[1]
Rojas Sanchez P, Holguin A. Drug resistance in the HIV-1-infected paediatric population worldwide: a systematic review. J Antimicrob Chemother 2014; 69(8): 2032-42.
[2]
Hamers RL, Kityo C, Lange JM, et al. Global threat from drug resistant HIV in sub-Saharan Africa. BMJ 2012; 344: e4159.
[3]
Rhee SY, Blanco JL, Jordan MR, et al. Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance: an individual-patient- and sequence-level meta-analysis. PLoS Med 2015; 12(4): e1001810.
[4]
Ferreira ACG, Coelho LE, Grinsztejn E, et al. Transmitted drug resistance in patients with acute/recent HIV infection in Brazil. Braz J Infect Dis 2017; 21(4): 396-401.
[5]
Jayaraman GC, Archibald CP, Kim J, et al. A population-based approach to determine the prevalence of transmitted drug-resistant HIV among recent versus established HIV infections: results from the Canadian HIV strain and drug resistance surveillance program. J Acquir Immune Defic Syndr 2006; 42(1): 86-90.
[6]
Abecasis AB, Wensing AM, Paraskevis D, et al. HIV-1 subtype distribution and its demographic determinants in newly diagnosed patients in Europe suggest highly compartmentalized epidemics. Retrovirology 2013; 10: 7.
[7]
Hirsch MS, Brun-Vezinet F, Clotet B, et al. Antiretroviral drug resistance testing in adults infected with human immunodeficiency virus type 1: 2003 recommendations of an International AIDS Society-USA Panel. Clin Infect Dis 2003; 37(1): 113-28.
[8]
Buonaguro L, Tornesello ML, Buonaguro FM. Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications. J Virol 2007; 81(19): 10209-19.
[9]
Merati TP, Ryan CE, Spelmen T, et al. CRF01_AE dominates the HIV-1 epidemic in Indonesia. Sex Health 2012; 9(5): 414-21.
[10]
Sahbandar IN, Takahashi K, Djoerban Z, et al. Current HIV type 1 molecular epidemiology profile and identification of unique recombinant forms in Jakarta, Indonesia. AIDS Res Hum 2009; 25(7): 637-46.
[11]
Indriati DW, Kotaki T, Khairunisa SQ, et al. Appearance of drug resistance mutations among the dominant HIV-1 subtype, CRF01_AE in maumere, Indonesia. Curr HIV Res 2018; 16(2): 158-66.
[12]
Chan PA, Kantor R. Transmitted drug resistance in nonsubtype B HIV-1 infection. HIV Ther 2009; 3(5): 447-65.
[13]
Januraga PP, Wulandari LP, Muliawan P, et al. Sharply rising prevalence of HIV infection in Bali: a critical assessment of the surveillance data. Int J STD AIDS 2013; 24(8): 633-7.
[14]
Ford K, Wirawan DN, Sumantera GM, Sawitri AA, Stahre M. Voluntary HIV testing, disclosure, and stigma among injection drug users in Bali, Indonesia. AIDS Educ Prev 2004; 16(6): 487-98.
[15]
Sagung Sawitri AA, Sumantera GM, Wirawan DN, Ford K, Lehman E. HIV testing experience of drug users in Bali, Indonesia. AIDS Care 2006; 18(6): 577-88.
[17]
Waluyo A, Culbert GJ, Levy J, Norr KF. Understanding HIV-related stigma among Indonesian nurses. JANAC 2015; 26(1): 69-80.
[18]
Kozal MJ, Amico KR, Chiarella J, et al. Antiretroviral resistance and high-risk transmission behavior among HIV-positive patients in clinical care. AIDS 2004; 18(16): 2185-9.
[19]
Culbert GJ, Earnshaw VA, Wulanyani NM, et al. Correlates and Experiences of HIV Stigma in Prisoners Living With HIV in Indonesia: A Mixed-Method Analysis. JANAC 2015; 26(6): 743-57.
[20]
Chen JH, Wong KH, Li PC, et al. In-house human immunodeficiency virus-1 genotype resistance testing to determine highly active antiretroviral therapy resistance mutations in Hong Kong. Hong Kong Med J 2012; 18(1): 20-4.
[21]
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24(8): 1596-9.
[22]
Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 2012; 10(2): 486-9.
[23]
Viputtijul K, de Souza M, Trichavaroj R, et al. Heterosexually acquired CRF01_AE/B recombinant HIV type 1 found in Thailand. AIDS Res Hum Retroviruses 2002; 18(16): 1235-7.
[24]
Foley B, Donegan E, Silitonga N, et al. Importation of multiple HIV type 1 strains into West Papua, Indonesia (Irian Jaya). AIDS Res Hum Retroviruses 2001; 17(17): 1655-9.
[25]
Yahi N, Tamalet C, Tourres C, et al. Mutation patterns of the reverse transcriptase and protease genes in human immunodeficiency virus type 1-infected patients undergoing combination therapy: survey of 787 sequences. J Clin Microbiol 1999; 37(12): 4099-106.
[26]
Quinones-Mateu ME, Albright JL, Mas A, Soriano V, Arts EJ. Analysis of pol gene heterogeneity, viral quasispecies, and drug resistance in individuals infected with group O strains of human immunodeficiency virus type 1. J Virol 1998; 72(11): 9002-15.
[27]
O’Rourke SM, Sutthent R, Phung P, et al. Glycans flanking the hypervariable connecting peptide between the A and B strands of the V1/V2 domain of HIV-1 gp120 confer resistance to antibodies that neutralize CRF01_AE viruses. PLoS One 2015; 10(3): e0119608.
[28]
Paydary K, Khaghani P, Emamzadeh-Fard S, Alinaghi SA, Baesi K. The emergence of drug resistant HIV variants and novel anti-retroviral therapy. Asian Pac J Trop Biomed 2013; 3(7): 515-22.
[29]
Ghosn J, Galimand J, Raymond S, et al. Cohort ACP: X4 tropic multi-drug resistant quasi-species detected at the time of primary HIV-1 infection remain exclusive or at least dominant far from PHI. PLoS One 2011; 6(8): e23301.
[30]
Dybowski JN, Heider D, Hoffmann D. Structure of HIV-1 quasi-species as early indicator for switches of co-receptor tropism. AIDS Res Ther 2010; 7: 41.
[31]
Aasa-Chapman MM, Aubin K, Williams I, McKnight A. Primary CCR5 only using HIV-1 isolates does not accurately represent the in vivo replicating quasi-species. Virology 2006; 351(2): 489-96.
[32]
Matsushita S, Takahama S, Shibata J, et al. Ex vivo neutralization of HIV-1 quasi-species by a broadly reactive humanized monoclonal antibody KD-247. Hum Antibodies 2005; 14(3-4): 81-8.
[33]
Sankale JL, De La Tour RS, Marlink RG, et al. Distinct quasi-species in the blood and the brain of an HIV-2-infected individual. Virology 1996; 226(2): 418-23.
[34]
Sabino E, Pan LZ, Cheng-Mayer C, Mayer A. Comparison of in vivo plasma and peripheral blood mononuclear cell HIV-1 quasi-species to short-term tissue culture isolates: an analysis of tat and C2-V3 env regions. AIDS 1994; 8(7): 901-9.
[35]
Nagata S, Imai J, Makino G, Tomita M, Kanai A. Evolutionary Analysis of HIV-1 Pol Proteins Reveals Representative Residues for Viral Subtype Differentiation. Front Microbiol 2017; 8: 2151.
[36]
Kuiken C, Korber B, Shafer RW. HIV sequence databases. AIDS Rev 2003; 5(1): 52-61.
[37]
Liu J, Yue J, Wu S, Yan Y. Polymorphisms and drug resistance analysis of HIV-1 CRF01_AE strains circulating in Fujian Province, China. Arch Virol 2007; 152(10): 1799-805.
[38]
Manosuthi W, Butler DM, Perez-Santiago J, et al. Protease polymorphisms in HIV-1 subtype CRF01_AE represent selection by antiretroviral therapy and host immune pressure. AIDS 2010; 24(3): 411-6.
[39]
Ariyoshi K, Matsuda M, Miura H, et al. Patterns of point mutations associated with antiretroviral drug treatment failure in CRF01_AE (subtype E) infection differ from subtype B infection. J Acquir Immune Defic Syndr 2003; 33(3): 336-42.
[40]
Santa-Marta M, de Brito PM, Godinho-Santos A, Goncalves J. Host factors and HIV-1 replication: Clinical evidence and potential therapeutic approaches. Front Immunol 2013; 4: 343.
[41]
Salgado M, Swanson MD, Pohlmeyer CW, et al. HLA-B*57 elite suppressor and chronic progressor HIV-1 isolates replicate vigorously and cause CD4+ T cell depletion in humanized BLT mice. J Virol 2014; 88(6): 3340-52.
[42]
Ndzinu JK, Takeuchi H, Saito H, Yoshida T, Yamaoka S. eIF4A2 is a host factor required for efficient HIV-1 replication. Microbes Infect 2018; 20(6): 346-52.
[43]
Sharma G, Kaur G, Mehra N. Genetic correlates influencing immunopathogenesis of HIV infection. Indian J Med Res 2011; 134(6): 749-68.
[44]
Lama J, Planelles V. Host factors influencing susceptibility to HIV infection and AIDS progression. Retrovirology 2007; 4: 52.
[45]
Candore G, Romano GC, D’Anna C, et al. Biological basis of the HLA-B8, DR3-associated progression of acquired immune deficiency syndrome. Pathobiology 1998; 66(1): 33-7.
[46]
Pinching AJ. Factors affecting the natural history of human immunodeficiency virus infection. Immunodefic Rev 1988; 1(1): 23-38.
[47]
Ueda S, Witaningrum AM, Khairunisa SQ, et al. Genetic Diversity and Drug Resistance of HIV-1 Circulating in North Sulawesi, Indonesia. AIDS Res Hum Retroviruses 2018. [Epub ahead of print].
[48]
El-Khatib Z, Ekstrom AM, Ledwaba J, et al. Viremia and drug resistance among HIV-1 patients on antiretroviral treatment: a cross-sectional study in Soweto, South Africa. AIDS 2010; 24(11): 1679-87.
[49]
Almeida FJ, Berezin EN, Rodrigues R, et al. Diversity and prevalence of antiretroviral genotypic resistance mutations among HIV-1-infected children. J Pediatr (Rio J) 2009; 85(2): 104-9.
[50]
Machado DM, Fernandes SC, Succi RC, et al. Analysis of HIV- type 1 protease and reverse transcriptase in Brazilian children failing highly active antiretroviral therapy (HAART). Rev Inst Med Trop São Paulo 2005; 47(1): 1-5.
[51]
Delaugerre C, Warszawski J, Chaix ML, et al. Prevalence and risk factors associated with antiretroviral resistance in HIV-1-infected children. J Med Virol 2007; 79(9): 1261-9.
[52]
Riemenschneider M, Senge R, Neumann U, Hullermeier E, Heider D. Exploiting HIV-1 protease and reverse transcriptase cross-resistance information for improved drug resistance prediction by means of multi-label classification. BioData Min 2016; 9: 10.
[53]
Miller V, Larder BA. Mutational patterns in the HIV genome and cross-resistance following nucleoside and nucleotide analogue drug exposure. Antivir Ther 2001; 6(Suppl 3): 25-44.
[54]
Ma L, Huang J, Xing H, et al. Genotypic and phenotypic cross-drug resistance of harboring drug-resistant HIV type 1 subtype B′ strains from former blood donors in central Chinese provinces. AIDS Res Hum Retroviruses 2010; 26(9): 1007-13.
[55]
Heider D, Senge R, Cheng W, Hullermeier E. Multilabel classification for exploiting cross-resistance information in HIV-1 drug resistance prediction. Bioinformatics 2013; 29(16): 1946-52.
[56]
Groschel B, Cinatl J, Perigaud C, et al. S-acyl-2-thioethyl (SATE) pronucleotides are potent inhibitors of HIV-1 replication in T-lymphoid cells cross-resistant to deoxycytidine and thymidine analogs. Antiviral Res 2002; 53(2): 143-52.
[57]
Van Laethem K, Witvrouw M, Balzarini J, et al. Patient HIV-1 strains carrying the multiple nucleoside resistance mutations are cross-resistant to abacavir. AIDS 2000; 14(4): 469-71.
[58]
Palmer S, Shafer RW, Merigan TC. Highly drug-resistant HIV-1 clinical isolates are cross-resistant to many antiretroviral compounds in current clinical development. AIDS 1999; 13(6): 661-7.
[59]
Gu Z, Fletcher RS, Arts EJ, Wainberg MA, Parniak MA. The K65R mutant reverse transcriptase of HIV-1 cross-resistant to 2′, 3′-dideoxycytidine, 2′,3′-dideoxy-3′-thiacytidine, and 2′,3′-dideoxyinosine shows reduced sensitivity to specific dideoxynucleoside triphosphate inhibitors in vitro. J Biol Chem 1994; 269(45): 28118-22.
[60]
Clutter DS, Zhou S, Varghese V, et al. Prevalence of drug-resistant minority variants in untreated HIV-1-infected individuals with and those without transmitted drug resistance detected by sanger sequencing. J Infect Dis 2017; 216(3): 387-91.
[61]
Li T, Qian F, Yuan T, et al. Drug resistance mutation profiles of the drug-naive and first-line regimen-treated HIV-1-infected population of Suzhou, China. Virol Sin 2017; 32(4): 271-9.
[62]
Andreis S, Basso M, Scaggiante R, et al. Drug resistance in B and non-B subtypes amongst subjects recently diagnosed as primary/recent or chronic HIV-infected over the period 2013-2016: Impact on susceptibility to first-line strategies including integrase strand-transfer inhibitors. J Glob Antimicrob Resist 2017; 10: 106-12.
[63]
Paraskevis D, Kostaki E, Magiorkinis G, et al. Prevalence of drug resistance among HIV-1 treatment-naive patients in Greece during 2003-2015: Transmitted drug resistance is due to onward transmissions. Infect Genet Evol 2017; 54: 183-91.
[64]
Ghafari S, Memarnejadian A, Samarbaf-Zadeh A, et al. Prevalence of HIV-1 transmitted drug resistance in recently infected, treatment-naive persons in the Southwest of Iran, 2014-2015. Arch Virol 2017; 162(9): 2737-45.
[65]
Socias ME, Nosova E, Kerr T, et al. Patterns of transmitted drug resistance and virological response to first-line antiretroviral treatment among HIV-positive people who use illicit drugs in a Canadian setting. Clin Infect Dis 2017; 65(5): 796-802.
[66]
Kotaki T, Khairunisa SQ, Witaningrum AM, et al. HIV-1 transmitted drug resistance mutations among antiretroviral therapy-Naive individuals in Surabaya, Indonesia. AIDS Res Ther 2015; 12: 5.
[67]
Witaningrum AM, Kotaki T, Khairunisa SQ, et al. Genotypic Characterization of Human Immunodeficiency Virus Type 1 Derived from Antiretroviral Therapy-Naive Individuals Residing in Sorong, West Papua. AIDS Res Hum Retroviruses 2016; 32(8): 812-7.
[68]
Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242(4882): 1171-3.
[69]
Cuevas JM, Geller R, Garijo R, Lopez-Aldeguer J, Sanjuan R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol 2015; 13(9): e1002251.
[70]
De Luca A, Sidumo ZJ, Zanelli G, et al. Accumulation of HIV-1 drug resistance in patients on a standard thymidine analogue-based first line antiretroviral therapy after virological failure: implications for the activity of next-line regimens from a longitudinal study in Mozambique. BMC infectious diseases 2017; 17(1): 605.
[71]
Moscona R, Ram D, Wax M, et al. Comparison between next-generation and Sanger-based sequencing for the detection of transmitted drug-resistance mutations among recently infected HIV-1 patients in Israel, 2000-2014. J Int AIDS Soc 2017; 20(1): 1-9.
[72]
Golmohammadi R, Baesi K, Moradi A, et al. The first characterization of HIV-1 subtypes and drug resistance mutations among antiretrovirally treated patients in Kermanshah, Iran. Intervirology 2017; 60(1-2): 33-7.
[73]
Cozzi-Lepri A, Ruiz L, Loveday C, et al. Thymidine analogue mutation profiles: factors associated with acquiring specific profiles and their impact on the virological response to therapy. Antivir Ther 2005; 10(7): 791-802.
[74]
Rezende LF, Prasad VR. Nucleoside-analog resistance mutations in HIV-1 reverse transcriptase and their influence on polymerase fidelity and viral mutation rates. Int J Biochem Cell Biol 2004; 36(9): 1716-34.
[75]
Johnson VA, Brun-Vezinet F, Clotet B, et al. Update of the drug resistance mutations in HIV-1. Top HIV Med 2008; 16(5): 138-45.
[76]
Boyer PL, Sarafianos SG, Arnold E, Hughes SH. Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J Virol 2001; 75(10): 4832-42.
[77]
Demeter LM, D’Aquila R, Weislow O, et al. Interlaboratory concordance of DNA sequence analysis to detect reverse transcriptase mutations in HIV-1 proviral DNA. ACTG Sequencing Working Group. AIDS Clinical Trials Group. J Virol Methods 1998; 75(1): 93-104.
[78]
Gall A, Ferns B, Morris C, et al. Universal amplification, next-generation sequencing, and assembly of HIV-1 genomes. J Clin Microbiol 2012; 50(12): 3838-44.