Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Phytochemical Composition and Antioxidant Activity of Trichoderma reesei Degraded Date (Phoenix dactylifera L.) Pits

Author(s): Salem R. Alyileili, Ahmed S. Hussein, Wissam Ibrahim* and Khaled A. El-Tarabily*

Volume 16, Issue 4, 2020

Page: [528 - 536] Pages: 9

DOI: 10.2174/1573407215666190207093046

Price: $65

Abstract

Background: Date palm (Phoenix dactylifera L.) is a dominant fruit crop in most of the Arabian countries. Date pits, as a major byproduct which remained after consumption of date flesh proved to be valuable source of energy.

Methods: Solid State Degradation (SSD) system was used for the preparation of degraded date pits. Date pits degraded with Trichoderma reesei were evaluated for their proximate, chemical composition and antioxidant activity.

Results: The crude fiber content of degraded date pits was found to be 20.8 %, ash (2.09%), crude fat (7.2%), protein (5.56%), and total carbohydrate (87.2%). Neutral detergent fiber (NDF) and acid detergent fiber (ADF) was found to be 74.6% and 45.7%, respectively. Monosaccharide composition of fiber showed that the degradation with T. reesei significantly (P<0.05) enhanced the glucose and mannose content of cellulose, hemicellulose and lignin. Pectin, total carbohydrate and mannan oligosaccharide content were also increased in degraded date pits in which galactose and mannose were the major neutral sugars. Among the studied minerals, potassium, calcium, magnesium, sulphur and phosphorus were predominant. The phenolic and flavonoid contents of degraded date pits significantly (P<0.05) increased to 14.230 g Gallic equivalent/100g DW and 11.68 g Rutin equivalent /100g DW. Degraded date pits also showed significant antioxidant activity as evidenced by the results of 2,2-diphenyl-1- picrylhydrazyl(DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline 6 sulphonicacid) (ABTS) and Ferric Reducing Antioxidant Power (FRAP) assays.

Conclusion: Biological degradation with T. reesei significantly (P<0.05) improved the nutritional effect of date pits and thereby its potential usage in food industry was greatly improved.

Keywords: Proximate composition, fungi-degraded date pits, monosaccharides, Trichoderma reesei, antioxidant activity.

Graphical Abstract

[1]
Yousif, A.; Alghamdi, A. Suitability of some date cultivars for jelly making. J. Food Sci. Tech. Mys, 1999, 36, 515-518.
[2]
Jahromi, M.; Liang, J.; Rosfarizan, M.; Goh, Y.; Shokryazdan, P.; Ho, Y. Efficiency of rice straw lignocelluloses degradability by Aspergillus terreus ATCC 74135 in solid state fermentation. Afr. J. Biotechnol., 2011, 10, 4428-4435.
[3]
Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J., 2017, 6, 1-10.
[http://dx.doi.org/10.1016/j.nfs.2016.12.001]
[4]
Fayadh, J.; Al-Showiman, S. Chemical composition of date palm (Phoenix dactylifera L.). J. Chem. Soc. Pak., 1990, 12, 84-103.
[5]
Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 2008, 108(3), 977-985.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.009] [PMID: 26065761]
[6]
Hussein, A.S.; Belal, I.H.; Alyalyali, S.R.A.; El-Tarabily, K.A. Date pits composition for the treatment of animals. U.S. Patent 8,968,729,B2, 2015 March.
[7]
Viikari, L.; Suurnakki, A.; Gronqvist, S.; Raaska, L.; Ragauskas, A. Forest products: biotechnology in pulp and paper processing. teoksessa M. Schaechter (Toimittaja), Encyclopedia of Microbiology; Elsevier Scientific Publ.Co, 2009, Vol. 3, pp. 80-94.
[8]
Moreira, L.R.; Filho, E.X. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol., 2008, 79(2), 165-178.
[http://dx.doi.org/10.1007/s00253-008-1423-4] [PMID: 18385995]
[9]
Rozan, P.; Villaum, C.; Bau, H.; Schwertz, A.; Nicolas, J.; Mejean, L. Detoxication of rapeseed meal by Rhizopus Oligosporus sp‐T3: A first step towards rapeseed protein concentrate. Int. J. Food Sci. Technol., 1996, 31, 85-90.
[http://dx.doi.org/10.1111/j.1365-2621.1996.17-315.x]
[10]
Nozawa, S.; Hakoda, A.; Sakaida, K.; Suzuki, T.; Yasui, A. Method performance study of the determination of total nitrogen in soy sauce by the Kjeldahl method. Anal. Sci., 2005, 21(9), 1129-1132.
[http://dx.doi.org/10.2116/analsci.21.1129] [PMID: 16363486]
[11]
AOAC. Official methods of analysis, 17th ed; AOAC International: Gaithersburg, Md., 2005.
[12]
Shaba, E.; Ndamitso, M.; Etsunyakpa, B.M.; Tsado, N.; Muhammad, S. Nutritional and anti-nutritional composition of date palm (Phoenix dactylifera L.) fruits sold in major markets of Minna Niger State, Nigeria. Afr. J. Pure Appl. Chem, 2015, 9, 167-174.
[http://dx.doi.org/10.5897/AJPAC2015.0643]
[13]
Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28, 350-356.
[http://dx.doi.org/10.1021/ac60111a017]
[14]
Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 1991, 74(10), 3583-3597.
[http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2] [PMID: 1660498]
[15]
Nabili, A.; Fattoum, A.; Passas, R.; Elaloui, E. Extraction and characterization of cellulose from date palm seeds (Phoenix dactylifera L.). Cellul. Chem. Technol., 2016, 50, 1015-1023.
[16]
Farhat, W.; Venditti, R.; Quick, A.; Taha, M.; Mignard, N.; Becquart, F.; Ayoub, A. Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind. Crops Prod., 2017, 107, 370-377.
[http://dx.doi.org/10.1016/j.indcrop.2017.05.055]
[17]
Nuruddin, M.; Chowdhury, A.; Haque, S.; Rahman, M.; Farhad, S.; Jahan, M.S.; Quaiyyum, A. Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cellul. Chem. Technol., 2011, 45, 347-354.
[18]
Vriesmann, L.C.; Teofilo, R.F.; de Oliveira Petkowicz, C.L. Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. Lebensm. Wiss. Technol., 2012, 49, 108-116.
[http://dx.doi.org/10.1016/j.lwt.2012.04.018]
[19]
Huang, G.L.; Yang, Q.; Wang, Z.B. Extraction and deproteinization of mannan oligosaccharides. Z. Natforsch. C J. Biosci., 2010, 65(5-6), 387-390.
[http://dx.doi.org/10.1515/znc-2010-5-611] [PMID: 20653241]
[20]
Blakeney, A.B.; Harris, P.J.; Henry, R.J.; Stone, B.A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res., 1983, 113, 291-299.
[http://dx.doi.org/10.1016/0008-6215(83)88244-5]
[21]
AOAC. Official Methods of Analyses, 15th ed; Association of Official Analytical Chemist: Washington, DC, 1990.
[22]
Abdellaoui, M.; Bouhlali, E.T.; Kasrati, A.; El Rhaffari, L. The effect of domestication on seed yield, essential oil yield and antioxidant activities of fennel seed (Foeniculum vulgare Mill) grown in Moroccan oasis. J. Assoc. Arab Univ. Basic Appl. Sci., 2017, 24, 107-114.
[http://dx.doi.org/10.1016/j.jaubas.2017.06.005]
[23]
[23] ISO 14502-1.. Determination of substances characteristic of green and black tea. Part 1: Content of total polyphenols in tea. Colorimetric method using Folin–Ciocalteu reagent., 2005.
[24]
Kim, J.E.; Lee, S.P. Evaluation of radical scavenging activity and physical properties of textured vegetable protein fermented by solid culture with Bacillus subtilis HA according to fermentation time. J. Korean Soc. Food Sci. Nutr., 2010, 39, 872-879.
[http://dx.doi.org/10.3746/jkfn.2010.39.6.872]
[25]
Karagözler, A.A.; Erdağ, B.; Emek, Y.Ç.; Uygun, D.A. Antioxidant activity and proline content of leaf extracts from Dorystoechas hastata. Food Chem., 2008, 111(2), 400-407.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.089] [PMID: 26047442]
[26]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[27]
Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 1999, 299, 15-27.
[http://dx.doi.org/10.1016/S0076-6879(99)99005-5] [PMID: 9916193]
[28]
Steel, R.G. Multiple comparisons; Principles and Procedures of Statistics, 1980, pp. 172-194.
[29]
Natarajan, K.; Rajendran, A. Effect of fermentation parameters on extra cellular tannase production by Lactobacillus plantarum MTCC 1407. J. Chem., 2009, 6, 979-984.
[30]
Jennings, D.H. The Physiology of Fungal Nutrition; Cambridge University Press, 1995.
[http://dx.doi.org/10.1017/CBO9780511525421]
[31]
Suzuki, K.; Itoh, T. The changes in cell wall architecture during lignification of bamboo, Phyllostachys aurea Carr. Trees-Struct Func, 2001, 15, 137-147.
[http://dx.doi.org/10.1007/s004680000084]
[32]
Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int., 2002, 85(6), 1217-1240.
[PMID: 12477183]
[33]
Ghorai, S.; Banik, S.P.; Verma, D.; Chowdhury, S.; Mukherjee, S.; Khowala, S. Fungal biotechnology in food and feed processing. Food Res. Int., 2009, 42, 577-587.
[http://dx.doi.org/10.1016/j.foodres.2009.02.019]
[34]
Belal, I.E. Evaluating fungi‐degraded date pits as a feed ingredient for Nile tilapia Oreochromis niloticus L. Aquacult. Nutr., 2008, 14, 445-452.
[http://dx.doi.org/10.1111/j.1365-2095.2007.00548.x]
[35]
Al-Farsi, M.A.; Lee, C.Y. Nutritional and functional properties of dates: A review. Crit. Rev. Food Sci. Nutr., 2008, 48(10), 877-887.
[http://dx.doi.org/10.1080/10408390701724264] [PMID: 18949591]
[36]
Yousif, O.; Osman, M.; Alhadrami, G. Evaluation of dates and date pits as dietary ingredients in tilapia (Oreochromis aureus) diets differing in protein sources. Bioresour. Technol., 1996, 57, 81-85.
[http://dx.doi.org/10.1016/0960-8524(96)00054-5]
[37]
Aldhaheri, A.; Alhadrami, G.; Aboalnaga, N.; Wasfi, I.; Elridi, M. Chemical composition of date pits and reproductive hormonal status of rats fed date pits. Food Chem., 2004, 86, 93-97.
[http://dx.doi.org/10.1016/j.foodchem.2003.08.022]
[38]
Mišurcová, L.; Škrovánková, S.; Samek, D.; Ambrožová, J.; Machů, L. Health benefits of algal polysaccharides in human nutrition. Adv. Food Nutr. Res., 2012, 66, 75-145.
[http://dx.doi.org/10.1016/B978-0-12-394597-6.00003-3] [PMID: 22909979]
[39]
Pinheiro, C.C.; Rego, J.C.C.; Ramos, T.A.; da Silva, B.K.R.; Warpechowski, M.B. Digestibilidade dos nutrientes e desempenho de frangos de corte consumindo dietas formuladas com diferentes níveis de fibra e suplementadas com enzimas exógenas. Cienc. Anim. Bras., 2008, 9, 984-996.
[40]
Mahesh, M.; Mohini, M. Biological treatment of crop residues for ruminant feeding: A review. Afr. J. Biotechnol., 2013, 12, 4221-4231.
[http://dx.doi.org/10.5897/AJB2012.2940]
[41]
Brunow, G.; Kamm, B.; Gruber, P.R.; Kamm, M. In biorefineries-industrial processes and products. Ed.; Wiley-Vch Verlag GmbH & Co. KGaA: Weinheim. Gernany, 2006, 2, 151-163.
[42]
Wieczorek, K. Cell wall alterations in nematode-infected roots. Adv. Bot. Res., 2015, 73, 61-90.
[http://dx.doi.org/10.1016/bs.abr.2014.12.002]
[43]
Martens-Uzunova, E.S.; Schaap, P.J. Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genet. Biol., 2009, 46(Suppl. 1), S170-S179.
[http://dx.doi.org/10.1016/j.fgb.2008.07.021] [PMID: 19618506]
[44]
Saloheimo, M.; Kuja-Panula, J.; Ylösmäki, E.; Ward, M.; Penttilä, M. Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (cel1A). Appl. Environ. Microbiol., 2002, 68(9), 4546-4553.
[http://dx.doi.org/10.1128/AEM.68.9.4546-4553.2002] [PMID: 12200312]
[45]
Martínez, A.T.; Ruiz-Dueñas, F.J.; Martínez, M.J.; Del Río, J.C.; Gutiérrez, A. Enzymatic delignification of plant cell wall: from nature to mill. Curr. Opin. Biotechnol., 2009, 20(3), 348-357.
[http://dx.doi.org/10.1016/j.copbio.2009.05.002] [PMID: 19502047]
[46]
Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv., 2003, 22(1-2), 161-187.
[http://dx.doi.org/10.1016/j.biotechadv.2003.08.011] [PMID: 14623049]
[47]
Olano-Martin, E.; Gibson, G.R.; Rastell, R.A. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J. Appl. Microbiol., 2002, 93(3), 505-511.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01719.x] [PMID: 12174051]
[48]
Daneshyar, F.; Afzali, N.; Farhangfar, H. Effects of different levels of date pits in broilers feed contaminated with aflatoxin B1 on broilers performance and carcass characteristic. Afr. J. Biotechnol., 2014, 13, 185-193.
[http://dx.doi.org/10.5897/AJB2013.13132]
[49]
Ishrud, O.; Zahid, M.; Zhou, H.; Pan, Y. A water-soluble galactomannan from the seeds of Phoenix dactylifera L. Carbohydr. Res., 2001, 335(4), 297-301.
[http://dx.doi.org/10.1016/S0008-6215(01)00245-2] [PMID: 11595224]
[50]
Shastak, Y.; Ader, P.; Feuerstein, D.; Ruehle, R.; Matuschek, M. ß-Mannan and mannanase in poultry nutrition. Worlds Poult. Sci. J., 2015, 71, 161-174.
[http://dx.doi.org/10.1017/S0043933915000136]
[51]
Leisola, M.; Jokela, J.; Pastinen, O.; Turunen, O.; Schoemaker, H. Industrial use of enzymes. Encyclopedia of Life Support Systems (EOLSS); EOLSS Publishers Co.: Oxford, UK, 2002.
[52]
Hossain, M.Z.; Waly, M.I.; Singh, V.; Sequeira, V.; Rahman, M.S. Chemical composition of date-pits and its potential for developing value-added product-A review. Pol. J. Food Nutr. Sci., 2014, 64, 215-226.
[http://dx.doi.org/10.2478/pjfns-2013-0018]
[53]
Pérez, J.; Muñoz-Dorado, J.; de la Rubia, T.; Martínez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol., 2002, 5(2), 53-63.
[http://dx.doi.org/10.1007/s10123-002-0062-3] [PMID: 12180781]
[54]
McCleary, B.V. Comparison of endolytic hydrolases that depolymerize 1, 4-β-d-mannan, 1, 5-α-l-arabinan, and 1, 4-β-d-galactan. In: Enzymes in Biomass Conversion; Leatham, G. F.; Himmel, M. E. American Chemical Society, 1991.
[55]
Hamada, J.; Hashim, I.; Sharif, F. Preliminary analysis and potential uses of date pits in foods. Food Chem., 2002, 76, 135-137.
[http://dx.doi.org/10.1016/S0308-8146(01)00253-9]
[56]
Kayode, R.; Sani, A. Physicochemical and proximate composition of mango (Mangifera indica) kernel cake fermented with mono-culture of fungal isolates obtained from naturally decomposed mango kernel. Life Sci. J., 2008, 5, 55-63.
[57]
Lukic, M.; Pavlovski, Z.; Skrbic, Z. Mineral nutrition of modern poultry genotypes. Biotechnol. Anim. Husb., 2009, 25, 399-409.
[http://dx.doi.org/10.2298/BAH0906399L]
[58]
Swinkels, J.W.G.M.; Kornegay, E.T.; Verstegen, M.W.A. Biology of zinc and biological value of dietary organic zinc complexes and chelates. Nutr. Res. Rev., 1994, 7(1), 129-149.
[http://dx.doi.org/10.1079/NRR19940009] [PMID: 19094295]
[59]
Mistrello, J.; Sirisena, S.D.; Ghavami, A.; Marshall, R.J.; Krishnamoorthy, S. Determination of the antioxidant capacity, total phenolic and flavonoid contents of seeds from three commercial varieties of culinary dates. Int. J. Food Stud., 2014, 3, 31-44.
[http://dx.doi.org/10.7455/ijfs/3.1.2014.a3]
[60]
Ognjanović, B.I.; Marković, S.D.; Ethordević, N.Z.; Trbojević, I.S.; Stajn, A.S.; Saicić, Z.S. Cadmium-induced lipid peroxidation and changes in antioxidant defense system in the rat testes: protective role of coenzyme Q(10) and vitamin E. Reprod. Toxicol., 2010, 29(2), 191-197.
[http://dx.doi.org/10.1016/j.reprotox.2009.11.009] [PMID: 19958828]
[61]
Vattem, D.A.; Shetty, K. Solid-state production of phenolic antioxidants from cranberry pomace by Rhizopus oligosporus. Food Biotechnol., 2002, 16, 189-210.
[http://dx.doi.org/10.1081/FBT-120016667]
[62]
Lee, I.H.; Chou, C.C. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. J. Agric. Food Chem., 2006, 54(4), 1309-1314.
[http://dx.doi.org/10.1021/jf058139m] [PMID: 16478253]
[63]
Shahidi, F.; Wanasundara, P.K.; Wanasundara, P. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr., 1992, 32(1), 67-103.
[http://dx.doi.org/10.1080/10408399209527581] [PMID: 1290586]
[64]
Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric., 2000, 80, 985-1012.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985:AID-JSFA572>3.0.CO;2-7]
[65]
Oboh, G.; Rocha, J.B.T. Polyphenols in red pepper (Capsicum annuum var. aviculare (Tepin)) and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. Eur. Food Res. Technol., 2007, 225, 239-247.
[http://dx.doi.org/10.1007/s00217-006-0410-1]
[66]
Moktan, B.; Saha, J.; Sarkar, P.K. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Res. Int., 2008, 41, 586-593.
[http://dx.doi.org/10.1016/j.foodres.2008.04.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy