Review Article

基因检测指导的胃癌个体化化疗研究进展

卷 27, 期 14, 2020

页: [2322 - 2334] 页: 13

弟呕挨: 10.2174/0929867326666190204123101

价格: $65

摘要

背景:胃癌是一种主要的恶性肿瘤,在世界范围内都有很高的发病率。在诊断时,大约30%的胃癌患者已进入晚期。化学疗法是大多数晚期胃癌的治疗标准,在患者中引起不同的反应。基于个体胃癌患者遗传信息的个性化化学疗法已在肿瘤学家中引起越来越多的关注,以指导化疗方案。 方法:本综述总结了以药物基因组学为指导的胃癌个体化化疗的最新进展。可变的医学研究搜索引擎(例如PubMed,Google Scholar,SpringerLink和ScienceDirect)用于检索相关文献。只选择经过同行评审的期刊文章进行进一步分析。 结果与结论:胃癌患者化疗的效率不仅取决于化疗药物,而且还受到功能相关基因的直接和间接影响。个别基因的改变或多态性会明显影响患者对特定化学疗法的反应。大多数研究都集中在单基因改变对所选药物的影响上,只有很少的研究探讨了治疗剂和一组基因之间的相互作用。通过对多基因组进行基因调查指导的个体化化疗方案有望显着改善晚期胃癌患者的治疗效果 并可能在不久的将来成为个性化胃癌化疗的新标准。

关键词: 胃癌,基因多态性,化学疗法,治疗功效,耐药性,药物基因组学。

[1]
Quinn, G.P.; Sanchez, J.A.; Sutton, S.K.; Vadaparampil, S.T.; Nguyen, G.T.; Green, B.L.; Kanetsky, P.A.; Schabath, M.B. Cancer and lesbian, gay, bisexual, transgender/transsexual, and queer/questioning (LGBTQ) populations. CA Cancer J. Clin., 2015, 65(5), 384-400.
[http://dx.doi.org/10.3322/caac.21288] [PMID: 26186412]
[2]
Yang, L. Incidence and mortality of gastric cancer in China. World J. Gastroenterol., 2006, 12(1), 17-20.
[http://dx.doi.org/10.3748/wjg.v12.i1.17] [PMID: 16440411]
[3]
Pasini, F.; Fraccon, A.P.; DE Manzoni, G. The role of chemotherapy in metastatic gastric cancer. Anticancer Res., 2011, 31(10), 3543-3554.
[PMID: 21965776]
[4]
Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature, 2015, 526(7573), 343-350.
[http://dx.doi.org/10.1038/nature15817] [PMID: 26469045]
[5]
Offit, K. Personalized medicine: new genomics, old lessons. Hum. Genet., 2011, 130(1), 3-14.
[http://dx.doi.org/10.1007/s00439-011-1028-3] [PMID: 21706342]
[6]
Weitzel, J.N.; Blazer, K.R.; MacDonald, D.J.; Culver, J.O.; Offit, K. Genetics, genomics, and cancer risk assessment: state of the art and future directions in the era of personalized msedicine. CA Cancer J. Clin., 2011, 61(5), 327-359.
[http://dx.doi.org/10.3322/caac.20128] [PMID: 21858794]
[7]
De Azevedo, W.F., Jr; Mascarenhas, Y.P.; De Sousa, G.F.; Filgueiras, C.A.L. Cis-[1,2-Bis(propylsulfinyl)ethane-S,S′]dichloroplatinum(II). Acta Crystallogr. C, 1995, 51(4), 619-621.
[http://dx.doi.org/10.1107/S0108270194009868]
[8]
Lasorsa, A.; Natile, G.; Rosato, A.; Tadini-Buoninsegni, F.; Arnesano, F. Monitoring interactions inside cells by advanced spectroscopies: overview of copper transporters and cisplatin. Curr. Med. Chem., 2018, 25(4), 462-477.
[http://dx.doi.org/10.2174/0929867324666171110141311] [PMID: 29121854]
[9]
Stojanovska, V.; McQuade, R.; Rybalka, E.; Nurgali, K. Neurotoxicity associated with platinum-based anti-cancer agents: what are the implications of copper transporters? Curr. Med. Chem., 2017, 24(15), 1520-1536.
[http://dx.doi.org/10.2174/0929867324666170112095428] [PMID: 28079002]
[10]
Xiao, X.; Oswald, J.T.; Wang, T.; Zhang, W.; Li, W. Use of anticancer platinum compounds in combination therapies and challenges in drug delivery. Curr. Med. Chem., 2019, 26, 1.
[http://dx.doi.org/10.2174/0929867325666181105115849] [PMID: 30394206]
[11]
Cheff, D.M.; Hall, M.D. A drug of such damned nature.1 Challenges and opportunities in translational platinum drug research. J. Med. Chem., 2017, 60(11), 4517-4532.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01351] [PMID: 28195724]
[12]
Chen, J.; Gao, C.; Zhang, Y.; Wang, T.; Qian, Y.; Yang, B.; Dong, P.; Zhang, Y. Inorganic nano-targeted drugs delivery system and its application of platinum-based anticancer drugs. J. Nanosci. Nanotechnol., 2017, 17(1), 1-17.
[http://dx.doi.org/10.1166/jnn.2017.12932] [PMID: 29616785]
[13]
Theile, D. Under-reported aspects of platinum drug pharmacology. Molecules, 2017, 22(3)E382
[http://dx.doi.org/10.3390/molecules22030382] [PMID: 29760371]
[14]
Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.; den Heijer, M.; Kluijtmans, L.A.; van den Heuvel, L.P. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet., 1995, 10(1), 111-113.
[http://dx.doi.org/10.1038/ng0595-111] [PMID: 7647779]
[15]
McNeil, E.M.; Melton, D.W. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res., 2012, 40(20), 9990-10004.
[http://dx.doi.org/10.1093/nar/gks818] [PMID: 22941649]
[16]
Wei, J.; Zou, Z.; Qian, X.; Ding, Y.; Xie, L.; Sanchez, J.J.; Zhao, Y.; Feng, J.; Ling, Y.; Liu, Y.; Yu, L.; Rosell, R.; Liu, B. ERCC1 mRNA levels and survival of advanced gastric cancer patients treated with a modified FOLFOX regimen. Br. J. Cancer, 2008, 98(8), 1398-1402.
[http://dx.doi.org/10.1038/sj.bjc.6604317] [PMID: 18362936]
[17]
Gossage, L.; Madhusudan, S. Current status of excision repair cross complementing-group 1 (ERCC1) in cancer. Cancer Treat. Rev., 2007, 33(6), 565-577.
[http://dx.doi.org/10.1016/j.ctrv.2007.07.001] [PMID: 17707593]
[18]
Assis, J.; Pereira, C.; Nogueira, A.; Pereira, D.; Carreira, R.; Medeiros, R. Genetic variants as ovarian cancer first-line treatment hallmarks: A systematic review and meta-analysis. Cancer Treat. Rev., 2017, 61, 35-52.
[http://dx.doi.org/10.1016/j.ctrv.2017.10.001] [PMID: 29100168]
[19]
Formica, V.; Doldo, E.; Antonetti, F.R.; Nardecchia, A.; Ferroni, P.; Riondino, S.; Morelli, C.; Arkenau, H.T.; Guadagni, F.; Orlandi, A.; Roselli, M. Biological and predictive role of ERCC1 polymorphisms in cancer. Crit. Rev. Oncol. Hematol., 2017, 111, 133-143.
[http://dx.doi.org/10.1016/j.critrevonc.2017.01.016] [PMID: 28259288]
[20]
Hamilton, G.; Rath, B. Pharmacogenetics of platinum-based chemotherapy in non-small cell lung cancer: predictive validity of polymorphisms of ERCC1. Expert Opin. Drug Metab. Toxicol., 2018, 14(1), 17-24.
[http://dx.doi.org/10.1080/17425255.2018.1416095] [PMID: 29226731]
[21]
Ozkan, M.; Akbudak, I.H.; Deniz, K.; Dikilitas, M.; Dogu, G.G.; Berk, V.; Karaca, H.; Er, O.; Altinbas, M. Prognostic value of excision repair cross-complementing gene 1 expression for cisplatin-based chemotherapy in advanced gastric cancer. Asian Pac. J. Cancer Prev., 2010, 11(1), 181-185.
[PMID: 20593954]
[22]
Matsubara, J.; Nishina, T.; Yamada, Y.; Moriwaki, T.; Shimoda, T.; Kajiwara, T.; Nakajima, T.E.; Kato, K.; Hamaguchi, T.; Shimada, Y.; Okayama, Y.; Oka, T.; Shirao, K. Impacts of excision repair cross-complementing gene 1 (ERCC1), dihydropyrimidine dehydrogenase, and epidermal growth factor receptor on the outcomes of patients with advanced gastric cancer. Br. J. Cancer, 2008, 98(4), 832-839.
[http://dx.doi.org/10.1038/sj.bjc.6604211] [PMID: 18231104]
[23]
Spitz, M.R.; Wu, X.; Wang, Y.; Wang, L.E.; Shete, S.; Amos, C.I.; Guo, Z.; Lei, L.; Mohrenweiser, H.; Wei, Q. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res., 2001, 61(4), 1354-1357.
[PMID: 11245433]
[24]
Wu, X.; Lu, C.; Ye, Y.; Chang, J.; Yang, H.; Lin, J.; Gu, J.; Hong, W.K.; Stewart, D.; Spitz, M.R. Germline genetic variations in drug action pathways predict clinical outcomes in advanced lung cancer treated with platinum-based chemotherapy. Pharmacogenet. Genomics, 2008, 18(11), 955-965.
[http://dx.doi.org/10.1097/FPC.0b013e32830efdd4] [PMID: 18854777]
[25]
Chang-Xia, H.E.; Kang-Sheng, G.U. Correlation between the expression of excision repair cross complementing 2 and P53 and platinum-based chemotherapy sensitivity in patients with advanced gastric cancer. Zhongguo Lin Chuang Yao Li Xue Za Zhi, 2015.
[26]
Zimniak, P.; Nanduri, B.; Pikuła, S.; Bandorowicz-Pikuła, J.; Singhal, S.S.; Srivastava, S.K.; Awasthi, S.; Awasthi, Y.C. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur. J. Biochem., 1994, 224(3), 893-899.
[http://dx.doi.org/10.1111/j.1432-1033.1994.00893.x] [PMID: 7925413]
[27]
Lavender, N.A.; Benford, M.L.; VanCleave, T.T.; Brock, G.N.; Kittles, R.A.; Moore, J.H.; Hein, D.W.; Kidd, L.C. Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among men of African descent: a case-control study. BMC Cancer, 2009, 9(1), 397.
[http://dx.doi.org/10.1186/1471-2407-9-397] [PMID: 19917083]
[28]
Goekkurt, E.; Al-Batran, S.E.; Hartmann, J.T.; Mogck, U.; Schuch, G.; Kramer, M.; Jaeger, E.; Bokemeyer, C.; Ehninger, G.; Stoehlmacher, J. Pharmacogenetic analyses of a phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and leucovorin plus either oxaliplatin or cisplatin: a study of the arbeitsgemeinschaft internistische onkologie. J. Clin. Oncol., 2009, 27(17), 2863-2873.
[http://dx.doi.org/10.1200/JCO.2008.19.1718] [PMID: 19332728]
[29]
Ruzzo, A.; Graziano, F.; Kawakami, K.; Watanabe, G.; Santini, D.; Catalano, V.; Bisonni, R.; Canestrari, E.; Ficarelli, R.; Menichetti, E.T.; Mari, D.; Testa, E.; Silva, R.; Vincenzi, B.; Giordani, P.; Cascinu, S.; Giustini, L.; Tonini, G.; Magnani, M. Pharmacogenetic profiling and clinical outcome of patients with advanced gastric cancer treated with palliative chemotherapy. J. Clin. Oncol., 2006, 24(12), 1883-1891.
[http://dx.doi.org/10.1200/JCO.2005.04.8322] [PMID: 16622263]
[30]
Sterpone, S.; Cozzi, R. Influence of XRCC1 genetic polymorphisms on ionizing radiation-induced DNA damage and repair. J Nucleic Acids, 2010, 2010(2010), 427-428.
[http://dx.doi.org/10.4061/2010/780369]
[31]
Yuan, T.; Deng, S.; Chen, M.; Chen, W.; Lu, W.; Huang, H.; Xia, J. Association of DNA repair gene XRCC1 and XPD polymorphisms with genetic susceptibility to gastric cancer in a Chinese population. Cancer Epidemiol., 2011, 35(2), 170-174.
[http://dx.doi.org/10.1016/j.canep.2010.08.008] [PMID: 20863780]
[32]
Liu, B.; Wei, J.; Zou, Z.; Qian, X.; Nakamura, T.; Zhang, W.; Ding, Y.; Feng, J.; Yu, L. Polymorphism of XRCC1 predicts overall survival of gastric cancer patients receiving oxaliplatin-based chemotherapy in Chinese population. Eur. J. Hum. Genet., 2007, 15(10), 1049-1053.
[http://dx.doi.org/10.1038/sj.ejhg.5201884] [PMID: 17593927]
[33]
Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 1994, 266(5182), 66-71.
[http://dx.doi.org/10.1126/science.7545954] [PMID: 7545954]
[34]
Coene, E.D.; Gadelha, C.; White, N.; Malhas, A.; Thomas, B.; Shaw, M.; Vaux, D.J. A novel role for BRCA1 in regulating breast cancer cell spreading and motility. J. Cell Biol., 2011, 192(3), 497-512.
[http://dx.doi.org/10.1083/jcb.201004136] [PMID: 21282464]
[35]
de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, W.F., Jr Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[36]
de Azevedo, W.F. Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): a new strategy for molecular docking studies. Curr. Drug Targets, 2016, 17(1), 2.
[http://dx.doi.org/10.2174/138945011701151217100907] [PMID: 26687602]
[37]
de Groot, A.F.; Kuijpers, C.J.; Kroep, J.R. CDK4/6 inhibition in early and metastatic breast cancer: A review. Cancer Treat. Rev., 2017, 60, 130-138.
[http://dx.doi.org/10.1016/j.ctrv.2017.09.003] [PMID: 28961554]
[38]
Zhao, E.Y.; Shen, Y.; Pleasance, E.; Kasaian, K.; Leelakumari, S.; Jones, M.; Bose, P.; Ch’ng, C.; Reisle, C.; Eirew, P.; Corbett, R.; Mungall, K.L.; Thiessen, N.; Ma, Y.; Schein, J.E.; Mungall, A.J.; Zhao, Y.; Moore, R.A.; Den Brok, W.; Wilson, S.; Villa, D.; Shenkier, T.; Lohrisch, C.; Chia, S.; Yip, S.; Gelmon, K.; Lim, H.; Renouf, D.; Sun, S.; Schrader, K.A.; Young, S.; Bosdet, I.; Karsan, A.; Laskin, J.; Marra, M.A.; Jones, S.J.M. Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer. Clin. Cancer Res., 2017, 23(24), 7521-7530.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1941] [PMID: 29246904]
[39]
Reguart, N.; Cardona, A.F.; Carrasco, E.; Gomez, P.; Taron, M.; Rosell, R. BRCA1: a new genomic marker for non-small-cell lung cancer. Clin. Lung Cancer, 2008, 9(6), 331-339.
[http://dx.doi.org/10.3816/CLC.2008.n.048] [PMID: 19073515]
[40]
Wang, L.; Wei, J.; Qian, X.; Yin, H.; Zhao, Y.; Yu, L.; Wang, T.; Liu, B. ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel. BMC Cancer, 2008, 8, 97.
[http://dx.doi.org/10.1186/1471-2407-8-97] [PMID: 18402708]
[41]
Martinez-Balibrea, E.; Abad, A.; Martínez-Cardús, A.; Ginés, A.; Valladares, M.; Navarro, M.; Aranda, E.; Marcuello, E.; Benavides, M.; Massutí, B.; Carrato, A.; Layos, L.; Manzano, J.L.; Moreno, V. UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy. Br. J. Cancer, 2010, 103(4), 581-589.
[http://dx.doi.org/10.1038/sj.bjc.6605776] [PMID: 20628391]
[42]
Brody, J.R.; Hucl, T.; Gallmeier, E.; Winter, J.M.; Kern, S.E.; Murphy, K.M. Genomic copy number changes affecting the thymidylate synthase (TYMS) gene in cancer: a model for patient classification to aid fluoropyrimidine therapy. Cancer Res., 2006, 66(19), 9369-9373.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2165] [PMID: 17018589]
[43]
Suzuki, T.; Matsuo, K.; Hiraki, A.; Saito, T.; Sato, S.; Yatabe, Y.; Mitsudomi, T.; Hida, T.; Ueda, R.; Tajima, K. Impact of one-carbon metabolism-related gene polymorphisms on risk of lung cancer in Japan: a case control study. Carcinogenesis, 2007, 28(8), 1718-1725.
[http://dx.doi.org/10.1093/carcin/bgm104] [PMID: 17468511]
[44]
Gao, Y.; Cui, J.; Xi, H.; Cai, A.; Shen, W.; Li, J.; Zhang, K.; Wei, B.; Chen, L. Association of thymidylate synthase expression and clinical outcomes of gastric cancer patients treated with fluoropyrimidine-based chemotherapy: a meta-analysis. OncoTargets Ther., 2016, 9(1), 1339-1350.
[http://dx.doi.org/10.2147/OTT.S98540] [PMID: 27022289]
[45]
Shitara, K.; Muro, K.; Ito, S.; Sawaki, A.; Tajika, M.; Kawai, H.; Yokota, T.; Takahari, D.; Shibata, T.; Ura, T.; Ito, H.; Hosono, S.; Kawase, T.; Watanabe, M.; Tajima, K.; Yatabe, Y.; Tanaka, H.; Matsuo, K. Folate intake along with genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase in patients with advanced gastric cancer. Cancer Epidemiol. Biomarkers Prev., 2010, 19(5), 1311-1319.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-1257] [PMID: 20447923]
[46]
Mounier-Boutoille, H.; Boisdron-Celle, M.; Cauchin, E.; Galmiche, J.P.; Morel, A.; Gamelin, E.; Matysiak-Budnik, T. Lethal outcome of 5-fluorouracil infusion in a patient with a total DPD deficiency and a double DPYD and UTG1A1 gene mutation. Br. J. Clin. Pharmacol., 2010, 70(2), 280-283.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03686.x] [PMID: 20653683]
[47]
Afzal, S.; Gusella, M.; Jensen, S.A.; Vainer, B.; Vogel, U.; Andersen, J.T.; Brødbæk, K.; Petersen, M.; Jimenez-Solem, E.; Adleff, V.; Budai, B.; Hitre, E.; Láng, I.; Orosz, E.; Bertolaso, L.; Barile, C.; Padrini, R.; Kralovánszky, J.; Pasini, F.; Poulsen, H.E. The association of polymorphisms in 5-fluorouracil metabolism genes with outcome in adjuvant treatment of colorectal cancer. Pharmacogenomics, 2011, 12(9), 1257-1267.
[http://dx.doi.org/10.2217/pgs.11.83] [PMID: 21919605]
[48]
Zhang, H.; Li, Y.M.; Zhang, H.; Jin, X. DPYD*5 gene mutation contributes to the reduced DPYD enzyme activity and chemotherapeutic toxicity of 5-FU: results from genotyping study on 75 gastric carcinoma and colon carcinoma patients. Med. Oncol., 2007, 24(2), 251-258.
[http://dx.doi.org/10.1007/BF02698048] [PMID: 17848752]
[49]
Andriguetti, N.B.; Raymundo, S.; Antunes, M.V.; Perassolo, M.S.; Verza, S.G.; Suyenaga, E.S.; Linden, R. Pharmacogenetic and pharmacokinetic dose individualization of the taxane chemotherapeutic drugs paclitaxel and docetaxel. Curr. Med. Chem., 2017, 24(33), 3559-3582.
[http://dx.doi.org/10.2174/0929867324666170623093445] [PMID: 28641556]
[50]
Zhong, C.; Wall, N.R.; Zu, Y.; Sui, G. Therapeutic application of natural medicine monomers in cancer treatment. Curr. Med. Chem., 2017, 24(34), 3681-3697.
[http://dx.doi.org/10.2174/0929867324666170714101503] [PMID: 28714385]
[51]
Vilmar, A.C.; Santoni-Rugiu, E.; Sørensen, J.B. Class III β-tubulin in advanced NSCLC of adenocarcinoma subtype predicts superior outcome in a randomized trial. Clin. Cancer Res., 2011, 17(15), 5205-5214.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0658] [PMID: 21690572]
[52]
Pentheroudakis, G.; Batistatou, A.; Kalogeras, K.T.; Kronenwett, R.; Wirtz, R.M.; Bournakis, E.; Eleftheraki, A.G.; Pectasides, D.; Bobos, M.; Papaspirou, I.; Kamina, S.; Gogas, H.; Koutras, A.K.; Pavlidis, N.; Fountzilas, G. Prognostic utility of β-tubulin isotype III and correlations with other molecular and clinicopathological variables in patients with early breast cancer: a translational Hellenic Cooperative Oncology Group (HeCOG) study. Breast Cancer Res. Treat., 2011, 127(1), 179-193.
[http://dx.doi.org/10.1007/s10549-011-1427-0] [PMID: 21390496]
[53]
Gao, J.; Lu, M.; Yu, J.W.; Li, Y.Y.; Shen, L. Thymidine Phosphorylase/β-tubulin III expressions predict the response in Chinese advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel. BMC Cancer, 2011, 11, 177.
[http://dx.doi.org/10.1186/1471-2407-11-177] [PMID: 21586171]
[54]
He, W.; Zhang, D.; Jiang, J.; Liu, P.; Wu, C. The relationships between the chemosensitivity of human gastric cancer to paclitaxel and the expressions of class III β-tubulin, MAPT, and survivin. Med. Oncol., 2014, 31(5), 950.
[http://dx.doi.org/10.1007/s12032-014-0950-3] [PMID: 24722794]
[55]
Mimori, K.; Sadanaga, N.; Yoshikawa, Y.; Ishikawa, K.; Hashimoto, M.; Tanaka, F.; Sasaki, A.; Inoue, H.; Sugimachi, K.; Mori, M. Reduced tau expression in gastric cancer can identify candidates for successful Paclitaxel treatment. Br. J. Cancer, 2006, 94(12), 1894-1897.
[http://dx.doi.org/10.1038/sj.bjc.6603182] [PMID: 16721363]
[56]
Zheng, W.E.; Chen, H.; Yuan, S.F.; Wu, L.L.; Zhang, W.; Sun, H.Y.; Chen, W.J. Overexpression of βIII-tubulin and survivin associated with drug resistance to docetaxel-based chemotherapy in advanced gastric cancer. J. BUON, 2012, 17(2), 284-290.
[PMID: 22740207]
[57]
Powrózek, T.; Mlak, R.; Krawczyk, P.; Bartoń, S.; Biernacka, B.; Małecka-Massalska, T.; Milanowski, J. Retrospective analysis of second-line chemotherapy outcomes with paclitaxel or docetaxel in correlation with STMN1 polymorphism in advanced non-small cell lung cancer patients. Clin. Transl. Oncol., 2016, 18(1), 33-39.
[http://dx.doi.org/10.1007/s12094-015-1333-8] [PMID: 26148901]
[58]
Jeon, T.Y.; Han, M.E.; Lee, Y.W.; Lee, Y.S.; Kim, G.H.; Song, G.A.; Hur, G.Y.; Kim, J.Y.; Kim, H.J.; Yoon, S.; Baek, S.Y.; Kim, B.S.; Kim, J.B.; Oh, S.O. Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br. J. Cancer, 2010, 102(4), 710-718.
[http://dx.doi.org/10.1038/sj.bjc.6605537] [PMID: 20087351]
[59]
Miyoshi, Y.; Ando, A.; Takamura, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int. J. Cancer, 2002, 97(1), 129-132.
[http://dx.doi.org/10.1002/ijc.1568] [PMID: 11774254]
[60]
Pei, B.; Zhang, K.; Zha, Y.; Yong, L.I.; Dai, Y.; Jinhua, H.E.; Gan, P.; Yingli, C. Study on association between CYP3A4 gene polymorphism and sensitivity of advanced gastric cancer patients to paclitaxel chemotherapy. China Pharmacy, 2016, 14, 1873-1876.
[61]
Barthelmes, H.U.; Grue, P.; Feineis, S.; Straub, T.; Boege, F. Active DNA topoisomerase IIalpha is a component of the salt-stable centrosome core. J. Biol. Chem., 2000, 275(49), 38823-38830.
[http://dx.doi.org/10.1074/jbc.M007044200] [PMID: 11006289]
[62]
Harris, L.N.; Yang, L.; Liotcheva, V.; Pauli, S.; Iglehart, J.D.; Colvin, O.M.; Hsieh, T.S. Induction of topoisomerase II activity after ErbB2 activation is associated with a differential response to breast cancer chemotherapy. Clin. Cancer Res., 2001, 7(6), 1497-1504.
[PMID: 11410482]
[63]
Withoff, S.; Keith, W.N.; Knol, A.J.; Coutts, J.C.; Hoare, S.F.; Mulder, N.H.; de Vries, E.G. Selection of a subpopulation with fewer DNA topoisomerase II alpha gene copies in a doxorubicin-resistant cell line panel. Br. J. Cancer, 1996, 74(4), 502-507.
[http://dx.doi.org/10.1038/bjc.1996.393] [PMID: 8761362]
[64]
Chen, W.Y.; Mao, W.M.; Zhao, L.; Chen, G.P.; Shu, Y.; Shen, Y.F.; Zhu, X.H.; Xia, Y. [Expression of P-gp, GST-pi and Topo II alpha in gastric and colorectal cancers and their clinical significance]. Zhonghua Zhong Liu Za Zhi, 2005, 27(12), 738-740.
[PMID: 16483485]
[65]
Järvinen, T.A.; Kononen, J.; Pelto-Huikko, M.; Isola, J. Expression of topoisomerase IIalpha is associated with rapid cell proliferation, aneuploidy, and c-erbB2 overexpression in breast cancer. Am. J. Pathol., 1996, 148(6), 2073-2082.
[PMID: 8669491]
[66]
Dhesy-Thind, B.; Pritchard, K.I.; Messersmith, H.; O’Malley, F.; Elavathil, L.; Trudeau, M. HER2/neu in systemic therapy for women with breast cancer: a systematic review. Breast Cancer Res. Treat., 2008, 109(2), 209-229.
[http://dx.doi.org/10.1007/s10549-007-9656-y] [PMID: 17636396]
[67]
Personeni, N.; Baretti, M.; Bozzarelli, S.; Spaggiari, P.; Rubino, L.; Tronconi, M.C.; Fumagalli Romario, U.; Rosati, R.; Giordano, L.; Roncalli, M.; Santoro, A.; Rimassa, L. Assessment of HER2 status in patients with gastroesophageal adenocarcinoma treated with epirubicin-based chemotherapy: heterogeneity-related issues and prognostic implications. Gastric Cancer, 2017, 20(3), 428-437.
[http://dx.doi.org/10.1007/s10120-016-0625-1] [PMID: 27530622]
[68]
Gennari, A.; Sormani, M.P.; Pronzato, P.; Puntoni, M.; Colozza, M.; Pfeffer, U.; Bruzzi, P. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J. Natl. Cancer Inst., 2008, 100(1), 14-20.
[http://dx.doi.org/10.1093/jnci/djm252] [PMID: 18159072]
[69]
Durbecq, V.; Paesmans, M.; Cardoso, F.; Desmedt, C.; Di Leo, A.; Chan, S.; Friedrichs, K.; Pinter, T.; Van Belle, S.; Murray, E.; Bodrogi, I.; Walpole, E.; Lesperance, B.; Korec, S.; Crown, J.; Simmonds, P.; Perren, T.J.; Leroy, J.Y.; Rouas, G.; Sotiriou, C.; Piccart, M.; Larsimont, D. Topoisomerase-II alpha expression as a predictive marker in a population of advanced breast cancer patients randomly treated either with single-agent doxorubicin or single-agent docetaxel. Mol. Cancer Ther., 2004, 3(10), 1207-1214.
[PMID: 15486187]
[70]
Di Leo, A.; Gancberg, D.; Larsimont, D.; Tanner, M.; Jarvinen, T.; Rouas, G.; Dolci, S.; Leroy, J.Y.; Paesmans, M.; Isola, J.; Piccart, M.J. HER-2 amplification and topoisomerase IIalpha gene aberrations as predictive markers in node-positive breast cancer patients randomly treated either with an anthracycline-based therapy or with cyclophosphamide, methotrexate, and 5-fluorouracil. Clin. Cancer Res., 2002, 8(5), 1107-1116.
[PMID: 12006526]
[71]
Park, K.; Kim, J.; Lim, S.; Han, S. Topoisomerase II-alpha (topoII) and HER2 amplification in breast cancers and response to preoperative doxorubicin chemotherapy. Eur. J. Cancer, 2003, 39(5), 631-634.
[http://dx.doi.org/10.1016/S0959-8049(02)00745-1] [PMID: 12628842]
[72]
Durbecq, V.; Di Leo, A.; Cardoso, F.; Rouas, G.; Leroy, J.Y.; Piccart, M.; Larsimont, D. Comparison of topoisomerase-IIalpha gene status between primary breast cancer and corresponding distant metastatic sites. Breast Cancer Res. Treat., 2003, 77(3), 199-204.
[http://dx.doi.org/10.1023/A:1021874224490] [PMID: 12602919]
[73]
Treszezamsky, A.D.; Kachnic, L.A.; Feng, Z.; Zhang, J.; Tokadjian, C.; Powell, S.N. BRCA1- and BRCA2-deficient cells are sensitive to etoposide-induced DNA double-strand breaks via topoisomerase II. Cancer Res., 2007, 67(15), 7078-7081.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0601] [PMID: 17671173]
[74]
Douillard, J.Y.; Cunningham, D.; Roth, A.D.; Navarro, M.; James, R.D.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichael, J.; Alakl, M.; Gruia, G.; Awad, L.; Rougier, P. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet, 2000, 355(9209), 1041-1047.
[http://dx.doi.org/10.1016/S0140-6736(00)02034-1] [PMID: 10744089]
[75]
Hirose, K.; Kozu, C.; Yamashita, K.; Maruo, E.; Kitamura, M.; Hasegawa, J.; Omoda, K.; Murakami, T.; Maeda, Y. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene. Oncol. Lett., 2012, 3(3), 694-698.
[http://dx.doi.org/10.3892/ol.2011.533] [PMID: 22740978]
[76]
Hazama, S.; Mishima, H.; Tsunedomi, R.; Okuyama, Y.; Kato, T.; Takahashi, K.; Nozawa, H.; Ando, H.; Kobayashi, M.; Takemoto, H.; Nagata, N.; Kanekiyo, S.; Inoue, Y.; Hamamoto, Y.; Fujita, Y.; Hinoda, Y.; Okayama, N.; Oba, K.; Sakamoto, J.; Oka, M. UGT1A1*6, 1A7*3, and 1A9*22 genotypes predict severe neutropenia in FOLFIRI-treated metastatic colorectal cancer in two prospective studies in Japan. Cancer Sci., 2013, 104(12), 1662-1669.
[http://dx.doi.org/10.1111/cas.12283] [PMID: 24033692]
[77]
Takano, M.; Goto, T.; Hirata, J.; Furuya, K.; Horie, K.; Takahashi, M.; Yokota, H.; Kino, N.; Kudoh, K.; Kikuchi, Y. UGT1A1 genotype-specific phase I and pharmacokinetic study for combination chemotherapy with irinotecan and cisplatin: a Saitama Tumor Board study. Eur. J. Gynaecol. Oncol., 2013, 34(2), 120-123.
[PMID: 23781580]
[78]
Bai, Y.; Wu, H.W.; Ma, X.; Liu, Y.; Zhang, Y.H. Relationship between UGT1A1*6/*28 gene polymorphisms and the efficacy and toxicity of irinotecan-based chemotherapy. OncoTargets Ther., 2017, 10, 3071-3081.
[http://dx.doi.org/10.2147/OTT.S137644] [PMID: 28790841]
[79]
Shulman, K.; Cohen, I.; Barnett-Griness, O.; Kuten, A.; Gruber, S.B.; Lejbkowicz, F.; Rennert, G. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer, 2011, 117(14), 3156-3162.
[http://dx.doi.org/10.1002/cncr.25735] [PMID: 21287524]
[80]
Schulz, C.; Heinemann, V.; Schalhorn, A.; Moosmann, N.; Zwingers, T.; Boeck, S.; Giessen, C.; Stemmler, H.J. UGT1A1 gene polymorphism: impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer. World J. Gastroenterol., 2009, 15(40), 5058-5066.
[http://dx.doi.org/10.3748/wjg.15.5058] [PMID: 19859999]
[81]
Sugiyama, T.; Hirose, T.; Kusumoto, S.; Shirai, T.; Yamaoka, T.; Okuda, K.; Ohnishi, T.; Ohmori, T.; Adachi, M. The UGT1A1*28 genotype and the toxicity of low-dose irinotecan in patients with advanced lung cancer. Oncol. Res., 2010, 18(7), 337-342.
[http://dx.doi.org/10.3727/096504010X12626118079822] [PMID: 20377135]
[82]
Gilbert, D.C.; Chalmers, A.J.; El-Khamisy, S.F. Topoisomerase I inhibition in colorectal cancer: biomarkers and therapeutic targets. Br. J. Cancer, 2012, 106(1), 18-24.
[http://dx.doi.org/10.1038/bjc.2011.498] [PMID: 22108516]
[83]
Yan, H.; Wu, J.; Sun, W.; Wang, W.; Wu, C.; Oncology, D.O. Comparison of outcome between individualized postoperative treatment based on TopoI detection and traditional treatment of colorectal cancer. Journal of Modern Oncology, 2014, 11, 2629-2632.
[http://dx.doi.org/10.3969/j.issn.1672-4992.2014.11.33]
[84]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[85]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[86]
Bignami, M.; Casorelli, I.; Karran, P. Mismatch repair and response to DNA-damaging antitumour therapies. Eur. J. Cancer, 2003, 39(15), 2142-2149.
[http://dx.doi.org/10.1016/s0959-8049(03)00569-0] [PMID: 14522371]
[87]
Ikeguchi, M.; Liu, J.; Kaibara, N. Expression of survivin mRNA and protein in gastric cancer cell line (MKN-45) during cisplatin treatment. Apoptosis, 2002, 7(1), 23-29.
[http://dx.doi.org/10.1023/A:1013556727182] [PMID: 11773702]
[88]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy