[1]
Handbook of anti-tuberculosis agents: Introduction. Tuberculosis (Edinb.), 2008, 88(2), 85-86.
[4]
Warner, D.F.; Mizrahi, V. Tuberculosis chemotherapy: The influence of bacillary stress and damage response pathways on drug efficacy. Clin. Microbiol. Rev., 2006, 19, 558-570.
[5]
Fujiwara, N.; Naka, T.; Ogawa, M.; Yamamoto, R.; Ogura, H.; Taniguchi, H. Characteristics of Mycobacterium smegmatis J15cs strain lipids. Tuberculosis (Edinb.), 2012, 92, 187-192.
[8]
Ducati, R.G.; Ruffino-Netto, A.; Basso, L.A.; Santos, D.S. The resumption of consumption- a review on tuberculosis. Mem. Inst. Oswaldo Cruz, 2006, 101, 697-714.
[9]
Steenken, W.; Oatway, W.H.; Petroff, S.A. Biological studies of the Tubercle bacillus: Iii. dissociation and pathogenicity of the R and S variants of the human Tubercle Bacillus (H37). J. Exp. Med., 1934, 60, 515-540.
[10]
Zhang, M.; Gong, J.; Lin, Y.; Barnes, P.F. Growth of virulent and avirulent Mycobacterium tuberculosis strains in human macrophages. Infect. Immun., 1998, 66, 794-799.
[11]
Briken, V.; Porcelli, S.A.; Besra, G.S.; Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol., 2004, 53, 391-403.
[12]
Vergne, I.; Chua, J.; Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin- PI3K hVPS34 cascade. J. Exp. Med., 2003, 198, 653-659.
[13]
Dao, D.N.; Kremer, L.; Guerardel, Y.; Molano, A.; Jacobs, W.R., Jr; Porcelli, S.A.; Briken, V. Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect. Immun., 2003, 72, 2067-2074.
[14]
Means, T.K.; Wang, S.; Lien, E.; Yoshimura, A.; Golenbock, D.T.; Fenton, M.J. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol., 1997, 163, 3920-3927.
[15]
Wayne, L.G.; Kubica, G.P. The mycobacteria, Bergey’s manual of systematic bacteriology, 8th edn; Sneath, P.H.A.; Mair, N.S., Eds.; Williams & Wilkins: Baltimore, MD, 1986, pp. 1436-1457.
[16]
Shinnick, T.M.; Good, R.C. Mycobacterial taxonomy. Eur. J. Clin. Microbiol. Infect. Dis., 1994, 13, 884-901.
[17]
Besra, G.S.; Brennan, P.J. The mycobacterial cell wall: Biosynthesis of arabinogalactan and lipoarabinomannan. Biochem. Soc. Trans., 1997, 25, 845-850.
[18]
Belanger, A.E.; Inamine, J.M. Genetics of cell wall biosynthesis. In: Molecular Genetics of Mycobacteria; Hatfull, G.F.; Jacobs, W.R., Jr, Eds.; Washington, DC: American Society for Mircrobiology Press, 2000; pp. 191-202.
[19]
Nigou, J.; Gilleron, M.; Puzo, G. Lipoarabinomannans: From structure to biosynthesis. Biochimie, 2003, 85, 153-166.
[20]
Nigou, J.; Gilleron, M.; Cahuzac, B.; Bounéry, J.D.; Herold, M.; Thurnher, M.; Puzo, G. The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette Guerin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J. Biol. Chem., 1997, 272, 23094-23103.
[21]
Vercellone, A.; Nigou, J.; Puzo, G. Relationships between the structure and the roles of lipoarabinomannans and related glycoconjugates in tuberculosis pathogenesis. Front. Biosci., 1998, 3, 149-163.
[22]
Khoo, K.H.; Tang, J.B.; Chatterjee, D. Variation in mannose-capped terminal arabinan motifs of lipoarabinomannans from clinical isolates of Mycobacterium tuberculosis and Mycobacterium avium complex. J. Biol. Chem., 2001, 276, 3863-3871.
[23]
Guerardel, Y.; Maes, E.; Elass, E.; Leroy, Y.; Timmerman, P.; Besra, G.S.; Locht, C.; Strecker, G.; Kremer, L. Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae. Presence of unusual components with alpha 1,3-mannopyranose side chains. J. Biol. Chem., 2002, 277, 30635-30648.
[24]
Reyrat, J.M.; Kahn, D. Mycobacterium smegmatis: An absurd model for tuberculosis? Trends Microbiol., 2001, 9, 472-473.
[25]
Shiloh, M.U.; DiGiuseppe Champion, P.A. To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr. Opin. Microbiol., 2010, 13, 86-92.
[26]
Sharbati-Tehrani, S.; Stephan, J.; Holland, G.; Appel, B.; Niederweis, M.; Lewin, A. Porins limit the intracellular persistence of Mycobacterium smegmatis. Microbiol, 2005, 151, 2403-2410.
[27]
Etienne, G.; Laval, F.; Villeneuve, C.; Dinadayala, P.; Abouwarda, A.; Zerbib, D.; Galamba, A.; Daffe, M. The cell envelope structure and properties of Mycobacterium smegmatis mc2155: Is there a clue for the unique transformability of the strain? Microbiol., 2005, 151, 2075-2086.
[28]
Gopalaswamy, R.; Narayanan, S.; Jacobs, Jr, W.R.; Av-Gay, Y. Mycobacterium smegmatis biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiol. Lett., 2008, 278, 121-127.
[29]
Gordon, S.; Keshav, S.; Stein, M. BCG-induced granuloma formation in murine tissues. Immunobiol., 1994, 191, 369-377.
[30]
Chan, J.; Flynn, J. The immunological aspects of latency in tuberculosis. Clin. Immunol., 2004, 110, 2-12.
[31]
Kaufmann, S.H. Immunity to intracellular bacteria. Ann. Rev. Immunol., 1993, 11, 129-163.
[32]
Saunders, B.M.; Britton, W.J. Life and death in the granuloma: Immunopathology of tuberculosis. Immunol. Cell Biol., 2007, 85, 103-111.
[33]
Dube, D.; Agrawal, G.P.; Vyas, S.P. Tuberculosis: From molecular pathogenensis to effective drug carrier design. Drug Discov. Today, 2012, 17, 761-762.
[34]
Koul, A.; Herget, T.; Klebl, B.; Ullrich, A. Interplay between mycobacteria and host signaling pathways. Nat. Rev. Microbiol., 2004, 2, 189-191.
[35]
Armstrong, J.A.; Hart, P.D. Phagosome–lysosome interactions in cultured macrophages infected with Virulenttubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J. Exp. Med., 1975, 142, 1-16.
[36]
Patki, V.; Virbasius, J.; Lane, W.S.; Toh, B.H.; Shpetner, H.S.; Corvera, S. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA, 1997, 94, 7326-7330.
[37]
Taunton, J. Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr. Opin. Cell Biol., 2001, 13, 85-91.
[38]
Keane, J.; Remold, H.G.; Kornfeld, H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol., 2000, 164, 2016-2020.
[39]
Szalai, G.; Krishnamurthy, R.; Hajnoczky, G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J., 1999, 18, 6349-6361.
[40]
Pai, M.; Minion, J.; Steingart, K.; Ramsay, A. New and improved tuberculosis diagnostics: Evidence, policy, practice, and impact. Curr. Opin. Pulm. Med., 2010, 16, 271-284.
[41]
Vijayasekaran, D. Treatment of childhood tuberculosis. Indian J. Pediatr., 2011, 78, 443-448.
[43]
Falk, R.; Randolph, T.W.; Meyer, J.D.; Kelly, R.M.; Manning, M.C. Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent. J. Control. Release, 1997, 44, 77-85.
[44]
Pandey, R.; Khuller, G.K. Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model. J. Antimicrob. Chemother., 2003, 54, 266-268.
[45]
Chono, S.; Tanino, T.; Seki, T.; Morimoto, K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J. Control. Release, 2008, 127, 50-58.
[46]
Dube, D.; Vyas, S.P. Nanocolloidal systems for macrophage targeting of therapeutics and diagnostics. In colloidal nanocarriers: Site specific and controlled drug delivery, (1st ed); CBS Publishers: New Dehli, India, 2010, pp. 470-495.
[47]
Briones, E.; Colino, C.I.; Lanao, J.M. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release, 2008, 125, 210-227.
[48]
Seleem, M.N.; Jain, N.; Pothayee, N.; Ranjan, A.; Riffle, J.S.; Sriranganathan, N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol. Lett., 2009, 294, 24-31.
[49]
Rodrigues, C.; Gameiro, P.; Prieto, M.; de Castro, B. Interaction of rifampicin and isoniazid with large unilamellar liposomes: Spectroscopic location studies. Biochim. Biophys. Acta, 2003, 1620, 151-159.
[50]
Vladimirsky, M.A.V.; Ladigina, G.A. Antibacterial activity of liposome entrapped streptomycin in mice infected with Mycobacterium tuberculosis. Biomed. Pharmacother., 1982, 36, 375-377.
[51]
Klemens, S.P.; Cynamon, M.H.; Swenson, C.E.; Ginsberg, R.S. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob. Agents Chemother., 1990, 34, 967-970.
[52]
Leitzke, S.; Bucke, W.; Borner, K.; Müller, R.; Hahn, H.; Ehlers, S. Rationale for and efficacy of prolonged-interval treatment using liposome-encapsulated amikacin in experimental Mycobacterium avium infection. Antimicrob. Agents Chemother., 1998, 42, 459-461.
[53]
Giovagnoli, S.; Blasi, P.; Vescovi, C.; Fardella, G.; Chiappini, I.; Perioli, L.; Ricci, M.; Rossi, C. Unilamellar vesicles as potential capreomycin sulfate carriers: Preparation and physicochemical characterization. AAPS PharmSciTech, 2003, 4, E69.
[54]
Ricci, M.; Giovagnoli, S.; Blasi, P.; Schoubben, A.; Perioli, L.; Rossi, C. Development of liposomal capreomycin sulfate formulations: Effects of formulation variables on peptide encapsulation. Int. J. Pharm., 2006, 311, 172-181.
[55]
Düzgüneş, N.; Flasher, D.; Reddy, M.V.; Luna-Herrera, J.; Gangadharam, P.R. Treatment of intracellular Mycobacterium avium complex infection by free and liposome encapsulated sparfloxacin. Antimicrob. Agents Chemother., 1996, 40, 2618-2621.
[56]
Chimote, G.; Banerjee, R. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. J. Biomed. Mater. Res. Part A, 2007, 89, 281-292.
[57]
Chimote, G.; Banerjee, R. Effect of antitubercular drugs on dipalmitoylphosphatidylcholine monolayers: Implications for drug loaded surfactants. Resp. Physiol. Neurobiol., 2005, 145, 65-77.
[58]
El-Ridy, M.S.; Mostafa, D.M.; Shehab, A.; Nasr, E.A.; Abd El-Alim, S. Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int. J. Pharm., 2007, 330, 82-88.
[59]
Jain, C.P.; Vyas, S.P. Preparation and characterization of niosomes containing rifampicin for lung targeting. J. Microencapsul., 1995, 12, 401-407.
[60]
Mullaicharam, A.R.; Murthy, R.S.R. Lung accumulation of niosome entrapped rifampicin following intravenous and intratracheal administration in the rat. J. Drug Deliv. Sci. Technol., 2004, 14, 99-104.
[61]
Bhardwaj, A.; Kumar, L.; Narang, R.K.; Murthy, R.S.R. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Art. Cells Nanomed. Biotechnol., 2013, 41, 52-59.
[62]
Mehta, S.K.; Jindal, N. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Coll. Surf. B., 2013, 101, 434-441.
[63]
Deol, P.; Khuller, G.K. Lung specific liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochem. Biophys. Acta, 1997, 1334, 161-172.
[64]
Deol, P.; Khuller, G.K.; Joshi, K. Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrob. Agents Chemother., 1997, 41, 1211-1214.
[65]
Vyas, S.P.; Kannan, M.E.; Jain, S.; Mishra, V.; Singh, P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm., 2004, 269, 37-49.
[66]
Adams, L.B.; Sinha, I.; Franzblau, S.G.; Krahenbuhl, J.L.; Mehta, R.T. Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob. Agents Chemother., 1999, 43, 1638-1643.
[67]
Labana, S.; Pandey, R.; Sharma, S.; Khuller, G.K. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int. J. Antimicrob. Agents, 2002, 20, 301-304.
[68]
Pandey, R.; Sharma, S.; Khuller, G.K. Nebulization of liposome encapsulated antitubercular drugs in guinea pigs. Int. J. Antimic. Agents, 2004, 24, 93-94.
[69]
Chono, S.; Tanino, T.; Seki, T.; Morimoto, K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J. Pharm. Pharmacol., 2007, 59, 75-80.
[70]
Gaspar, M.M.; Cruz, A.; Penha, A.F.; Reymão, J.; Sousa, A.C.; Eleutério, C.V.; Domingues, S.A.; Fraga, A.G.; Filho, A.L.; Cruz, M.E.; Pedrosa, J. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int. J. Antimicrob. Agents, 2008, 31, 37-45.
[71]
Jain, C.P.; Vyas, P.S.; Dixit, V.K. Niosomal system for delivery of rifampicin to lymphatics. Indian J. Pharm. Sci., 2006, 68, 575-578.
[72]
Singh, G.; Raghuvanshi, H.K.; Anand, A.; Pundir, R.; Dwivedi, H. Targeted delivery of rifampicin by niosomal drug delivery system. J. Pharm. Res., 2010, 3, 1152-1154.
[73]
Barrow, E.L.; Winchester, G.A.; Staas, J.K.; Quenelle, D.C.; Barrow, W.W. Use of microsphere technology for targeted delivery of rifampin to Mycobacterium tuberculosis-infected macrophages. Antimicrob. Agents Chemother., 1998, 42, 2682-2689.
[74]
Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B. Nanoparticles as antituberculosis drugs carriers: Effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J. Nanopart. Res., 2000, 2, 165-171.
[75]
Fawaz, F.; Bonini, F.; Maugein, J.; Lagueny, A.M. Ciprofloxacin-loaded polyisobutylcyanoacrylate nanoparticles: pharmacokinetics and in vitro anti-microbial activity. Int. J. Pharm., 1998, 168, 255-259.
[76]
Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G.K. Novel chemotherapy for tuberculosis: Chemotherapeutic potential of econazole and moxifloxacin-loaded PLG nanoparticles. Int. J. Antimi. Agents, 2008, 31, 142-146.
[77]
Shipulo, E.V.; Lyubimov, I.I.; Maksimenko, O.O.; Vanchugova, L.V.; Oganesyan, E.A.; Sveshnikov, P.G.; Biketov, S.F.; Severin, E.S.; Heifets, L.B.; Gel’perina, S.E. Development of a nanosomal formulation of moxifloxacin based on poly (butyl-2-cyanoacrylate). Pharm. Chem. J., 2008, 42, 145-149.
[78]
Kisich, K.O.; Gelperina, S.; Higgins, M.P.; Wilson, S.; Shipulo, E.; Oganesyan, E.; Heifets, L. Encapsulation of moxifloxacin within poly (butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm., 2007, 345, 154-162.
[79]
Dutt, M.; Khuller, G.K. Sustained release of isoniazid from a single injectable dose of poly (DL-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. Int. J. Antimicrob. Agents, 2002, 17, 115-122.
[80]
Dutt, M.; Khuller, G.K. Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in Poly (DL-lactide-co-glycolide) microparticles. J. Antimicrob. Chemother., 2002, 47, 829-835.
[81]
Khuller, G.K.; Verma, J.N. Oral drug delivery system for azole, moxifloxacin and rifampicin. US20100310662, 2010.
[82]
Doan, T.V.; Grégoire, N.; Lamarche, I.; Gobin, P.; Marchand, S.; Couet, W.; Olivier, J.C. A preclinical pharmacokinetic modeling approach to the biopharmaceutical characterization of immediate and microsphere-based sustained release pulmonary formulations of rifampicin. Eur. J. Pharm. Sci., 2013, 48, 223-230.
[83]
Ain, Q.; Sharma, S.; Garg, S.K.; Khuller, G.K. Role of poly [DL-lactide-co-glycolide] in development of a sustained oral delivery system for antitubercular drug(s). Int. J. Pharm., 2002, 239, 37-46.
[84]
Sharma, A.; Pandey, R.; Sharma, S.; Khuller, G.K. Chemotherapeutic efficacy of poly (dl-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int. J. Antimi. Agents, 2004, 24, 599-604.
[85]
Pandey, R.; Khuller, G.K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J. Antimicrob. Chemother., 2006, 57, 1146-1152.
[86]
Pandey, R.; Sharma, S.; Khuller, G.K. Chemotherapeutic efficacy of nanoparticle encapsulated antitubercular drugs. Drug Deliv., 2006, 13, 287-294.
[87]
Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G.K. Pdharmacokinetic and pharmacodynamic behavior of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int. J. Antimicrob. Agents, 2006, 27, 409-416.
[88]
Samad, A.; Sultana, Y.; Khar, R.K.; Chuttani, K.; Mishra, A.K. Gelatin microspheres of rifampicin cross-linked with sucrose using thermal gelation method for the treatment of tuberculosis. J. Microencapsul., 2009, 26, 83-89.
[89]
Saraogi, G.K.; Sharma, B.; Joshi, B.; Gupta, P.; Gupta, U.D.; Jain, N.K.; Agrawal, G.P. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J. Drug Target., 2011, 19, 1292-1227.
[90]
Kumar, G.; Sharma, S.; Shafiq, N.; Pandhi, P.; Khuller, G.K.; Malhotra, S. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated method used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv., 2011, 18, 65-73.
[91]
Hu, C.; Feng, H.; Zhu, C. Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Coll. Surf. B, 2012, 95, 162-169.
[92]
O’Hara, P.; Hickey, A.J. PLGA microspheres containing rifampicin for the treatment of tuberculosis: Manufacture and characterization. Pharm. Res., 2000, 17, 955-961.
[93]
Suarez, S.; O’Hara, P.; Kazantseva, M.; Newcomer, C.E.; Hopfer, R.; McMurray, D.N.; Hickey, A.J. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J. Antimicrob. Chemother., 2001, 48, 431-434.
[94]
Johnson, C.M.; Pandey, R.; Sharma, S.; Khuller, G.K.; Basaraba, R.J.; Orme, I.M.; Lenaerts, A.J. Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2005, 49, 4335-4338.
[95]
Ohashi, K.; Kabasawa, T.; Ozeki, T.; Okada, H. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J. Control. Release, 2009, 135, 19-24.
[96]
Yadav, A.B.; Sharma, R.; Muttil, P.; Singh, A.K.; Verma, P.K.; Mohan, M.; Patel, S.K.; Mishra, A. Inhalable microparticles containing isoniazid and rifabutin targeted macrophages and stimulate the phagocyte to achieve high efficacy. Indian J. Exp. Biol., 2009, 7, 469-474.
[97]
Palazzo, F.; Giovagnoli, S.; Schoubben, A.; Blasi, P.; Rossi, C.; Ricci, M. Development of a spray-drying method for the formulation of respirable microparticles containing ofloxacin–palladium complex. Int. J. Pharm., 2013, 440, 273-282.
[98]
Sharma, R.; Saxena, D.; Dwivedi, A.K.; Misra, A. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm. Res., 2001, 18, 1405-1410.
[99]
Pandey, R.; Zahoor, A.; Sharma, S.; Khuller, G.K. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb.), 2003, 83, 373-378.
[100]
Pandey, R.; Khuller, G.K. Chemotherapeutic potential of alginate chitosan microspheres as antitubercular drug carriers. J. Antimicrob. Chemother., 2004, 53, 635-640.
[101]
Sharma, A.; Sharma, S.; Khuller, G.K. Lectin-functionalized poly (lactide-coglycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother., 2004, 54, 761-766.
[102]
Pandey, R.; Khuller, G.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb.), 2005, 85, 227-234.
[103]
Ahmad, Z.; Sharma, S.; Khuller, G.K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents, 2005, 26, 298-303.
[104]
Garcia-Contreras, L.; Sethuraman, V.; Kazantseva, M.; Godfrey, V.; Hickey, A.J. Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J. Antimicrob. Chemother., 2006, 58, 980-986.
[105]
Pandey, R.; Khuller, G.K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J. Antimicrob. Chemother., 2006, 57, 146-1152.
[106]
Muttil, P.; Kaur, J.; Kumar, K.; Yadav, A.B.; Sharma, R.; Misra, A. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci., 2007, 32, 140-150.
[107]
Jain, D.; Banerjee, R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J. Biomed. Mater. Res. Part B Appl. Biomater., 2008, 86B, 105-112.
[108]
Ahmad, Z.; Sharma, S.; Khuller, G.K. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine, 2007, 3, 239-243.
[109]
Kumar, P.V.; Agashe, H.; Dutta, T.; Jain, N.K. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr. Drug Deliv., 2007, 4, 11-19.
[110]
Tomoda, K.; Makino, K. Effects of lung surfactants on rifampicin release rate from monodisperse rifampicin-loaded PLGA microspheres. Coll. Surf. B., 2007, 55, 115-124.
[111]
Esmaeili, F.; Hosseini-Nasr, M.; Rad-Malekshahi, M.; Samadi, N.; Atyabi, F.; Dinarvand, R. Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomedicine, 2007, 3, 161-167.
[112]
Hwang, S.M.; Kim, D.D.; Chung, S.J.; Shim, C.K. Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J. Control. Release, 2008, 129, 100-106.
[113]
Manca, M.L.; Mourtas, S.; Dracopoulos, V.; Fadda, A.M.; Antimisiaris, S.G. PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization. Coll. Surf. B., 2008, 62, 220-231.
[114]
Durán, N.; Alvarenga, M.A.; Da Silva, E.C.; Melo, P.S.; Marcato, P.D. Microencapsulation of antibiotic rifampicin in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Arch. Pharm. Res., 2008, 31, 1509-1516.
[115]
Saraogi, G.K.; Gupta, P.; Gupta, U.D.; Jain, N.K.; Agrawal, G.P. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int. J. Pharm., 2010, 385, 143-149.
[116]
Hirota, K.; Hasegawa, T.; Nakajima, T.; Inagawa, H.; Kohchi, C.; Soma, G.; Makino, K.; Terada, H. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J. Control. Release, 2010, 142, 339-346.
[117]
Wang, C.; Hickey, A.J. Isoxyl particles for pulmonary delivery: In vitro cytotoxicity and potency. Int. J. Pharm., 2010, 396, 99-104.
[118]
Onoshita, T.; Shimizu, Y.; Yamaya, N.; Miyazaki, M.; Yokoyama, M.; Fujiwara, N.; Nakajima, T.; Makino, K.; Terada, H.; Haga, M. The behavior of PLGA microspheres containing rifampicin in alveolar macrophages. Coll. Surf. B., 2010, 76, 151-157.
[119]
Cassano, R.; Trombino, S.; Ferrarelli, T.; Mauro, M.V.; Giraldi, C.; Manconi, M.; Fadda, A.M.; Picci, N. Respirable rifampicin-based microspheres containing isoniazid for tuberculosis treatment. J. Biomed. Mater. Res. Part A, 2012, 100A, 536-542.
[120]
Zhu, M.; Wang, H.; Liu, J.; He, H.; Hua, X.; He, Q.; Zhang, L.; Ye, X.; Shi, J. A mesoporous silica nanoparticulate/b-TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. Biomater., 2011, 32, 1986-1995.
[121]
Manca, M.L.; Sinico, C.; Maria Maccion, A.M.; Diez, O.; Fadda, A.M.; Manconi, M. Composition influence on pulmonary delivery of rifampicin liposomes. Pharm., 2012, 4, 590-606.
[122]
Clemens, D.L.; Lee, B.Y.; Xue, M.; Thomas, C.R.; Meng, H.; Ferris, D.; Nel, A.E.; Zink, J.I.; Horwitza, M.A. Targeted Intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob. Agents Chemother., 2012, 56, 2535-2545.
[123]
Chawla, R.; Jaiswal, S.; Mishra, B. Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design. Expert Opin. Drug Deliv., 2012, 11, 31-43.
[124]
Diab, R.; Brillault, J.; Bardy, A.; Gontijo, A.V.L.A.; Olivier, J.C. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: Efficiency for ex vivo alveolar macrophage targeting. Int. J. Pharm., 2012, 436, 833-839.
[125]
Gajendiran, M.; Gopi, V.; Elangovan, V.; Murali, R.V.; Balasubramanian, S. Isoniazid loaded core shell nanoparticles derived from PLGA–PEG–PLGA tri-block copolymers: In vitro and in vivo drug release. Coll. Surf. B., 2013, 104, 107-115.
[126]
Booysen, L.L.I.J.; Kalombo, L.; Brooks, E.; Hansend, R.; Gilliland, J.; Gruppo, V.; Lungenhoferd, P.; Semete-Makokotlela, B.; Swaia, H.S.; Kotze, A.F.; Lenaerts, A.; du Plessis, L.H. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int. J. Pharm., 2013, 444, 10-17.
[127]
Rajan, M.; Raj, V. Formation and characterization of chitosan-polylacticacid-polyethylene glycoal-gelatin nanoparticles. A novel biosystem for controlled drug delivery. Carbohydr. Polym., 2013, 98, 951-958.
[128]
Parmar, R.; Misra, R.; Mohanty, S. In vitro controlled release of Rifampicin through liquid-crystallinefolate nanoparticles. Coll. Surf. B, 2015, 129, 198-205.
[129]
Miranda, M.S.; Rodrigues, M.T.; Domingues, R.M.A.; Costa, R.R.; Paz, E.; Rodríguez-Abreu, C.; Freitas, P.; Almeida, B.G.; Carvalho, M.A.; Gonçalves, C.; Ferreira, C.M.; Torrado, E.; Reis, R.L.; Pedrosa, J.; Gomes, M.E. Development of inhalable superparamagnetic iron oxide nanoparticles (SPIONs) in microparticulate system for antituberculosis drug delivery. Adv. Healthcare. Mater., 2018, 7, E1800124.
[131]
Pandey, R.; Sharma, S.; Khuller, G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tubercul, 2005, 85, 415-420.
[132]
Bhandari, R.; Kaur, I.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int. J. Pharm., 2013, 441, 202-212.
[133]
Singh, H.; Bhandari, R.; Kaur, I.P. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH. Int. J. Pharm., 2013, 446, 106-111.
[134]
Singh, H.; Jindal, S.; Singh, M.; Sharma, G.; Kaur, I.P. Nano-formulation of rifampicin with enhanced bioavailability: Development, characterization and in-vivo safety. Int. J. Pharm., 2015, 485, 138-151.
[135]
Maretti, E.; Rossi, T.; Bondi, M.; Croce, M.A.; Hanuskova, M.; Leo, E.; Sacchetti, F.; Iannuccelli, V. Inhaled solid lipid microparticles to target alveolar Macrophagesfor tuberculosis. Int. J. Pharm., 2014, 462, 74-82.
[136]
Silva, M.; Lara, A.S.; Leite, C.Q.F.; Ferreira, E.I. Potential tuberculostatic agents: Micelle-forming copolymer poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid. Arch. Pharm. Pharm. Med. Chem., 2001, 334, 189-193.
[137]
Silva, M.; Ricelli, N.L.; Seoud, O.E.; Valentim, C.S.; Ferreira, A.G.; Sato, D.N.; Leite, C.Q.F.; Ferreira, E.I. Potential tuberculostatic agent: Micelle-forming pyrazinamide prodrug. Arch. Pharm. Chem. Life Sci., 2006, 339, 283-290.
[138]
Silva, M.; Ferreira, E.I.; Leite, C.Q.F.; Sato, N.D. Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Trop. J. Pharm. Res., 2007, 6, 815-824.
[139]
Chen, L.; Xie, Z.; Hu, J.; Chen, X.; Jing, X. Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J. Nanopart. Res., 2007, 9, 777-785.
[140]
Chan, J.G.Y.; Chan, H.; Prestidge, C.A.; Denman, J.A.; Young, P.M.; Traini, D. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur. J. Pharm. Biopharm., 2013, 83, 285-292.
[141]
Ahmed, M.; Ramadan, W.; Rambhu, D.; Shakeel, F. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie, 2008, 63, 806-811.
[142]
Son, Y.; McConville, J.T. A new respirable form of rifampicin. Eur. J. Pharm. Biopharm., 2011, 78, 366-376.
[143]
Singh, C.; Bhatt, T.D.; Gill, M.S.; Suresh, S. Novel rifampicin–phospholipid complex for tubercular therapy: Synthesis, physicochemical characterization and in-vivo evaluation. Int. J. Pharm., 2014, 460, 220-227.
[144]
Mathur, I.S.; Gupta, H.P.; Srivastav, S.K.; Singh, S.; Madhu, K.; Khanna, N.M. Evaluation of subdermal biodegradable implants incorporating rifampicin as a method of drug delivery in experimental tuberculosis of guinea pigs. J. Med. Microbiol., 1985, 20, 387-392.
[145]
Kailasam, S.; Daneluzzi, D.; Gangadharam, P.R.J. Maintenance of therapeutically active levels of isoniazid for prolonged periods in rabbits after a single implant of biodegradable polymer. Tuber. Lung Dis., 1994, 75, 361-365.
[146]
Horwitz, M.A.; Clemens, D.L. Antimicrobial for targeting intracellular pathogens. US6054133 2000.
[147]
Dickinson, P.A.; Kellaway, I.W.; Howells, S.W. Particulate composition. US7018657 B2 2006.
[148]
Schwarz, J.; Weisspapir, M. Colloidal solid lipid vehicle for pharmaceutical use. US 20060222716 A1 2006.
[149]
Becker, R.; Kruss, R.B.; Muller, R.H.; Peters, K. Pharmaceutical nanosuspensions formedicament administration as systems with increased saturation solubility and rate of solution. US 5858410 A 1999.
[150]
Jeong, S.Y.; Kwon, I.C.; Chung, H. Formulation solubilizing water- insoluble agents and preparation method thereof. US 6994862 B2 2006.
[151]
Barsegyan, G.G.; Gumanov, S.G.; Kryukov, L.N.; Kuznetsov, S.L.; Pomazkova, T.A.; Vorontsov, E.A.; Zykova, I.E. Rifabutin-based medicinal agent, nanoparticles-containing antimicrobial preparation and a method for the production thereof. WO2009002227 A1 2008.
[152]
Khuller, G.K.; Pander, R.; Sharma, S.; Verma, J.N. A process for the preparation of poly dl-lactide-co-glycolide nanoparticles having antitubercular drugs encapsulated therein. WO2006109317A8 2006.
[153]
Kaur, I.P.; Verma, M.K. Oral nanocolloidal aqueous dispersion (NCD) of streptomycin sulfate. India Patent 3/10/2012 2012.
[154]
Kaur, I.P.; Singh, H. Preparation of solid lipid nanoparticles of rifampicin to improve bioavailability and limiting drug interaction with isoniazid. India Patent 17/01/2013. 2013.