett, S.; Fan, C.; Ukor, E.F.; Abdelhamid, Y.; Baker, Y.; Floto, A.; Spring, D.R.; Welch, M. Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol., 2015, 10(11), 1825-1836.
[33]
Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol., 2017, 7, 39.
[34]
Rawlings, N.D.; Morton, F.R.; Kok, C.Y.; Kong, J.; Barrett, A.J. MEROPS: The peptidase database. Nucleic Acids Res., 2008, 36, 320-325.
[35]
Thayer, M.M.; Flaherty, K.M.; McKay, D.B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J. Biol. Chem., 1991, 266(5), 2864-2871.
[36]
Hangauer, D.G.; Monzingo, A.F.; Matthews, B.W. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry, 1984, 23(24), 5730-5741.
[37]
Tang, B.; Nirasawa, S.; Kitaoka, M.; Marie-Claire, C.; Hayashi, K. General function of N-terminal propeptide on assisting protein folding and inhibiting catalytic activity based on observations with a chimeric thermolysin-like protease. Biochem. Biophys. Res. Commun., 2003, 301(4), 1093-1098.
[38]
Yeats, C.; Rawlings, N.D.; Bateman, A. The PepSY domain: A regulator of peptidase activity in the microbial environment? Trends Biochem. Sci., 2004, 29(4), 169-172.
[39]
Rawlings, N.D.; Barrett, A.J. Evolutionary families of metallopeptidases. Methods Enzymol., 1995, 248, 183-228.
[40]
Banbula, A.; Potempa, J.; Travis, J.; Fernandez-Catalan, C.; Mann, K.; Huber, R.; Bode, W.; Medrano, F. Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution. Structure, 1998, 6(9), 1185-1193.
[41]
Bever, A.; Iglewski, B.H. Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J. Bacteriol., 1988, 170(9), 4309-4314.
[42]
Han, M.; Wang, X.; Dingb, H.; Jinb, M.; Yub, L.; Wangb, J.; Yua, X. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb. Technol., 2014, 54, 32-37.
[43]
Rawlings, N.D.; Salvesen, G. Handbook of Proteolytic Enzymes, 3rd ed; Waltham Academic Press, 2012.
[44]
Miyoshi, S.; Shinoda, S. Microbial metalloproteases and pathogenesis. Microbes Infect., 2000, 2(1), 91-98.
[45]
Viglio, S.; Zanaboni, G.; Lupi, A.; Gianelli, L.; Luisetti, M.; Casali, L.; Cetta, G.; Iadarola, P. Micellar electrokinetic chromatography for analyzing active site specificity of Pseudomonas aeruginosa elastase. Electrophoresis, 1999, 20(7), 1578-1585.
[46]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28, 235-242.
[47]
Saulnier, J.M.; Curtil, F.M.; Duclos, M.C.; Wallach, J.M. Elastolytic activity of Pseudomonas aeruginosa elastase. Biochim. Biophys. Acta, 1989, 995(3), 285-290.
[48]
Yang, J.; Zhao, H.L.; Ran, L.Y.; Li, C.Y.; Zhang, X.Y.; Su, H.N.; Shi, M.; Zhou, B.C.; Chen, X.L.; Zhang, Y.Z. Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Sci. Rep., 2015, 23(5), e9936.
[49]
Bruce, M.C.; Poncz, L.; Klinger, J.D.; Stern, R.C.; Tomashefski, J.F.; Dearborn, D.G. Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am. Rev. Respir. Dis., 1985, 132(3), 529-535.
[50]
Erickson, D.L.; Endersby, R.; Kirkham, A.; Stuber, K.; Vollman, D.D.; Rabin, H.R.; Mitchell, I.; Storey, D.G. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect. Immun., 2002, 70(4), 1783-1790.
[51]
Heck, L.W.; Morihara, K.; McRae, W.B.; Miller, E.J. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect. Immun., 1986, 51(1), 115-118.
[52]
Beaufort, N.; Corvazier, E.; Hervieu, A.; Choqueux, C.; Dussiot, M.; Louedec, L.; Cady, A.; de Bentzmann, S.; Michel, J.B.; Pidard, D. The thermolysin-like metalloproteinase and virulence factor LasB from pathogenic Pseudomonas aeruginosa induces anoikis of human vascular cells. Cell. Microbiol., 2011, 13(8), 1149-1167.
[53]
Reboud, E.; Elsen, S.; Bouillot, S.; Golovkine, G.; Basso, P.; Jeannot, K.; Attrée, I.; Huber, P. Phenotype and toxicity of the recently discovered exlA-positive Pseudomonas aeruginosa strains collected worldwide. Environ. Microbiol., 2016, 18(10), 3425-3439.
[54]
Azghani, A.O.; Miller, E.J.; Peterson, B.T. Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability. Lung, 2000, 178(5), 261-269.
[55]
Beaufort, N.; Corvazier, E.; Mlanaoindrou, S.; de Bentzmann, S.; Pidard, D. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: Implication of matrilysis and receptor cleavage. PLoS One, 2013, 8(9), e75708.
[56]
Nomura, K. Obata. K.; Keira; T.; Miyata, R.; Hirakawa, S.; Takano, K.; Kohno, T.; Sawada, N.; Himi, T.; Kojima, T. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir. Res., 2014, 15, 21.
[57]
Golovkine, G.; Faudry, E.; Bouillot, S.; Voulhoux, R.; Attrée, I.; Huber, P. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog., 2014, 10(3), e1003939.
[58]
Golovkine, G.; Reboud, E.; Huber, P. Pseudomonas aeruginosa takes a multi-target approach to achieve junction breach. Front. Cell. Infect. Microbiol., 2018, 7, 532.
[59]
Golovkine, G.; Faudry, E.; Bouillot, S. Elsen. S.; Attrée, I.; Huber, P. Pseudomonas aeruginosa transmigrates at epithelial cell-cell junctions, exploiting sites of cell division and senescent cell extrusion. PLoS Pathog., 2016, 12(1), e1005377.
[60]
Clark, C.A.; Thomas, L.K.; Azghani, A.O. Inhibition of protein kinase C attenuates Pseudomonas aeruginosa elastase-induced epithelial barrier disruption. Am. J. Respir. Cell Mol. Biol., 2011, 45(6), 1263-1271.
[61]
Komori, Y.; Nonogaki, T. Nikai, T. Hemorrhagic activity and muscle damaging effect of Pseudomonas aeruginosa metalloproteinase (elastase). Toxicon, 2001, 39(9), 1327-1332.
[62]
Dulon, S.; Leduc, D.; Cottrell, G.S.; D’Alayer, J.; Hansen, K.K.; Bunnett, N.W.; Hollenberg, M.D.; Pidard, D.; Chignard, M. Pseudomonas aeruginosa elastase disables proteinase-activated receptor 2 in respiratory epithelial cells. Am. J. Respir. Cell Mol. Biol., 2005, 32(5), 411-419.
[63]
Pressler, T.; Frederiksen, B.; Skov, M.; Garred, P.; Koch, C.; Høiby, N. Early rise of anti-pseudomonas antibodies and a mucoid phenotype of Pseudomonas aeruginosa are risk factors for development of chronic lung infection-a case control study. J. Cyst. Fibros., 2006, 5(1), 9-15.
[64]
Caballero, E.; Drobnic, M.E.; Pérez, M.T.; Manresa, J.M.; Ferrer, A.; Orriols, R. Anti-Pseudomonas aeruginosa antibody detection in patients with bronchiectasis without cystic fibrosis. Thorax, 2001, 56(9), 669-674.
[65]
Lanotte, P.; Mereghetti, L.; Lejeune, B.; Massicot, P.; Quentin, R. Pseudomonas aeruginosa and cystic fibrosis: Correlation between exoenzyme production and patient’s clinical state. Pediatr. Pulmonol., 2003, 36(5), 405-412.
[66]
Suarez-Cuartin, G.; Smith, A.; Abo-Leyah, H.; Rodrigo-Troyano, A.; Perea, L.; Vidal, S.; Plaza, V.; Fardon, T.C.; Sibila, O.; Chalmers, J.D. Anti-Pseudomonas aeruginosa IgG antibodies and chronic airway infection in bronchiectasis. Respir. Med., 2017, 128, 1-6.
[67]
Potempa, J.; Pike, R.N. Corruption of innate immunity by bacterial proteases. J. Innate Immun., 2009, 1, 70-87.
[68]
Doring, G.; Dalhoff, A.; Vogel, O.; Brunner, H.; Droge, U.; Botzenhart, K. In vivo activity of proteases of Pseudomonas aeruginosa in a rat model. J. Infect. Dis., 1984, 149(4), 532-537.
[69]
Bainbridge, T.; Fick, R.B. Functional importance of cystic fibrosis immunoglobulin G fragments generated by Pseudomonas aeruginosa elastase. J. Lab. Clin. Med., 1989, 114(6), 728-733.
[70]
Heck, L.W.; Alarcon, P.G.; Kulhavy, R.M.; Morihara, K.; Russell, M.W.; Mestecky, J.F. Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J. Immunol., 1990, 144(6), 2253-2257.
[71]
Lomholt, J.A.; Kilian, M. Degradation of uniquely glycosylated secretory immunoglobulin A in tears from patients with Pseudomonas aeruginosa keratitis. Invest. Ophthalmol. Vis. Sci., 2008, 49(11), 4939-4944.
[72]
Kuang, Z.; Hao, Y.; Walling, B.E.; Jeffries, J.L.; Ohman, D.E.; Lau, G.W. Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS One, 2011, 6(11), e27091.
[73]
Parmely, M.; Gale, A.; Clabaugh, M.; Horvat, R.; Zhou, W.W. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect. Immun., 1990, 58(9), 3009-3014.
[74]
Horvat, R.T.; Clabaugh, M.; Duval-Jobe, C.; Parmely, M.J. Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin. Infect. Immun., 1989, 57(6), 1668-1674.
[75]
Theander, T.G.; Kharazmi, A.; Pedersen, B.K.; Christensen, L.D.; Tvede, N.; Poulsen, L.K.; Odum, N.; Svenson, M.; Bendtzen, K. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infect. Immun., 1988, 56(7), 1673-1677.
[76]
Leidal, K.G.; Munson, K.L.; Johnson, M.C.; Denning, G.M. Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. J. Interferon Cytokine Res., 2003, 23(6), 307-318.
[77]
Folkesson, A.; Jelsbak, L.; Yang, L.; Johansen, H.K.; Ciofu, O.; Høiby, N.; Molin, S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat. Rev. Microbiol., 2012, 10(12), 841-851.
[78]
Lorè, N.I.; Cigana, C.; De Fino, I.; Riva, C.; Juhas, M.; Schwager, S.; Eberl, L.; Bragonzi, A. Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PLoS One, 2012, 7(4), e35648.
[79]
LaFayette, S.L.; Houle, D.; Beaudoin, T.; Wojewodka, G.; Radzioch, D.; Hoffman, L.R.; Burns, J.L.; Dandekar, A.A.; Smalley, N.E.; Chandler, J.R.; Zlosnik, J.E.; Speert, D.P.; Bernier, J.; Matouk, E.; Brochiero, E.; Rousseau, S.; Nguyen, D. Cystic fibrosis-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses. Sci. Adv., 2015, 1(6), e1500199.
[80]
Schultz, D.R.; Miller, K.D. Elastase of Pseudomonas aeruginosa: Inactivation of complement components and complement-derived chemotactic and phagocytic factors. Infect. Immun., 1974, 10(1), 128-135.
[81]
Mariencheck, W.I.; Alcorn, J.F.; Palmer, S.M. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am. J. Respir. Cell Mol. Biol., 2003, 28(4), 528-537.
[82]
Heimer, S.R.; Evans, D.J.; Mun, J.J.; Stern, M.E.; Fleiszig, S.M. Surfactant protein D contributes to ocular defense against Pseudomonas aeruginosa in a murine model of dry eye disease. PLoS One, 2013, 8(6), e65797.
[83]
McCormick, C.C.; Hobden, J.A.; Balzli, C.L.; Reed, J.M.; Caballero, A.R.; Denard, B.S.; Tang, A.; O’Callaghan, R.J. Surfactant protein D in Pseudomonas aeruginosa keratitis. Ocul. Immunol. Inflamm., 2007, 15(5), 371-379.
[84]
Schmidtchen, A.; Frick, I.M.; Andersson, E.; Tapper, H.; Björck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol., 2002, 46(1), 157-168.
[85]
Strempel, N.; Neidig, A.; Nusser, M.; Geffers, R.; Vieillard, J.; Lesouhaitier, O.; Brenner-Weiss, G.; Overhage, J. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One, 2013, 8(12), e82240.
[86]
Casilag, F.; Lorenz, A.; Krueger, J.; Klawonn, F.; Weiss, S.; Häussler, S. The LasB elastase of Pseudomonas aeruginosa acts in concert with alkaline protease apra to prevent flagellin-mediated immune recognition. Infect. Immun., 2015, 84(1), 162-171.
[87]
Chakrabarty, A.M. Nucleoside diphosphate kinase: Role in bacterial growth, virulence, cell signalling and poly-saccharide synthesis. Mol. Microbiol., 1988, 28(5), 875-882.
[88]
Kamath, S.; Kapatral, V.; Chakrabarty, A.M. Cellular function of elastase in Pseudomonas aeruginosa: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol. Microbiol., 1998, 30(5), 933-941.
[89]
Tielen, P.; Rosenau, F.; Wilhelm, S.; Jaeger, K.E.; Flemming, H.C.; Wingender, J. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology, 2010, 156(7), 2239-2252.
[90]
Overhage, J.; Lewenza, S.; Marr, A.K.; Hancock, R.E. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J. Bacteriol., 2007, 189(5), 2164-2169.
[91]
Yu, H.; He, X.; Xie, W.; Xiong, J.; Sheng, H.; Guo, S.; Huang, C.; Zhang, D.; Zhang, K. Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can. J. Microbiol., 2014, 60(4), 227-235.
[92]
Overhage, J.; Bains, M.; Brazas, M.D.; Hancock, R.E.W. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol., 2008, 190(8), 2671-2679.
[93]
Klausen, M.; Heydorn, A.; Ragas, P.; Lambertsen, L.; Aaes-Jørgensen, A.; Molin, S.; Tolker-Nielsen, T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol., 2003, 48(6), 1511-1524.
[94]
Köhler, T.; Curty, L.K.; Barja, F.; van Delden, C.; Pechère, J.C. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol., 2000, 182(21), 5990-5996.
[95]
Cowell, B.A.; Twining, S.S.; Hobden, J.A. Kwong. M.S.; Fleiszig, S.M. Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology, 2003, 149(8), 2291-2299.
[96]
Tang, H.B.; DiMango, E.; Bryan, R.; Gambello, M.; Iglewski, B.H.; Goldberg, J.B.; Prince, A. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun., 1996, 64(1), 37-43.
[97]
Tan, M.W.; Rahme, L.G.; Sternberg, J.A.; Tompkins, R.G.; Ausubel, F.M. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2408-2413.
[98]
Bassetti, M.; Poulakou, G.; Ruppe, E.; Bouza, E.; Van Hal, S.J.; Brink, A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensive Care Med., 2017, 43(10), 1464-1475.
[99]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[100]
Ventola, C.L. The antibiotic resistance crisis- part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[101]
Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A. New antibiotics for bad bugs: Where are we? Ann. Clin. Microbiol. Antimicrob., 2013, 12, 22.
[102]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. WHO Pathogens Priority List Working Group Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[103]
Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov., 2010, 9(2), 117-128.
[104]
Cegelski, L.; Marshall, G.R.; Eldridge, G.R.; Hultgren, S.J. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol., 2008, 6(1), 17-27.
[105]
Culp, E.; Wrigh, G.D. Bacterial proteases, untapped antimicrobial drug target. J. Antibiot., 2017, 70(4), 366-377.
[106]
Quinn, T.C. HIV epidemiology and the effects of antiviral therapy on long-term consequences. AIDS, 2008, 22(3), 7-12.
[107]
Haq, S.K.; Atif, S.M.; Khan, R.H. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: Natural and engineered phytoprotection. Arch. Biochem. Biophys., 2004, 431(1), 145-159.
[108]
Supuran, C.T.; Scozzafava, A.; Clare, B.W. Bacterial protease inhibitors. Med. Res. Rev., 2002, 22(4), 329-372.
[109]
Kantyka, T.; Plaza, K.; Koziel, J.; Florczyk, D.; Stennicke, H.R.; Thogersen, I.B.; Enghild, J.J.; Silverman, G.A.; Pak, S.C.; Potempa, J. Inhibition of Staphylococcus aureus cysteine proteases by human serpin potentially limits staphylococcal virulence. Biol. Chem., 2011, 392(5), 483-489.
[110]
Suleman, L. Extracellular bacterial proteases in chronic wounds: A potential therapeutic target? Adv. Wound Care, 2016, 5(10), 455-463.
[111]
Cathcart, G.R.; Quinn, D.; Greer, B.; Harriott, P.; Lynas, J.F.; Gilmore, B.F.; Walker, B. Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: A potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrob. Agents Chemother., 2011, 55(6), 2670-2678.
[112]
Kocabiyik, S.; Ergin, E.; Turkoglu, S. Effects of metals on elastase from Pseudomonas aeruginosa SES-938-1. Biol. Trace Elem. Res., 1995, 50(1), 25-31.
[113]
Aoki, N.; Ishii, Y.; Tateda, K.; Saga, T.; Kimura, S.; Kikuchi, Y.; Kobayashi, T.; Tanabe, Y.; Tsukada, H.; Gejyo, F.; Yamaguchi, K. Efficacy of calcium-EDTA as an inhibitor for metallo-β-lactamase in a mouse model of Pseudomonas aeruginosa pneumonia. Antimicrob. Agents Chemother., 2010, 54(11), 4582-4588.
[114]
Lin-Tan, D.T.; Lin, J.L.; Yen, T.H.; Chen, K.H.; Huang, Y.L. Long-term outcome of repeated lead chelation therapy in progressive non- diabetic chronic kidney diseases. Nephrol. Dial. Transplant., 2007, 22(10), 2924-2931.
[115]
Kessler, E.; Israel, M.; Landshman, N.; Chechick, A.; Blumberg, S. In vitro inhibition of Pseudomonas aeruginosa elastase by metal-chelating peptide derivatives. Infect. Immun., 1982, 38(2), 716-723.
[116]
Garner, A.L.; Struss, A.K.; Fullagar, J.L.; Agrawal, A.; Moreno, A.Y.; Cohen, S.M.; Janda, K.D. 3-Hydroxy-1-alkyl-2-methylpyridine-4(1H)-thiones: Inhibition of the Pseudomonas aeruginosa virulence factor lasb. ACS Med. Chem. Lett., 2012, 3(8), 668-672.
[117]
Zhu, J.; Cai, X.; Harris, T.L.; Gooyit, M.; Wood, M.; Lardy, M.; Janda, K.D. Disarming Pseudomonas aeruginosa virulence factor LasB by leveraging a Caenorhabditis elegans infection model. Chem. Biol., 2015, 22(4), 483-491.
[118]
Kany, A.M.; Sikandar, A.; Haupenthal, J.; Yahiaoui, S.; Maurer, C.K.; Proschak, E.; Köhnke, J.; Hartmann, R.W. Binding mode characterization and early in vivo evaluation of fragment-like thiols as inhibitors of the virulence factor lasB from Pseudomonas aeruginosa. ACS Infect. Dis., 2018, 4(6), 988-997.
[119]
Kessler, E.; Spierer, A.; Blumberg, S. Opthalmic preparations. U.S. patent 4,613,587. 1986.
[120]
Kawaharajo, K.; Homma, J.Y.; Aoyagi, T.; Umezawa, H. Effect of phosphoramidon on protection against corneal ulcer caused by elastase and protease from Pseudomonas aeruginosa. Jpn. J. Exp. Med., 1982, 52(5), 271-272.
[121]
Kessler, E.; Spierer, A. Inhibition by phosphoramidon of Pseudomonas aeruginosa elastase injected intracorneally in rabbit eyes. Curr. Eye Res., 1984, 3(8), 1075-1078.
[122]
Williams, P.; Camara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol., 2009, 12(2), 182-191.
[123]
Anderson, R.M.; Zimprich, C.A.; Rust, L. A second operator is involved in Pseudomonas aeruginosa elastase (lasB) activation. J. Bacteriol., 1999, 181(20), 6264-6270.
[124]
Givskov, M.; de Nys, R.; Manefield, M.; Gram, L.; Maximilien, R.; Eberl, L.; Molin, S.; Steinberg, P.D.; Kjelleberg, S. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol., 1996, 178(22), 6618-6622.
[125]
Chu, W.; Zhou, S.; Jiang, Y.; Zhu, W.; Zhuang, X. Fu. J. Effect of traditional Chinese herbal medicine with anti-quorum-sensing activity on Pseudomonas aeruginosa. Evid. Based Complement. Alternat. Med., 2013, 2013, 648257.
[126]
Husain, F.M.; Ahmad, I.; Khan, M.S.; Al-Shabib, N.A. Trigonella foenum-graceum (seed) extract interferes with quorum sensing regulated traits and biofilm formation in the strains of Pseudomonas aeruginosa and Aeromonas hydrophila. Evid. Based Complement. Alternat. Med., 2015, 2015, 879540.
[127]
Mustafi, S.; Veisaga, M.L.; López, L.A.; Barbieri, M.A. A novel insight into dehydroleucodine mediated attenuation of Pseudomonas aeruginosa virulence mechanism. BioMed Res. Int., 2015, 2015, 216097.
[128]
Singh, V.K.; Mishra, A.; Jha, B. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol., 2017, 7, e337.
[129]
Gala, V.C.; John, N.R.; Bhagwat, A.M.; Datar, A.G.; Kharkar, P.S.; Desai, K.B. Attenuation of quorum sensing-regulated behaviour by Tinospora cordifolia extract & identification of its active constituents. Indian J. Med. Res., 2016, 144(1), 92-103.
[130]
Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; Chen, Y. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One, 2017, 12(4), e0176883.
[131]
Rasamiravaka, T.; Jedrzejowski, A.; Kiendrebeogo, M.; Rajaonson, S.; Randriamampionona, D.; Rabemanantsoa, C.; Andriantsimahavandy, A.; Rasamindrakotroka, A.; Duez, P.; El Jaziri, M.; Vandeputte, O.M. Endemic Malagasy dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Microbiology, 2013, 159(5), 924-938.
[132]
Kumar, L.; Chhibber, S.; Kumar, R.; Kumar, M.; Harjai, K. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia, 2015, 102, 84-95.
[133]
Zhou, L.; Zheng, H.; Tang, Y.; Yu, W.; Gong, Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett., 2013, 35(4), 631-637.
[134]
Rathinam, P.; Vijay Kumar, H.S.; Viswanathan, P. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling, 2017, 33(8), 624-639.
[135]
Vandeputte, O.M.; Kiendrebeogo, M.; Rasamiravaka, T.; Stévigny, C.; Duez, P.; Rajaonson, S.; Diallo, B.; Mol, A.; Baucher, M.; El Jaziri, M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology, 2011, 157, 2120-2132.
[136]
Gilabert, M.; Marcinkevicius, K.; Andujar, S.; Schiavone, M.; Arena, M.E.; Bardón, A. Sesqui- and triterpenoids from the liverwort Lepidozia chordulifera inhibitors of bacterial biofilm and elastase activity of human pathogenic bacteria. Phytomedicine, 2015, 22(1), 77-85.
[137]
Sepahi, E.; Tarighi, S.; Ahmadi, F.S.; Bagheri, A. Inhibition of quorum sensing in Pseudomonas aeruginosa by two herbal essential oils from Apiaceae family. J. Microbiol., 2015, 53(2), 176-180.
[138]
Das, M.C.; Sandhu, P.; Gupta, P.; Rudrapaul, P.; De, U.C.; Tribedi, P.; Akhter, Y.; Bhattacharjee, S. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin. Sci. Rep., 2016, 6, 23347.
[139]
Rasamiravaka, T.; Vandeputte, O.M.; Pottier, L.; Huet, J.; Rabemanantsoa, C.; Kiendrebeogo, M.; Andriantsimahavandy, A.; Rasamindrakotroka, A.; Stévigny, C.; Duez, P.; El Jaziri, M. Pseudomonas aeruginosa biofilm formation and persistence, along with the production of quorum sensing-dependent virulence factors, are disrupted by a triterpenoid coumarate ester isolated from Dalbergia trichocarpa, a tropical legume. PLoS One, 2015, 10(7), e0132791.
[140]
García-Contreras, R.; Martínez-Vázquez, M.; Velázquez Guadarrama, N.; Villegas Pañeda, A.G.; Hashimoto, T.; Maeda, T.; Quezada, H.; Wood, T.K. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog. Dis., 2013, 68(1), 8-11.
[141]
Singh, B.N.; Singh, H.B.; Singh, A.; Singh, B.R.; Mishra, A.; Nautiyal, C.S. Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology, 2012, 158, 529-538.
[142]
Adonizio, A.; Kong, K.F.; Mathee, K. inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by south florida plant extracts. Antimicrob. Agents Chemother., 2008, 52, 198-203.
[143]
Vandeputte, O.M.; Kiendrebeogo, M.; Rajaonson, S.; Diallo, B.; Mol, A.; El Jaziri, M.; Baucher, M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 2010, 76(1), 243-253.
[144]
Zhang, A.; Chu, W.H. anti-quorum sensing activity of forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa. Pharmacogn. Mag., 2017, 13(50), 321-325.
[145]
Husain, F.M.; Ahmad, I.; Al-Thubiani, A.S.; Abulreesh, H.H.; AlHazza, I.M.; Aqil, F. Leaf Extracts of Mangifera indica L. Inhibit quorum sensing-regulated production of virulence factors and biofilm in test bacteria. Front. Microbiol., 2017, 8, 727.
[146]
Alasil, S.M.; Omar, R.; Ismail, S.; Yusof, M.Y. Inhibition of quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by culture extract from novel bacterial species of Paenibacillus using a rat model of chronic lung infection. Int. J. Bacteriol., 2015, 2015, 671562.
[147]
Musthafa, K.S.; Saroja, V.; Pandian, S.K.; Ravi, A.V. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J. Biosci., 2011, 36(1), 55-67.
[148]
Christiaen, S.E.; Matthijs, N.; Zhang, X.H.; Nelis, H.J.; Bossier, P.; Coenye, T. Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Pathog. Dis., 2014, 70(3), 271-279.
[149]
Pattnaik, S.S.; Ranganathan, S.; Ampasala, D.R.; Syed, A.; Ameen, F.; Busi, S. Attenuation of quorum sensing regulated virulence and biofilm development in Pseudomonas aeruginosa PAO1 by Diaporthe phaseolorum SSP12. Microb. Pathog., 2018, 118, 177-189.
[150]
Sakata, K.; Yajima, H.; Tanaka, K.; Sakamoto, Y.; Yamamoto, K.; Yoshida, A.; Dohi, Y. Erythromycin inhibits the production of elastase by Pseudomonas aeruginosa without affecting its proliferation in vitro. Am. Rev. Respir. Dis., 1993, 148(4), 1061-1065.
[151]
Imperi, F.; Massai, F.; Ramachandran, C.; Longo, F.; Zennaro, E.; Rampioni, G.; Visca, P.; Leoni, L. New life for an old drug: The anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob. Agents Chemother., 2013, 57(2), 996-1005.
[152]
Gupta, P.; Chhibber, S.; Harjai, K. Sub-inhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation e reduction of virulence. Indian J. Med. Res., 2016, 143(5), 643-651.
[153]
Husain, F.M.; Ahmad, I. Doxycycline interferes with quorum sensing-mediated virulence factors and biofilm formation in gram-negative bacteria. World J. Microbiol. Biotechnol., 2013, 29(6), 949-957.
[154]
X, Z.G.; Gao, Y.; He, J.G.; Xu, W.F.; Jiang, M.; Jin, H.S. Effects of azithromycin on Pseudomonas aeruginosa isolates from catheter-associated urinary tract infection. Exp. Ther. Med., 2015, 9(2), 569-572.
[155]
Santos, A.L.S.; Galdino, A.C.M.; Mello, T.P.; Ramos, L.S.; Branquinha, M.H.; Bolognese, A.M.; Columbano, J.; Roudbary, M. What are the advantages of living in a community? A microbial biofilm perspective! Mem. Inst. Oswaldo Cruz, 2018, 113(9), e180212.
[156]
Alipour, M.; Suntres, Z.E.; Lafrenie, R.M.; Omri, A. Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J. Antimicrob. Chemother., 2010, 65(4), 684-693.
[157]
Rodriguez-Esteban, R. A drug-centric view of drug development: how drugs spread from disease to disease. PLOS Comput. Biol., 2016, 12(4), e1004852.
[158]
Ulusoy, S.; Bosgelmez-Tinaz, G. Nonsteroidal anti-inflammatory drugs reduce the production of quorum sensing regulated virulence factors and swarm in motility in human pathogen Pseudomonas aeruginosa. Drug Res., 2013, 63(8), 409-413.
[159]
Prithiviraj, B.; Bais, H.P.; Weir, T.; Suresh, B.; Najarro, E.H.; Dayakar, B.V.; Schweizer, H.P.; Vivanco, J.M. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infect. Immun., 2005, 73(9), 5319-5328.
[160]
El-Mowafy, S.A.; Galil, K.H.; El-Messery, S.M.; Shaaban, M.I. Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb. Pathog., 2014, 74, 25-32.
[161]
Abbas, H.A.; Elsherbini, A.M.; Shaldam, M.A. Repurposing metformin as a quorum sensing inhibitor in Pseudomonas aeruginosa. Afr. Health Sci., 2017, 17(3), 808-819.
[162]
Müh, U.; Schuster, M.; Heim, R.; Singh, A.; Olson, E.R.; Greenberg, E.P. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob. Agents Chemother., 2006, 50(11), 3674-3679.
[163]
Xu, G.; Xiong, W.; Hu, Q.; Zuo, P.; Shao, B.; Lan, F.; Lu, X.; Xu, Y.; Xiong, S. Lactoferrin-derived peptides and lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa. J. Appl. Microbiol., 2010, 109(4), 1311-1318.
[164]
Laux, D.C.; Corson, J.M.; Givskov, M.; Hentzer, M.; Møller, A.; Wosencroft, K.A.; Olson, J.C.; Krogfelt, K.A.; Goldberg, J.B.; Cohen, P.S. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA. Microbiology, 2002, 148(6), 1709-1723.
[165]
Kalishwaralal, K. BarathManiKanth, S.; Pandian, S.R.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces, 2010, 79, 340-344.
[166]
Ali, S.S.; Morsy, R.; El-Zawawy, N.A.; Fareed, M.F.; Bedaiwy, M.Y. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomedicine, 2017, 12, 6059-6073.
[167]
García-Lara, B.; Saucedo-Mora, M.A.; Roldan-Sanchez, J.A.; Pérez-Eretza, B.; Ramasamy, M.; Lee, J.; Coria-Jimenez, R.; Tapia, M.; Vareia-Guerrero, V.; García-Conteras, R. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett. Appl. Microbiol., 2015, 61(3), 299-305.
[168]
Jha, A.K.; Orasad, K.; Prasad, K.; Kulakarni, A.R. Plant system: Natures nanofactory. Colloids Surf. B Biointerfaces, 2009, 73(2), 219-223.
[169]
Al-Shabib, N.A.; Husain, F.M.; Ahmed, F.; Khan, R.A.; Ahmad, I.; Alsharaeh, E.; Khan, M.S.; Hussain, A.; Rehman, M.T.; Yusuf, M.; Hassan, I.; Khan, J.M.; Ashraf, G.M.; Alsalme, A.; Al-Ajmi, M.F.; Tarasov, V.V.; Aliev, G. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep., 2016, 6, 36761.
[170]
Prateeksha, A.; Singh, B.R.; Shoeb, M.; Sharma, S.; Naqvi, A.H.; Gupta, V.K.; Singh, B.N. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front. Cell. Infect. Microbiol., 2017, 7, 93.
[171]
Singh, B.R.; Singh, B.N.; Singh, A.; Khan, W.; Naqvi, A.H.; Singh, H.B. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci. Rep., 2015, 5, 13719.
[172]
Chojnacki, M.; Philbrick, A.; Wucher, B.; Reed, J.N.; Tomaras, A.; Dunman, P.M.; Wozniak, R.A.F. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Antimicrob. Agents Chemother., 2018, 63, e01929-e18.
[173]
AntaBio. Developing tomorrow’s antibacerials.. https://antabio. com/programs/ (Accessed January 19, 2019).
[174]
The race against superbugs. CARB-X annual report.. https://carb-x.org/wp-content/uploads/2018/01/2016_CARB-X-Annual_ Report.pdf (Accessed January 19, 2019).
[175]
Johnson, B.K.; Abramovitch, R.B. Small molecules that sabotage bacterial virulence. Trends Pharmacol. Sci., 2017, 38(4), 339-362.
[176]
Galdino, A.C.M.; Viganor, L.; Ziccardi, M.; Nunes, A.P.F.; Dos Santos, K.R.N.; Branquinha, M.H.; Santos, A.L.S. Hterogeneous production of proteases from Brazilian clinical isolates of Pseudomonas aeruginosa. Enferm. Infecc. Microbiol. Clin., 2017, 35(10), 630-637.
[177]
Bradbury, R.S.; Roddam, L.F.; Merritt, A.; Reid, D.W.; Champion, A.C. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J. Med. Microbiol., 2010, 59(8), 881-890.
[178]
Holban, A.M.; Chifiriuc, M.C.; Cotar, A.I.; Bleotu, C.; Grumezescu, A.M.; Banu, O.; Grumezescu, A.M.; Banu, O. lazar, V. Virulence markers in Pseudomonas aeruginosa isolates from hospital and acquired infections occurred in patients with underlying cardiovascular disease. Rom. Biotechnol. Lett., 2013, 18(6), 7243-7254.
[179]
Schmidtchen, A.; Wolff, H.; Hansson, C. Differential proteinase expression by Pseudomonas aeruginosa derived from chronic leg ulcers. Acta Derm. Venereol., 2001, 81(6), 406-409.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy