Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Organic Synthesis Using Environmentally Benign Acid Catalysis

Author(s): Anne Kokel, Christian Schäfer* and Béla Török*

Volume 16, Issue 4, 2019

Page: [615 - 649] Pages: 35

DOI: 10.2174/1570179416666190206141028

Abstract

Recent advances in the application of environmentally benign acid catalysts in organic synthesis are reviewed. The work includes three main parts; (i) description of environmentally benign acid catalysts, (ii) synthesis with heterogeneous and (iii) homogeneous catalysts. The first part provides a brief overview of acid catalysts, both solid acids (metal oxides, zeolites, clays, ion-exchange resins, metal-organic framework based catalysts) and those that are soluble in green solvents (water, alcohols) and at the same time could be regenerated after reactions (metal triflates, heteropoly acids, acidic organocatalysts etc.). The synthesis sections review a broad array of the most common and practical reactions such as Friedel-Crafts and related reactions (acylation, alkylations, hydroxyalkylations, halogenations, nitrations etc.), multicomponent reactions, rearrangements and ring transformations (cyclizations, ring opening). Both the heterogeneous and homogeneous catalytic synthesis parts include an overview of asymmetric acid catalysis with chiral Lewis and Brønsted acids. Although a broad array of catalytic processes are discussed, emphasis is placed on applications with commercially available catalysts as well as those of sustainable nature; thus individual examples are critically reviewed regarding their contribution to sustainable synthesis.

Keywords: Solid acid, heterogeneous catalysis, metal oxides, clay, zeolite, metal-organic-frameworks, heteropoly acids, ion-exchange resins, sulfated metal oxides.

« Previous
Graphical Abstract

[1]
Bell, R.P. The use of the terms “acid” and “base”. Q. Rev. Chem. Soc., 1947, 1, 113-125.
[2]
Bell, R.P. The Proton in Chemistry, 2nd ed; Chapman and Hall: London, 1973, p. Chp. 2 p. 4.
[3]
(a) Brönsted, J.N. Einige Bemerkungen über den Begriff der Säuren und Basen. Recl. Trav. Chim. Pays Bas, 1923, 42, 718-728.
(b) Lowry, T.M. The uniqueness of hydrogen. J. Soc. Chem. Ind., 1923, 42, 43-47.
[4]
Lewis, G.N. Valence and the Structure of Atoms and Molecules; American Chemical Society Monograph Series Vol. 14,The Chemical Catalog Company, Inc., 1923.
[5]
Yamamoto, H.; Ishihara, K. Acid Catalysis in Modern Organic Synthesis; Wiley-VCH: Weinheim, 2008.
[6]
Török, B.; Dransfield, T. Green Chemistry: An inclusive approach; Elsevier: Oxford, 2018.
[7]
a)Molnár, Á. Acids and Acid Catalysis – Homogeneous. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; 2003, Wiley: New York, Vol. 1, pp.. 40-86.
(b) Bag, S.; Dasgupta, S.; Török, B. Microwave-assisted heterogeneous catalysis: An environmentally benign tool for contemporary organic synthesis. Curr. Org. Synth., 2011, 8, 237-261.
[8]
(a) Clark, J.H. Solid acids for green chemistry. Acc. Chem. Res., 2002, 35, 791-797.
(b)Gates, B.C. Catalysis by Solid Acids. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, 2003; Vol. 2, pp. 104-142.
(c) Gupta, P.; Mahajan, A. Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Adv, 2015, 5, 26686-26705.
(d) Gupta, P.; Paul, S. Solid acids: Green alternatives for acid catalysis. Catal. Today, 2014, 236, 153-170.
[9]
Kokel, A.; Schäfer, C.; Török, B. Application of microwave-assisted hetero-geneous catalysis in sustainable synthesis design. Green Chem., 2017, 19, 3729-3751.
[10]
Cho, H.; Schäfer, C.; Török, B. Microwave-assisted solid acid catalysis. In: Microwaves in Catalysis – Fundamental Research and Scale-up Technology; Horikoshi, S.; Serpone, N., Eds.; Wiley, 2015; pp. 193-213.
[11]
Daştan, A.; Kulkarni, A.; Török, B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem., 2012, 14, 17-37.
[12]
(a) Wachs, I.E.; Briand, L.E.; Jehng, J-M. Molecular structure and reactivity of the group V metal oxides. Catal. Today, 2000, 57, 323-330.
(b) Ushikubo, T. Recent topics of research and development of catalysis by niobium and tantalum oxides. Catal. Today, 2000, 57, 331-338.
(c)Hutchings, G.J.; Bartley, J.K.; Rhodes, C.; Taylor, S.H.; Wells, R.P.K.; Willock, D.J. Metal Oxides. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, 2003; Vol. 4, pp. 602-694.
[13]
Gawande, M.B.; Pandey, R.K.; Jayaram, R.V. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal. Sci. Technol., 2012, 2, 1113-1125.
[14]
Venkatesh, K.R.; Hu, J.; Dogan, C.; Tierney, J.W.; Wender, I. Sulfated metal oxides and related solid acids: Comparison of protonic acid strengths. Energy Fuels, 1995, 9, 888-893.
[15]
Arata, K. Organic syntheses catalyzed by superacidic metal oxides: Sulfated zirconia and related compounds. Green Chem., 2009, 11, 1719-1728.
[16]
Vaccari, A. Clays and catalysis: a promising future. Appl. Clay Sci., 1999, 14, 161-198.
[17]
(a)Balogh, M.; Laszlo, P. Organic Chemistry Using Clays; Springer-Verlag: Berlin, 1993.
(b) Nikalje, M.D.; Phukan, P.; Sudalai, A. Recent advances in clay-catalyzed organic transformations. Org. Prep. Proced. Int., 2000, 32, 1-40; (d) Varma, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron, 2002, 58, 1235-1255.
[18]
Dasgupta, S.; Török, B. Application of clay catalysts in organic synthesis. A review. Org. Prep. Proced. Int., 2008, 40, 1-65.
[19]
Cseri, T.; Békássy, S.; Figueras, F.; Cseke, E.; de Menorval, L-C.; Dutartre, R. Characterization of clay-based K catalysts and their application in Friedel-Crafts alkylation of aromatics. Appl. Catal. A Gen., 1995, 132, 141-155.
[20]
Nagendrappa, G. Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci., 2011, 53, 106-138.
[21]
Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv, 2015, 5, 29467-29481.
[22]
Kumar, B.S.; Dhakshinamoorthy, A.; Pitchumani, K. K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Tech., 2014, 4, 2378-2396.
[23]
(a)Janssens, B.; Catry, P.; Claessens, R.; Baron, G.; Jacobs, P.A. Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, Chon, H.; Ihm, S.-K; Uh, Y.S., Ed.; Elsevier: Amsterdam, 1997, Vol. 105, p. 1211.
(b)Csicsery, S.M.; Kiricsi, I. Shape-Selective Catalysis. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, 2003; Vol. 6, pp. 307-338.
[24]
Tsapatsis, M.; Fan, W. A new, yet familiar, lamellar zeolite. ChemCatChem, 2010, 2, 246-248.
[25]
Paillaud, J.; Harbuzaru, B.; Patarin, J.; Bats, N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings. Science, 2004, 304, 990-992.
[26]
Busca, G. Acidity and basicity of zeolites: A fundamental approach. Micropor Mesopor Mater., 2017, 254, 3-16.
[27]
Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal., 2003, 216, 298-312.
[28]
(a) Olah, G.A.; Iyer, P.S.; Prakash, G.K.S. Perfluorinated resinsulphonic acid (Nafion-H) catalysis in synthesis. Synthesis, 1986, 513-531.
(b) Prakash, G.K.S.; Olah, G.A. in Acid-Base Catalysis, Tanabe, K.; Hattori, H.; Yamaguchi, T.; Tanaka T. Eds.; Kodansha: Tokyo,. 1989, p 59.
(c) Molnár, Á. Nafion-silica nanocomposites: A new generation of water-tolerant solid acids of high efficiency. Curr. Org. Chem., 2008, 12, 159-181.
[29]
Xu, Y.; Gu, W.; Gin, D. Heterogeneous catalysis using a nanostructured solid acid resin based on lyotropic liquid crystals. J. Am. Chem. Soc., 2004, 126, 1616-1617.
[30]
Kidwai, M.; Chauhan, R.; Bhatnagar, S. Nafion-H (R): A versatile catalyst for organic synthesis. Curr. Org. Chem., 2015, 19, 72-98.
[31]
(a) Harmer, M.A.; Farneth, W.E.; Sun, Q. High surface area nafion resin/silica nanocomposites: A new class of solid acid catalyst. J. Am. Chem. Soc., 1996, 118, 7708-7715.
(b) Török, B.; Kiricsi, I.; Molnár, Á.; Olah, G.A. Acidity and catalytic activity of nafion-H/silica nanocomposite catalyst and a comparison with silica-supported perfluorinated acids. J. Catal., 2000, 193, 132-138.
[32]
(a) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature, 1999, 402, 276-279.
(b) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295, 469-472.
[33]
Zhou, H.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43, 5415-5418.
[34]
Liang, W.; D’Alessandro, D.M. Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chem. Commun., 2013, 49, 3706-3708.
[35]
Corma, A.; Garcia, H.; Llabres i Xamena, F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev., 2010, 110, 4606-4655.
[36]
Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev., 2012, 112, 1196-1231.
[37]
Liu, J.; Lukose, B.; Shekhah, O.; Arslan, H.K.; Weidler, P.; Gliemann, H.; Braese, S.; Grosjean, S.; Godt, A.; Feng, X.; Muellen, K.; Magdau, I.; Heine, T.; Woell, C. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. Sci. Reports., 2012, 2, 921-936.
[38]
Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.N.; Domen, K.; Hayashi, S.A. A carbon material as a strong protonic acid. Angew. Chem. Int. Ed., 2004, 43, 2955-2958.
[39]
Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Synthesis and acid catalysis of cellulose derived carbon-based solid acid. Solid State Sci., 2010, 12, 1029-1034.
[40]
Jamwal, N.; Sodhi, R.K.; Gupta, P.; Paul, S. Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. Int. J. Biol. Macromol., 2011, 49, 930-935.
[41]
(a) Chrobok, A.; Baj, S.; Pudło, W.; Jarzebski, A. Supported hydrogensulfate ionic liquid catalysis in Baeyer–Villiger reaction. Appl. Catal. A Gen., 2009, 366, 22-28.
(b) Sugimura, R.; Qiao, K.; Tomida, D.; Yokoyama, C. Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation. Catal. Commun., 2007, 8, 770-772.
(c) Amarasekara, A.S.; Owereh, O.S. Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal. Commun., 2010, 11, 1072-1075.
[42]
Gupta, P.; Kour, M.; Paul, S.; Clark, J.H. Ionic liquid coated sulfonated carbon/silica composites: novel heterogeneous catalysts for organic syntheses in water. RSC Adv, 2014, 4, 7461-7470.
[43]
(a) Nakajima, K.; Okamura, M.; Kondo, J.N.; Domen, K.; Tatsumi, T.; Hayashi, S.; Hara, M. Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem. Mater., 2009, 21, 186-193.
(b) Vyver, S.V.De Peng, L.; Geboers, J.; Schepers, H.; Clippel, F. de.; Gommes, C.J.; Goderis, B.; Jacobs, P.A.; Sels, B.F. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem., 2010, 12, 1560-1563.
[44]
Gupta, P.; Paul, S. Sulfonated carbon/silica composites: highly efficient heterogeneous catalysts for the one-pot synthesis of hantzsch 1,4-dihydropyridines, 2,4,5-trisubstituted imidazoles and 2-arylbenzimidazoles. Curr. Catal., 2014, 3, 53-64.
[45]
Gupta, P.; Kumar, V.; Paul, S. Silica functionalized sulfonic acid catalyzed one-pot synthesis of 4,5,8a-triarylhex-ahydropyrimido [4,5-d]pyrimidine-2,7(1H,3H)-diones under liquid phase catalysis. J. Braz. Chem. Soc., 2010, 21, 349-354.
[46]
Gupta, P.; Paul, S. Sulfonated carbon/silica composite functionalized Lewis acids for one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles, 3,4-dihydropyrimidin-2(1H)-ones and for Michael addition of indole to α,β-unsaturated ketones. J. Mol. Catal.A: Chem., 2012, 352, 75-80.
[47]
Gupta, P.; Paul, S. Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemoselective protection of aldehydes as 1,1-diacetates and for N-, O- and S-acylations. Green Chem., 2011, 13, 2365-2372.
[48]
Chen, Z.; Zhong, W.; Tang, D.; Zhang, G. Preparation of organic nanoacid catalyst for urethane formation. Chinese. J. Chem. Phys., 2017, 30, 339-342.
[49]
Liu, T.; Imber, B.; Diemann, E.; Liu, G.; Cokleski, K.; Li, H.; Chen, Z.; Müller, A. Deprotonations and charges of well-defined Mo72Fe30 nanoacids simply stepwise tuned by pH allow control/ variation of related self-assembly processes. J. Am. Chem. Soc., 2006, 128, 15914-15920.
[50]
(a)Kozhevnikov, I.V. Catalysis by Polyoxometalates; Wiley: Chichester, 2002.
(b) Kozhevnikov, I.V. Friedel–Crafts acylation and related reactions catalysed by heteropoly acids. Appl. Catal. A Gen., 2003, 256, 3-18.
(c)Misono, M. Heteropoly Acids. In: Encyclopedia of Catalysis; Horvath, I.T., Ed.; Wiley: New York, 2003; Vol. 3, pp. 433-447.
[51]
Contreras Coronel, N.; da Silva, M.J. Lacunar keggin heteropolyacid salts: soluble, solid and solid-supported catalysts. J. Cluster Sci., 2018, 29, 195-205.
[52]
Heravi, M.M.; Sadjadi, S.; Oskooie, H.A.; Shoar, R.H.; Bamoharram, F.F. Heteropolyacids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles. Catal. A Commun., 2008, 9, 504-507.
[53]
Micek-Ilnicka, A. The role of water in the catalysis on solid heteropolyacids. J. Mol. Catal. Chem., 2009, 308, 1-14.
[54]
Sathicq, A.G.; Romanelli, G.P.; Palermo, V.; Vazquez, P.G.; Thomas, H.J. Heterocyclic amine salts of Keggin heteropolyacids used as catalyst for the selective oxidation of sulfides to sulfoxides. Tetrahedron Lett., 2008, 49, 1441-1444.
[55]
Pope, M.T. Heteropoly and Isopoly Oxometalates; Springer, 1983.
[56]
(a) Vila-Nadal, L.; Cronin, L. Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat. Rev. Mater., 2017, 2, Article number: 17054.
(b) Gumerova, N.I.; Rompel, A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat. Rev. Chem., 2018, 2, Article number: 0112.
[57]
Kobayashi, S. Rare earth metal trifluoromethanesulfonates as water-tolerant lewis acid catalysts in organic synthesis. Synlett,1994, 689-701; (b) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W.W.-L. Rare-earth metal triflates in organic synthesis. Chem. Rev., 2002, 102, 2227-2302.
[58]
Manabe, K.; Kobayashi, S. Catalytic asymmetric carbon–carbon bond‐forming reactions in aqueous media. Chem. Eur. J., 2002, 8, 4094-4101; (b) Shen, K.; Liu, X.; Lin, L.; Feng, X. Recent progress in enantioselective synthesis of C3-functionalized oxindoles: Rare earth metals take action. Chem. Sci., 2012, 3, 327-334.
[59]
Mishra, A.K.; Biswas, S. Brønsted acid catalyzed functionalization of aromatic alcohols through nucleophilic substitution of hydroxyl group. J. Org. Chem., 2016, 81, 2355-2363; (b) Bovonsombat, P.; Ali, R.; Khan, C.; Leykajarakul, J.; Pla-on, K.; Aphimanchindakul, S.; Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N. Facile p-toluenesulfonic acid-promoted para-selective monobromination and chlorination of phenol and analogues. Tetrahedron, 2010, 66, 6928-6935.
[60]
a) Goldberg, S.I.; Miller, N.C. Asymmetric selection during dehydration of achiral alcohols in the presence of (+)-camphorsulfonic acid. J. Chem. Soc. Chem. Commun., 1969, 1409-1410.
b) Liu, C.; Lu, Y. Primary amine/(+)-CSA salt-promoted organocatalytic conjugate addition of nitro esters to enones. Org. Lett., 2010, 12, 2278-2281.
[61]
(a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed., 2004, 43, 1566-1568.
(b) Uraguchi, D.; Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc., 2004, 126, 5356-5357.
[62]
(a) Cheng, X.; Goddard, R.; Buth, G.; List, B. Direct catalytic asymmetric three-component Kabachnik-Fields reaction. Angew. Chem. Int. Ed., 2008, 47, 5079-5081.
(b) Seayad, J.; Seayad, A.M.; List, B. Catalytic asymmetric Pictet-Spengler reaction. J. Am. Chem. Soc., 2006, 128, 1086-1087.
(c) Terada, M.; Sorimachi, K. Enantioselective Friedel-Crafts reaction of electron-rich alkenes catalyzed by chiral Brønsted acid. J. Am. Chem. Soc., 2007, 129, 292-293.
(d) Chen, X-H.; Xu, X-Y.; Liu, H.; Cun, L-F.; Gong, L-Z. Highly enantioselective organocatalytic Biginelli reaction. J. Am. Chem. Soc., 2006, 128, 14802-14803.
[63]
(a)Olah, G.A. Friedel-Crafts and Related Reactions; Wiley: New York, 1964.
(b)Olah, G.A. Friedel-Crafts Chemistry; Wiley-Interscience: New York, 1973.
[64]
Dasgupta, S.; Török, B. Environmentally benign contemporary friedel-crafts chemistry by solid acids. Curr. Org. Synth., 2008, 5, 321-342.
[65]
El-Hiti, G.A.; Smith, K.; Hegazy, A.S. Catalytic, green and regioselective friedel-crafts acylation of simple aromatics and heterocycles over zeolites. Curr. Org. Chem., 2015, 19, 585-598.
[66]
Bernardon, C.; Ben Osman, M.; Laugel, G.; Louis, B.; Pale, P. Acidity versus metal-induced Lewis acidity in zeolites for Friedel-Crafts acylation. Compt. Rend. Chim., 2017, 20, 20-29.
[67]
Khder, A.R.S.; Hassan, H.M.A.; El-Shall, M.S. Metal-organic frameworks with high tungstophosphoric acid loading as heterogeneous acid catalysts. Applied. Catal. A Gen., 2014, 487, 110-118.
[68]
Yadav, G.D. Kamble, S.B. Atom efficient Friedel-Crafts acylation of toluene with propionic anhydride over solid mesoporous superacid UDCaT-5. Applied. Catal. A Gen., 2012, 433-434, 265-274.
[69]
Kulkarni, A.; Quang, P.; Török, B. Microwave-assisted solid acid-catalyzed Friedel-Crafts alkylation and electrohylic annulation of indoles using alcohols as alkylating agents. Synthesis, 2009, 4010-4014.
[70]
Cirujano, F.G.; Stalpaert, M.; De Vos, D.E. Ionic liquids vs. microporous solids as reusable reaction media for the catalytic C-H functionalization of indoles with alcohols. Green Chem., 2018, 20, 2481-2485.
[71]
Wen, J.; Qi, H.; Kong, X.; Chen, L.; Yan, X. Hydroarylation of styrenes with electron-rich arenes over acidic ion-exchange resins. Synth. Commun., 2014, 44, 1893-1903.
[72]
Prakash, S.G.K.; Fogassy, G.; Olah, G.A. Microwave-assisted nafion-h catalyzed friedel-crafts type reaction of aromatic aldehydes with arenes: Synthesis of triarylmethanes. Catal. Lett., 2010, 138, 155-159.
[73]
Zhang, D.W.; Zhang, Y.M.; Zhang, Y.L.; Zhao, T.Q.; Liu, H.W.; Gan, Y.M.; Gu, Q. Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation. Chem. Papers., 2015, 69, 470-478.
[74]
An, L.; Zhang, L.; Zou, J.; Zhang, G. Montmorillonite K10: Catalyst for friedel-crafts alkylation of indoles and pyrrole with nitroalkenes under solventless conditions. Synth. Commun., 2010, 40, 1978-1984.
[75]
Hechelski, M.; Ghinet, A.; Louvel, B.; Dufrenoy, P.; Rigo, B.; Daich, A.; Waterlot, C. From conventional lewis acids to heterogeneous montmorillonite K10: Eco-friendly plant-based catalysts used as green lewis acids. ChemSusChem, 2018, 11, 1249-1277.
[76]
Losfeld, G.; Escande, V.; de La Blache, P.V.; L’Huillier, L.; Grison, C. Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel-Crafts alkylation and acylation. Catal. Today, 2012, 189, 111-116.
[77]
Zhu, C.; Mao, Q.; Li, D.; Li, C.; Zhou, Y.; Wu, X.; Luo, Y.; Li, Y. A readily available urea based MOF that act as a highly active heterogeneous catalyst for Friedel-Crafts reaction of indoles and nitrostryenes. Catal. Commun., 2018, 104, 123-127.
[78]
Rao, P.C.; Mandal, S. Friedel-Crafts alkylation of indoles with nitroalkenes through hydrogen-bond-donating metal-organic framework. ChemCatChem, 2017, 9, 1172-1176.
[79]
Abid, M.; Török, B. Synthesis of N-heteroaryl-trifluoromethyl-hydroxyl alkanoic acid esters by highly efficient solid acid catalyzed hydroxyalkylation of indoles and pyrroles with activated trifluoromethyl ketones. Adv. Synth. Catal., 2005, 347, 1797-1803.
[80]
(a) Török, M.; Abid, M.; Mhadgut, S.C.; Török, B. Organofluorine inhibitors of amyloid fibrillogenesis. Biochemistry, 2006, 45, 5377-5383.
(b) Török, B.; Sood, A.; Bag, S.; Kulkarni, A.; Borkin, D.; Lawler, E.; Dasgupta, S.; Landge, S.M.; Abid, M.; Zhou, W.; Foster, M.; LeVine, III , H.; Török, M. Structure-activity relationship of organofluorine inhibitors of amyloid-beta self-assembly. ChemMedChem, 2012, 7, 910-919.
[81]
Smith, K.; El-Hiti, G.A. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem., 2011, 11, 1579-1608.
[82]
Mohan, R.B.; Reddy, N.C.G. Regioselective α-bromination of aralkyl ketones using N-bromosuccinimide in the presence of montmorillonite K-10 clay: a simple and efficient method. Synth. Commun., 2013, 43, 2603-2614.
[83]
Kumar, M.S.; Sriram, Y.H.; Venkateswarlu, M.; Rajanna, K.C.; Sudhakar, M.S.; Venkana, P.; Saiprakash, P.K. Silica-supported perchloric acid and potassium bisulfate as reusable green catalysts for nitration of aromatics under solvent-free microwave conditions. Synth. Commun., 2017, 48, 59-67.
[84]
Mackie, R.K.; Smith, D.M.; Aitken, R.A. Guidebook to Organic Synthesis.chp. 5; , 1999. (Pearson, Harlow)p. 69.
[85]
Abid, M.; Savolainen, M.; Landge, S.; Hu, J.; Prakash, G.K.S.; Olah, G.A.; Török, B. Synthesis of trifluoromethyl-imines by solid acid/superacid catalyzed microwave assisted approach. J. Fluorine. Chem., 2007, 128, 587-594.
[86]
Dasgupta, S.; Morzhina, E.; Schäfer, C.; Mhadgut, S.C.; Prakash, G.K.S.; Török, B. Synthesis of chiral trifluoromethyl benzylamines by heterogeneous catalytic reductive amination. Top. Catal., 2016, 59, 1207-1213.
[87]
Brun, E.; Safer, A.; Carreaux, F.; Bourahla, K.; L’helgoua’ch, J.M.; Bazureau, J.P.; Villalgordo, J.M. Microwave-assisted condensation reactions of acetophenone derivatives and activated methylene compounds with aldehydes catalyzed by boric acid under solvent-free conditions. Molecules, 2015, 20, 11617-11631.
[88]
Rocchi, D.; González, J.F.; Menéndez, J.C. Montmorillonite clay-promoted, solvent-free cross-aldol condensations under focused microwave irradiation. Molecules, 2014, 19, 7317-7326.
[89]
Varghese, A.; Nizam, A.; Kulkarni, R.; George, L. Amberlite IR‐120H: An improved reusable solid phase catalyst for the synthesis of nitriles under solvent free microwave irradiation. Eur. J. Chem., 2012, 3, 247-251.
[90]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14, 371-382.
[91]
De Paolis, O.; Baffoe, J.; Landge, S.M.; Török, B. Multicomponent domino cyclization-oxidative aromatization on a bifunctional Pd/C/K-10 catalyst: An environmentally benign approach toward the synthesis of pyridines. Synthesis, 2008, 3423-3428.
[92]
Kulkarni, A.; Török, B. Microwave-assisted multicomponent domino cyclization-aromatization: An efficient approach for the synthesis of substituted quinolines. Green Chem., 2010, 12, 875-878.
[93]
Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T. p-Toluenesulfonic acid doped polystyrene (PS-PTSA): solvent-free microwave assisted cross-coupling-cyclization–oxidation to build one-pot diversely functionalized pyrrole from aldehyde, amine, active methylene, and nitroalkane. Tetrahedron Lett., 2015, 56, 859-865.
[94]
Heck, R.F. Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J. Am. Chem. Soc., 1968, 90, 5518-5526.
[95]
Molnár, Á. Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments; Wiley-VCH: Weinheim, 2013.
[97]
Pandey, G.; Török, B. K-10 montmorillonite-catalyzed solid phase diazotizations: environmentally benign coupling of diazonium salts with aromatic hydrocarbons to biaryls. Green Chem., 2017, 19, 2515-2519.
[98]
Prakash, G.K.S.; Glinton, K.E.; Panja, C.; Gurung, L.; Battamack, P.T.; Török, B.; Mathew, T.; Olah, G.A. Thermocontrolled benzylimine–benzaldimine rearrangement over Nafion-H catalysts for efficient entry into α-trifluoromethylbenzylamines. Tetrahedron Lett., 2012, 53, 607-611.
[99]
Mackie, R.K. Smith, D.M., Aitken, R.A. Guidebook to Organic Synthesis.Chp. 7; Pearson: Harlow, 1999, p. 120.
[100]
Landge, S.M.; Schmidt, A.; Outerbridge, V.; Török, B. Synthesis of pyrazoles by a one-pot tandem cyclization-dehydrogenation approach on Pd/C/K-10 catalyst. Synlett, 2007, 1600-1604.
[101]
Landge, S.M.; Berryman, M.; Török, B. Microwave-assisted solid acid-catalyzed one-pot synthesis of isobenzofuran-1(3H)-ones. Tetrahedron Lett., 2008, 49, 4505-4508.
[102]
Outerbridge, V.M.; Landge, S.M.; Tamaki, H.; Török, B. Microwave-promoted solid-acid-catalyzed one pot synthesis of phthalazinones. Synthesis, 2009, 2009, 1801-1806.
[103]
Abid, M.; De Paolis, O.; Török, B. A novel one-pot synthesis of N-acylindoles from primary aromatic amides. Synlett, 2008, 2008, 410-413.
[104]
Abid, M.; Landge, S.M.; Török, B. An efficient and rapid synthesis of N-pyrroles by microwave-assisted solid acid catalysis. Org. Prep. Proced. Int., 2006, 38, 495-500.
[105]
Rudnitskaya, A.; Borkin, D.A.; Huynh, K.; Török, B.; Stieglitz, K. Rational design, synthesis and potency of N-substituted indoles, pyrroles and triarylpyrazoles as potential fructose 1,6-biphosphatase inhibitors. ChemMedChem, 2010, 5, 384-389.
[106]
Landge, S.M.; Török, B. Synthesis of condensed benzo[N,N]-heterocycles by microwave-assisted solid acid catalysis. Catal. Lett., 2008, 122, 338-343.
[107]
Kulkarni, A.; Abid, M.; Török, B.; Huang, X. A direct synthesis of β-carbolines via a three-step one-pot domino approach with a bifunctional Pd/C/K-10 catalyst. Tetrahedron Lett., 2009, 50, 1791-1794.
[108]
Horton, W.; Sood, A.; Peerannawar, S.; Kugyela, N.; Kulkarni, A.; Tulsan, R.; Tran, C.D.; Soule, J.; LeVine, III, H.; Török, B.; Török, M. Synthesis and application of β-carbolines as novel multi-functional anti- Alzheimer’s disease agents. Bioorg. Med. Chem. Lett., 2017, 27, 232-236.
[109]
De Paolis, O.; Teixeira, L.; Török, B. Synthesis of quinolines by a solid acid-catalyzed microwave-assisted domino cyclization-aromatization approach. Tetrahedron Lett., 2009, 50, 2939-2942.
[110]
Kokel, A.; Török, B. Microwave-assisted solid phase diazotation: a method for the environmentally benign synthesis of benzotriazoles. Green Chem., 2017, 19, 5390-5395.
[111]
Borkin, D.A.; Puscau, M.; Carlson, A.; Solan, A.; Wheeler, K.A.; Török, B.; Dembinski, R. Synthesis of diversely 1,3,5-trisubstituted pyrazoles via 5-exo-dig cyclization. Org. Biomol. Chem., 2012, 10, 4505-4508.
[112]
Cho, H.; Török, F.; Török, B. Energy efficiency of heterogeneous catalytic microwave-assisted organic reactions. Green Chem., 2014, 16, 3623-3634.
[113]
Yadav, A.; Biswas, S.; Mobin, S.M.; Samanta, S. Efficient Cu(OTf)2-catalyzed and microwave-assisted rapid synthesis of 3,4-fused chromenopyridinones under neat conditions. Tetrahedron Lett., 2017, 58, 3634-3639.
[114]
Ghodke, S.; Chudasama, U. Solvent free synthesis of coumarins using environment friendly solid acid catalysts. Appl. Catal. A Gen., 2013, 453, 219-226.
[115]
Chavan, O.S.; Shioorkar, M.G.; Jadhav, S.A.; Sakhare, M.A.; Pawar, Y.M.; Shivaji, B.; Chavan, S.B.; Baseer, M.A. Envirocat EPZ-10: An efficient catalyst for synthesis of coumarins by Pechmann reactin under solvent free microwave irradiation method. Heterocyclic Lett., 2017, 7, 377-380.
[116]
Babu, M.; Pitchumani, K.; Ramesh, P. An expeditious synthesis of flavonols promoted by montmorillonite KSF clay and assisted by microwave irradiation under solvent-free conditions. Helv. Chim. Acta, 2013, 96, 1269-1272.
[117]
Borkin, D.A.; Carlson, A.; Török, B. K-10-catalyzed highly diastereoselective synthesis of aziridines. Synlett, 2010, 745-748.
[118]
Mohsenzadeh, F.; Aghapoor, K.; Darabi, H.R.; Jalali, M.R.; Halvagar, M.R. Greener aminolysis of epoxides on BiCl3/SiO2. Compt. Rend. Chim., 2016, 19, 978-985.
[119]
Zhu, R.; Jiang, J-L.; Li, X-L.; Deng, J.; Fu, Y. A comprehensive study on metal triflate-promoted hydrogenolysis of lactones to carboxylic acids: From synthetic and mechanistic perspectives. ACS Catal., 2017, 7, 7520-7528.
[120]
Gowda, R.R.; Chakraborty, D. Environmentally benign process for bulk ring opening polymerization of lactones using iron and ruthenium chloride catalysts. J. Mol. Catal A:. Chem., 2009, 301, 84-92.
[121]
Kernbichl, S.; Reiter, M.; Bucalon, D.H.; Altmann, P.J.; Kronast, A.; Rieger, B. Synthesis of lewis acidic, aromatic aminotroponiminate zinc complexes for the ring-opening polymerization of cyclic esters. Inorg. Chem., 2018, 57, 9931-9940.
[122]
Nguyen, H.T.H.; Short, G.N.; Qi, P.; Miller, S.A. Copolymerization of lactones and bioaromatics via concurrent ring-opening polymerization/ polycondensation. Green Chem., 2017, 19, 1877-1889.
[123]
Kuźniarska-Biernacka, I.; Pereira, C.; Carvalho, A.P.; Pires, J.; Freire, C. Epoxidation of olefins catalyzed by manganese(III) salen complexes grafted to porous heterostructured clays. Appl. Clay Sci., 2011, 53, 195-203.
[124]
Song, F.; Wang, C.; Falkowski, J.M.; Ma, L.; Lin, W. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc., 2010, 132, 15930-15938.
[125]
Huang, J.; Ding, W.; Cai, J. Heterogeneous Jacobsen’s catalyst on alkoxyl‐modified zirconium poly (styrene‐phenylvinylphospho-nate)‐phosphate (ZPS‐PVPA) for asymmetric epoxidation. Appl. Organometal. Chem., 2017, 31e3861
[126]
Ren, Y.; Cheng, X.; Yang, S.; Qi, C.; Jiang, H.; Mao, Q. A chiral mixed metal–organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. Dalton Trans., 2013, 42, 9930-9937.
[127]
Xia, Q.; Li, Z.; Tan, C.; Liu, Y.; Gong, W.; Yong, Cui. Y. Multivariate metal−organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc., 2017, 139, 8259-8266.
[128]
Li, J.; Ren, Y.; Qi, C.; Jiang, H. The first porphyrin–salen based chiral metal–organic framework for asymmetric cyanosilylation of aldehydes. Chem. Commun. , 2017, 53, 8223-8226.
[129]
Dong, J.; Liu, Y.; Cui, Y. Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem. Commun. , 2014, 50, 14949-14952.
[130]
Peng, C.; Lu, X-H.; Ma, X-T.; Shen, Y. Wei, C.-C.; He, J.; Zhou, D.; Xia, Q.-H. Highly efficient epoxidation of cyclohexene with aqueous H2O2 over powdered anion-resin supported solid catalysts. J. Mol. Catal. A: Chem., 2016, 423, 393-399.
[131]
Shen, Y.; Lu, X-H.; Wei, C-C.; Ma, X-T.; Peng, C.; He, J.; Zhou, D.; Xia, Q-H. Highly selective mono-epoxidation of dicyclopentadiene with aqueous H2O2 over heterogeneous peroxo-phosphotungstic catalysts. Mol. Catal., 2017, 433, 185-192.
[132]
Schäfer, C.; Ellstrom, C.J.; Török, B. Heterogeneous catalytic aqueous phase oxidative cleavage of styrenes to benzaldehydes: An environmentally benign alternative to ozonolysis. Top. Catal., 2018, 61, 643-651.
[133]
Landge, S.M.; Atanassova, V.; Thimmaiah, M.; Török, B. Microwave-assisted oxidative coupling of amines to imines on solid acid catalysts. Tetrahedron Lett., 2007, 48, 5161-5164.
[134]
Atanassova, V.; Ganno, K.; Kulkarni, A.; Landge, S.M.; Curtis, S.; Foster, M.; Török, B. Mechanistic study on the oxidative coupling of amines to imines on K-10 montmorillonite. Appl. Clay Sci., 2011, 53, 220-226.
[135]
Fabian, L.; Gómez, M.; Kuran, J.A.C.; Moltrasio, G.; Moglioni, A. Efficient microwave-assisted esterification reaction employing methanesulfonic acid supported on alumina as catalyst. Synth. Commun., 2014, 44, 2386-2392.
[136]
(a) Gallo, J.M.R.; Trapp, M.A. The chemical conversion of biomass-derived saccharides: An overview. J. Braz. Chem. Soc., 2017, 28, 1586-1607.
(b) De, S.; Duttab, S.; Saha, B. Critical design of heterogeneous catalysts for biomass valorization: current thrust and emerging prospects. Catal. Sci. Technol., 2016, 6, 7364-7385.
(c) Chatterjee, C.; Pong, F.; Sen, A. Chemical conversion pathways for carbohydrates. Green Chem., 2015, 17, 40-71.
(d) Pagan-Torres, Y.J.; Gallo, J.M.R.; Wang, D.; Pham, H.N.; Libera, J.A.; Marshall, C.L.; Elam, J.W.; Datye, A.K.; Dumesic, J.A. Synthesis of highly ordered hydrothermally stable mesoporous niobia catalysts by atomic layer deposition. ACS Catal., 2011, 1, 1234-1245.
[137]
Nishimura, S.C. Paris. France: European Patent Office. 2004. European Patent No EP 1 123 939 B1
[138]
Perrier, A.; Keller, M.; Caminade, A.; Majoral, J.; Ouali, A. Efficient and recyclable rare earth-based catalysts for Friedel-Crafts acylations under microwave heating: dendrimers show the way. Green Chem., 2013, 15, 2075-2080.
[139]
Tran, P.H.; Nguyen, H.T.; Hansen, P.E.; Le, T.N. Greener Friedel-Crafts acylation using microwave-enhanced reactivity of bismuth triflate in the Friedel-Crafts benzoylation of aromatic compounds with benzoic anhydride. Chem. Select., 2017, 2, 571-575.
[140]
Abid, M.; Teixeira, L.; Török, B. Triflic acid controlled successive annelation of aromatic sulfonamides: An efficient one-pot synthesis of N-sulfonyl pyrroles, indoles and carbazoles. Tetrahedron Lett., 2007, 48, 4047-4050.
[141]
Abid, M.; Teixeira, L.; Török, B. Triflic acid-catalyzed highly stereoselective friedel-crafts aminoalkylation of indoles and pyrroles. Org. Lett., 2008, 10, 933-935.
[142]
Mendoza, F.; Ruíz-Guerrero, R.; Hernández-Fuentes, C.; Molina, P.; Norzagaray-Campos, M.; Reguera, E. On the bromination of aromatics, alkenes and alkynes using alkylammonium bromide: Towards the mimic of bromoperoxidases reactivity. Tetrahedron Lett., 2016, 57, 5644-5648.
[143]
Heravi, M.M.; Bakhtiari, K.; Benmorad, T.; Bamoharram, F.F.; Oskooie, H.; Tehrani, M.H. Nitration of aromatic compounds catalyzed by divanadium substituted molybdophosphoric acid H5.[PMo10V2O40]. Monatsh. Chem., 2007, 138, 449-452.
[144]
Zhu, W.; Liu, Y.; Niu, G.; Wang, Q.; Li, J.; Zhu, X.; Li, Y.; Xue, H.; Yang, G. First application of bismuth triflate as an efficient, non-transition metallic and reusable catalyst for aromatic nitration. Catal. Commun., 2012, 29, 145-148.
[145]
Qian, H.; Wang, Y.; Liu, D.; Lv, C. Bismuth triflate catalyzed mononitration of aromatic compounds with N2O5. Lett. Org. Chem., 2014, 11, 509-512.
[146]
Zare, A.; Yousofi, T.; Moosavi-Zare, A.R. Ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate: a novel and highly efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols and 1-amidoalkyl-2-naphthols. RSC Advances, 2012, 2, 7988-7991.
[147]
Mohammadi, S.; Abbasi, M. Design of ionic liquid sulfonic acid pyridinium hydrogen sulfate as an efficient, eco-friendly, and reusable catalyst for one-pot synthesis of highly functionalized tetrahydropyridines. Res. Chem. Intermed., 2015, 41, 8877-8890.
[148]
Rahmatpour, A. Polyvinylsulfonic acid: An efficient, water-soluble and reusable Brønsted acid catalyst for the three-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones in water and ethanol. Catal. Lett., 2012, 142, 1505-1511.
[149]
Yanai, H.; Sakiyama, T.; Oguchi, T.; Taguchi, T. Four component reaction of aldehydes, isocyanides, Me3SiN3, and aliphatic alcohols catalyzed by indium triflate. Tetrahedron Lett., 2012, 53, 3161-3164.
[150]
Bhattacharjee, D.; Sutradhar, D.; Chandra, A.K.; Myrboh, B. L-proline as an efficient asymmetric induction catalyst in the synthesis of chromeno [2,3-d]pyrimidine-triones, xanthenes in water. Tetrahedron, 2017, 73, 3497-3504.
[151]
Seyyedhamzeh, M.; Shaabani, S.; Sangachin, M.H.; Shaabani, A. Guanidinium-based sulfonic acid as a new Bronsted acid organocatalyst in organic synthesis in water. Res. Chem. Intermed., 2016, 42, 2845-2855.
[152]
Wang, S.; Cheng, C.; Wu, F.; Jiang, B.; Shi, F.; Tu, S.; Rajale, T.; Li, G. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron, 2011, 67, 4485-4493.
[153]
Naidoo, S.; Jeena, V. A green, solvent-free one-pot synthesis of disubstituted quinolines via A3-coupling using 1mol % FeCl3. Heterocycles, 2016, 92, 1655-1664.
[154]
Ansari, A.J.; Sharma, S.; Pathare, R.S.; Gopal, K.; Sawant, D.M.; Pardasani, R.T. Solvent–free multicomponent synthesis of biologically–active fused–imidazo heterocycles catalyzed by reusable Yb(OTf)3 under microwave irradiation. Chem. Select., 2016, 1, 1016-1021.
[155]
Tayebee, R.; Tizabi, S. One-pot four-component dakin-west synthesis of beta-acetamido ketones catalyzed by a vanadium-substituted heteropolyacid. Chin. J. Catal., 2012, 33, 923-932.
[156]
Borkin, D.; Morzhina, E.; Datta, S.; Rudnitskaya, A.; Sood, A.; Török, M.; Török, B. Heteropoly acid-catalyzed microwave-assisted three-component aza-diels-alder cyclizations: diastereoselective synthesis of potential drug candidates for alzheimer’s disease. Org. Biomol. Chem., 2011, 9, 1394-1401.
[157]
Ishak, C.Y.; Wahbi, H.I.; Mohamed, M.E. Synthesis and characterization of some new 6-substituted-2, 4-di (hetar-2-yl) quinolines via micheal addition - ring closure reaction of schiff base n-(hetar-2- yl) methylene aniline with hetarylketones. Int. J. Pharm. Phytopharm. Res., 2013, 2, 431-435.
[158]
Zhang, J-H.; Wang, R-B.; Li, D-F.; Zhoa, L-M. Green method to preparing oxindole-fused spirotetrahydrofuran scaffolds through methanesulfonic acid-catalyzed cyclization reactions of 3‐allyl-3-hydroxy-2-oxindole in water. ACS Omega, 2017, 2, 7022-7028.
[159]
Gooßen, L.J.; Ohlmann, D.M.; Dierker, M. Silver triflate-catalysed synthesis of γ-lactones from fatty acids. Green Chem., 2010, 12, 197-200.
[160]
Mike, J.F.; Intemann, J.J.; Cai, M.; Xiao, T.; Shinar, R.; Shinar, J.; Jeffries-EL, M. Efficient synthesis of benzobisazole terpolymers containing thiophene and fluorene. Polym. Chem., 2011, 2, 2299-2305.
[161]
Shen, G.; Zhou, H.; Du, P.; Liu, S.; Zou, K.; Uozumi, Y. Brønsted acid-catalyzed selective C–C bond cleavage of 1,3-diketones: A facile synthesis of 4(3H)-quinazolinones in aqueous ethyl lactate. RSC Advances, 2015, 5, 85646-85651.
[162]
Ahmed, W.; Zhang, S.; Yu, X.; Yamamoto, Y.; Bao, M. Brønsted acid-catalyzed metal- and solvent-free quinoline synthesis from N-alkyl anilines and alkynes or alkenes. Green Chem., 2018, 20, 261-265.
[163]
Grigorjeva, L.; Jirgensons, A. Lewis acid catalyzed intramolecular allylic substitution of bis(trichloroacetimidates): A versatile approach to racemic unsaturated amino acids. Eur. J. Org. Chem., 2011, 13, 2421-2425.
[164]
Klimovica, K.; Grigorjeva, L.; Maleckis, A.; Popelis, J.; Jirgensons, A. C-quaternary vinylglycinols by metal-catalyzed cyclization of allylic bistrichloroacetimidates. Synlett, 2011, 19, 2849-2851.
[165]
Grigorjeva, L.; Maleckis, A.; Klimovica, K.; Skvorcova, M.; Ivdra, N.; Leitis, G.; Jirgensons, A. Novel synthesis of 2-trichloromethyl-4-vinyloxazoline and its derivatization by ring cleavage reactions. Chem. Heterocycl. Compd., 2012, 48, 919-924.
[166]
Cornil, J.; Gonnard, L.; Guérinot, A.; Reymond, S.; Cossy, J. Lewis acid catalyzed synthesis of cyclic carbonates, precursors of 1,2- and 1,3-diols. Eur. J. Org. Chem., 2014, 23, 4958-4962.
[167]
Wang, S.; Chai, Z.; Zhou, S.; Wang, S.; Zhu, X.; Wei, Y. A novel lewis acid catalyzed [3 + 3]-annulation strategy for the syntheses of tetrahydro-β-carbolines and tetrahydroisoquinolines. Org. Lett., 2013, 15, 2628-2631.
[168]
Yu, Z.; Liu, L.; Zhang, J. Triflic acid-catalyzed enynes cyclization: A new strategy beyond electrophilic π-activation. Chemistry Eur. J., 2016, 22, 8488-8492.
[169]
Singh, A.K.; Rai, A. Yadav. L.D.S. LiBr catalyzed solvent-free ring expansion of epoxides to 1,4-oxathian-2-ones with a-mercaptocarboxylic acids. Tetrahedron Lett., 2011, 52, 3614-3617.
[170]
Kiasat, A.R.; Mehrjadi, M.F. PEG-SO3H as eco-friendly polymeric catalyst for regioselective ring opening of epoxides using thiocyanate anion in water: An efficient route to synthesis of b-hydroxy thiocyanate. Catal. Commun., 2008, 9, 1497-1500.
[171]
Nazari, S. Iravani, N.; Ahmady, A.Z.; Vafaee-Nezhad, M.; Keshavarz, M. Imidazol-1-yl-acetic acid as a green simple bifunctional organocatalyst for the regioselective conversion of epoxides to 1,2-azido alcohols and -hydroxythiocyanates. Curr. Organocatal., 2014, 1, 7-12.
[172]
Halimehjani, A.Z.; Gholami, H.; Saidi, M.R. Boric acid/glycerol as an efficient catalyst for regioselective epoxide ring opening by aromatic amines in water. Green Chem. Lett. Rev., 2012, 5, 1-5.
[173]
Cucciniello, R.; Ricciardi, M.; Vitiello, R.; Di Serio, M.; Proto, A.; Capacchione, C. Synthesis of monoalkyl glyceryl ethers by ring opening of glycidol with alcohols in the presence of lewis acids. ChemSusChem, 2016, 9, 3272-3275.
[174]
Ghosal, N.C.; Santra, S.; Das, S.; Hajra, A.; Zyryanov, G.V.; Majee, A. Organocatalysis by an aprotic imidazolium zwitterion: regioselective ring-opening of aziridines and applicable to gram scale synthesis. Green Chem., 2016, 18, 565-574.
[175]
Gowda, R.R.; Chakraborty, D. Environmentally benign process for bulk ring opening polymerization of lactones using iron and ruthenium chloride catalysts. J. Mol. Catal.A: Chem., 2009, 301, 84-92.
[176]
Ji, H-Y.; Wang, B.; Pan, L.; Li, S-Y. Lewis pairs for ring-opening alternating copolymerization of cyclic anhydrides and epoxides. Green Chem., 2018, 20, 641-648.
[177]
Huang, Y.; Yang, T.; Zhou, M.; Pan, H.; Fu, Y. Microwave-assisted alcoholysis of furfural alcohol into alkyl levulinates catalyzed by metal salts. Green Chem., 2016, 18, 1516-1523.
[178]
Huang, Y.; Yang, X. Lv, Z.;Cai, C.; Kai, C.; Pei, Y.; Feng, Y. Asymmetric synthesis of 1,3-butadienyl-2-carbinols by the homoallenylboration of aldehydes with a chiral phosphoric acid catalyst. Angew. Chem. Int. Ed., 2015, 54, 7299-7302.
[179]
Shevchenko, G.A.; Pupo, G.; List, B. Catalytic asymmetric α-amination of α-branched ketones via enol catalysis. Synlett, 2015, 26, 1413-1416.
[180]
Yang, X.; Toste, F.D. Direct asymmetric amination of α‐branched cyclic ketones catalyzed by a chiral phosphoric acid. J. Am. Chem. Soc., 2015, 137, 3205-3208.
[181]
Lou, H.; Wang, Y.; Jin, E.; Lin, X. Organocatalytic asymmetric synthesis of dihydrobenzoxazinones bearing trifluoromethylated quaternary stereocenters. J. Org. Chem., 2016, 81, 2019-2026.
[182]
Qin, L.; Wang, P.; Zhang, Y.; Ren, Z.; Zhang, X.; Da, C-S. Direct asymmetric friedel–crafts reaction of naphthols with acetals catalyzed by chiral brønsted acids. Synlett, 2016, 27, 571-574.
[183]
Rueping, M.; Bootwicha, T.; Sugiono, E. Continuous-flow catalytic asymmetric hydrogenations: Reaction optimization using FTIR inline analysis. Beilstein J. Org. Chem., 2012, 8, 300-307.
[184]
More, G.V.; Bhanage, B.M. Chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of quinolines in a sustainable solvent. Tetrahedron, 2015, 26, 1174-1179.
[185]
Lifchits, O.; Reisinger, C.M.; List, B. Catalytic asymmetric epoxidation of α-branched enals. J. Am. Chem. Soc., 2010, 132, 10227-10229.
[186]
Zhang, H.; Yao, Q.; Lin, L.; Xu, C.; Liu, X.; Feng, X. Catalytic asymmetric epoxidation of electron-deficient enynes promoted by chiral N,N′-dioxide-scandium(III) complex. Adv. Synth. Catal., 2017, 359, 3454-3459.
[187]
Chen, G.; Fu, X.; Li, C.; Wu, C.; Miao, Q. Highly efficient direct a larger-scale aldol reactions catalyzed by a flexible prolinamide based-metal Lewis acid bifunctional catalyst in the presence of water. J. Organomet. Chem., 2012, 702, 19-26.
[188]
Penhoat, M.; Barbry, D.; Rolando, C. Direct asymmetric aldol reaction co-catalyzed by L-proline and group 12 elements Lewis acids in the presence of water. Tetrahedron Lett., 2011, 52, 159-162.
[189]
Kitanosono, T.; Ollevier, T.; Kobayash, S. Iron- and bismuth-catalyzed asymmetric mukaiyama aldol reactions in aqueous media. Chem. Asian J., 2013, 8, 3051-3062.
[190]
Aplander, K.; Ding, R.; Krasavin, M.; Lindström, U.M.; Wennerberg, J. Asymmetric lewis acid catalysis in water: α-amino acids as effective ligands in aqueous biphasic catalytic michael additions. Eur. J. Org. Chem., 2009, 6, 810-821.
[191]
Barbero, M.; Cadamuro, S.; Dughera, S.; Torregrossa, R. Chiral derivatives of 1,2-benzenedisulfonimide as efficient Brønsted acid catalysts in the Strecker reaction. Org. Biomol. Chem., 2014, 12, 3902-3911.
[192]
Espinosa, M.; Blay, G.; Cardona, L.; Munoz, M.C. Pedro, J.R. Catalytic asymmetric formal [3+2] cycloaddition of 2-isocyanatomalonate esters and unsaturated imines: Synthesis of highly substituted chiral γ-lactams. Chemistry Eur. J., 2017, 23, 14707-14711.
[193]
Kulkarni, A.; Zhou, W.; Török, B. Heterogeneous catalytic hydrogenation of unprotected indoles in water: A green solution to a long-standing challenge. Org. Lett., 2011, 13, 5124-5127.
[194]
Shekhar, A.C.; Kumar, A.R.; Sathaiah, G.; Paul, V.L.; Sridhar, M.; Rao, P.S. Facile N-formylation of amines using Lewis acids as novel catalysts. Tetrahedron Lett., 2009, 50, 7099-7101.
[195]
Terada, Y.; Ieda, N.; Komura, K.; Sugi, Y. Multivalent metal salts as versatile catalysts for the amidation of long-chain aliphatic acids with aliphatic amines. Synthesis, 2008, 15, 2318-2320.
[196]
Yaragorla, S.; Singh, G.; Saini, P.L.; Reddy, M.K. Microwave assisted, Ca(II)-catalyzed Ritter reaction for the green synthesis of amides. Tetrahedron Lett., 2014, 55, 4657-4660.
[197]
Zhou, B.; Yang, J.; Li, M.; Gu, Y. Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chem., 2011, 13, 2204-2211.
[198]
Jeong, H.; Axtell, J.C.; Török, B.; Schrock, R.R.; Muller, P. Syntheses of tungsten tert-butylimido and adamantylimido alkylidene complexes employing pyridinium chloride as the acid. Organometallics, 2012, 31, 6522-6525.
[199]
Kamimura, A.; Murata, K.; Tanaka, Y.; Okagawa, T.; Matsumoto, H.; Kaiso, K.; Yoshimoto, M. Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation. ChemSusChem, 2014, 7, 3257-3259.
[200]
Antonetti, C.; Melloni, M.; Licursi, D. Fulignati, S.; Ribechini, E.; Rivas, S.; Parajó, J.C.; Cavani, F.; Raspolli Galletti, A.M. Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Appl. Catal. B Env., 2017, 206, 364-377.
[201]
Bhanja, P.; Modak, A.; Chatterjee, S.; Bhaumik, A. Bifunctionalized mesoporous SBA-15: A new heterogeneous catalyst for the facile synthesis of 5-hydroxymethylfurfural. ACS Sustain. Chem.& Eng., 2017, 5, 2763-2773.

© 2025 Bentham Science Publishers | Privacy Policy