[1]
Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res., 2008, 41, 69-77.
[2]
Majori, G. Combined antimalarial therapy using Artemisinin. Parassitologia, 2004, 46, 85-87.
[3]
Walsh, J.J.; Bell, A. Hybrid drugs for malaria. Curr. Pharm. Des., 2009, 15, 2970-2985.
[4]
Agarwal, D.; Gupta, R.D.; Awasthi, S.K. Are antimalarial hybrid molecules a close reality or a distant dream? Antimicrob. Agents Chemother., 2017, 61, 1-29.
[5]
WHO. Guidelines for the Treatment of Malaria; World Health Organization, 2015.
[6]
Walsh, J.J.; Coughlan, D.; Heneghan, N.; Gaynor, C.; Bell, A. A novel Artemisinin-quinine hybrid with potent antimalarial activity. Bioorg. Med. Chem. Lett., 2007, 17, 3599-3602.
[7]
Varotti, F.D.P.; Botelho, A.C.C.; Andrade, A.A.; De Paula, R.C.; Fagundes, E.M.S.; Valverde, A.; Mayer, L.M.U.; Mendonça, J.S.; De Souza, M.V.N.; Boechat, N.; Krettli, A.U. Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from Mefloquine and Artesunate. Antimicrob. Agents Chemother., 2008, 52, 3868-3874.
[8]
WHO. World Malaria Report; World Health Organisation, 2017.
[9]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 70, 30-54.
[10]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis of 4-amino-quinoline-1,2,3-triazole and 4-aminoquinoline-1,2,3-triazole-1,3,5-triazine hybrids as potential antimalarial agents. Chem. Biol. Drug Des., 2011, 78, 124-136.
[11]
Pereira, G.R.; Brandão, G.C.; Arantes, L.M.; de Oliveira, H.A.; de Paula, R.C.; do Nascimento, M.F.A.; dos Santos, F.M.; da Rocha, R.K.; Lopes, J.C.D.; de Oliveira, A.B. 7-chloroquinolinotriazoles: Synthesis by the azide–alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies. Eur. J. Med. Chem., 2014, 73, 295-309.
[12]
Hamann, A.R.; De Kock, C.; Smith, P.J.; Van Otterlo, W.A.L.; Blackie, M.A.L. Synthesis of triazole-linked 2-trichloromethyl-quinazolines and exploration of their efficacy against P. Falciparum. S. Afr. J. Chem., 2013, 66, 231-236.
[13]
Hamann, A.R.; De Kock, C.; Smith, P.J.; Van Otterlo, W.A.L.; Blackie, M.A.L. Synthesis of novel triazole-linked Mefloquine derivatives: Biological evaluation against Plasmodium Falciparum. Bioorg. Chem., 2014, 24, 5466-5469.
[14]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition En Route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[15]
Gonzaga, D.; Senger, M.R.; Da Silva, F.D.C.; Ferreira, V.F.; Silva, F.P. 1-Phenyl-1H- and 2-Phenyl-2H-1,2,3-triazol derivatives: Design, synthesis and inhibitory effect on alpha-glycosidases. Eur. J. Med. Chem., 2014, 74, 461-476.
[16]
Siemeister, G.; Lucking, U.; Wengner, A.M.; Lienau, P.; Steinke, W.; Schatz, C.; Mumberg, D.; Ziegelbauer, K. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol. Cancer Ther., 2012, 1, 2265-2273.
[17]
Lücking, U. Sulfoximines: A neglected opportunity in medicinal chemistry. Angew. Chemie. Int. Ed., 2013, 52, 2-12.
[18]
Vendetti, F.P.; Lau, A.; Schamus, S.; Conrads, T.P.; O’Connor, M.J.; Bakkenist, C.J. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of Cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget, 2015, 6, 44289-44305.
[19]
Sirvent, J.A.; Lucking, U. Novel pieces for the emerging picture of sulfoximines in drug discovery: Synthesis and evaluation of Sulfoximine analogues of marketed drugs and advanced clinical candidates. Chem. Eur. J., 2017, 12, 487-501.
[20]
Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Sulfoximines from a medicinal chemist’s perspective: Physicochemical and in Vitro parameters relevant for drug discovery. Eur. J. Med. Chem., 2017, 126, 225-245.
[21]
Kinfe, H.H.; Moshapo, P.T.; Makolo, F.L.; Gammon, D.W.; Ehlers, M.; Schmuck, C. Preparation and antimalarial activity of a novel class of carbohydrate-derived, fused thiochromans. Eur. J. Med. Chem., 2014, 87, 197-202.
[22]
Madumo, G.K.; Moshapo, P.T.; Kinfe, H.H. Effects of lipophilicity, protecting group and stereochemistry on the antimalarial activity of carbohydrate-derived thiochromans. Med. Chem. Res., 2018, 27, 817-833.
[23]
Kinfe, H.H.; Belay, Y.H. Synthesis and biological evaluation of novel thiosemicarbazone-triazole hybrid compounds antimalarial agents. S. Afr. J. Chem., 2013, 66, 130-135.
[24]
Armarego, W.L. Purification of laboratory chemicals; Butterworth-Heinemann: Oxford, United Kingdom, 2017.
[25]
Rossi, R.A.; Palacios, S.M. Photostimulated reactions of alkanethiolate ions with Haloarenes. Electron transfer vs. fragmentation of the radical anion intermediate. J. Org. Chem., 1981, 46, 5300-5304.
[26]
Bates, C.G.; Gujadhur, R.K.; Venkataraman, D. A General method for the formation of aryl-sulfur bonds using copper(I) catalysts. Org. Lett., 2002, 4, 2803-2806.
[27]
Gul, K.; Narayanaperumal, S.; Dornelles, L.; Rodrigues, O.E.D.; Braga, A.L. Bimetallic system for the synthesis of diorganyl selenides and sulfides, chiral β-seleno amines, and seleno- and thioesters. Tetrahedron Lett., 2011, 52, 3592-3596.
[28]
Russell, G.A.; Ngoviwatchai, P.; Tashtoush, H.I.; Pla-Dalmau, A.; Khanna, R.K. Reactions of alkylmercurials with heteroatom-centered acceptor radicals. J. Am. Chem. Soc., 1988, 110, 3530-3538.
[29]
Rajabi, F.; Naserian, S.; Primo, A.; Luque, R. Efficient and highly selective aqueous oxidation of sulfides to sulfoxides at room temperature catalysed by supported iron oxide nanoparticles on SBA-15. Adv. Synth. Catal., 2011, 353, 2060-2066.
[30]
Iriuchijima, S.; Sakakibara, T.; Tsuchihashi, G.I. A method for the synthesis of aldehydes. Agric. Biol. Chem., 1976, 40, 1369-1372.
[31]
Gupta, S.; Chaudhary, P.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Copper promoted: N -alkylation of sulfoximines with alkylboronic acid under mild conditions. Org. Biomol. Chem., 2017, 15, 8493-8498.
[32]
Johnson, C.R.; Kirehhoff, R.A. Synthesis of alkenes by reductive elimination of β-hydroxysulfoximines. J. Am. Chem. Soc., 1979, 101, 3602-3607.
[33]
Hendriks, C.M.M.; Bohmann, R.A.; Bohlem, M.; Bolm, C. N-alkylations of NH-sulfoximines and NH-sulfondiimines with alkyl halides mediated by potassium hydroxide in dimethyl sulfoxide. Adv. Synth. Catal., 2014, 356, 1847-1852.
[34]
Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Gibbins, B.L.; Hinrichs, D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg., 1993, 48, 739-741.
[35]
Ekwall, B.; Silano, V.; Paganuzzi-Stammati, A. Toxicity Tests with Mammalian Cell Cultures; Bourdeau, P.; Sommers, E.; Mark Richardson, G; Hickman, J.R., Ed.; John Wiley & Sons Ltd: California, 1990, Vol. 8, pp. 75-91.