Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies

Author(s): Heather A.E. Benson*, Jeffrey E. Grice, Yousuf Mohammed, Sarika Namjoshi and Michael S. Roberts

Volume 16, Issue 5, 2019

Page: [444 - 460] Pages: 17

DOI: 10.2174/1567201816666190201143457

Abstract

This overview on skin delivery considers the evolution of the principles of percutaneous absorption and skin products from ancient times to today. Over the ages, it has been recognised that products may be applied to the skin for either local or systemic effects. As our understanding of the anatomy and physiology of the skin has improved, this has facilitated the development of technologies to effectively and quantitatively deliver solutes across this barrier to specific target sites in the skin and beyond. We focus on these technologies and their role in skin delivery today and in the future.

Keywords: History, skin delivery, nanotechnology, physical enhancement, microneedles, minimally invasive, transdermal technologies, targeted delivery, stratum corneum, follicular transport, wearable devices.

Graphical Abstract

[1]
Geller, M.J. Ancient Babylonian medicine; Wiley-Blackwell: Malden, 2010.
[2]
Selwyn, S. The topical treatment of skin infection.in: Maibach, H.I.; Aly, R. (Eds.) Skin MicrobiologyRelevance to Clinical Infection; Springer-Verlag: New York, 1981, pp. 317-328.
[3]
Ebbell, B. The Papyrus Ebers: the greatest Egyptian medical document. Levin & Munksgaard, Copenhagen., 1937.
[4]
Moghimi, H.R.; Shafizade, A.; Kamlinejad, M. Drug delivery systems in Iranian traditional pharmacy (in Persian).Traditional Medicine and Materia Medica Research Center, SBMU, Tehran, Iran,, 2011.
[5]
Morgan, W.F. Poisoning by the external application of belladonna. BMJ, 1866, 2, 621.
[6]
Laws, G.E. Nitroglycerin head. J. Amer. Med. Assoc., 1910, 54, 793.
[7]
Schwenkenbecker, A. Das Absorptionsvermögen der Haut. Archiv. für Physiol, 1904, 1(2), 121-165.
[8]
Rein, H. Experimental electroendosmotic studies on living human skin. Z. Biol., 1924, 81, 124.
[9]
Moore, C.R.; Lamar, J.K.; Beck, N. Cutaneous absorption of sex hormones. J. Am. Med. Assoc., 1938, 111, 11-14.
[10]
Zondek, B. Cutaneous application of follicular hormone. Lancet, 1938, 1, 1474.
[11]
Zondek, B. The excretion of halogenated phenols and their use in the treatment of urogenital infections. J. Urol., 1942, 48, 747-758.
[12]
Fox, M.J.; Leslie, C.L. Treatment of Raynaud’s diseases with nitroglycerine. Wis. Med. J., 1948, 47, 855-858.
[13]
Lund, F. Percutaneous nitroglycerin treatment in cases of peripheral circulatory disorders, especially Raynaud’s disease. Acta Med. Scand., 1948, 131, 196-206.
[14]
Rothman, S. The principles of percutaneous absorption. J. Lab. Clin. Med., 1943, 28, 1305-1321.
[15]
Higuchi, T. Physical chemical analysis of percutaneous absorption processes. J. Soc. Cosmet. Chem., 1960, 11, 85-97.
[16]
Roberts, M.S.; Anderson, R.A.; Swarbrick, J. Permeability of human epidermis to phenolic compounds. J. Pharm. Pharmacol., 1977, 29, 677-683.
[17]
Katz, M.; Poulsen, B.J. Absorption of drugs through the skin.in: Brodie, B.B.; Gilette, J. (Eds.)Handbook of Experimental Pharmacology; Springer Verlag, Berlin, 1971, pp. 103-174.
[18]
Scheuplein, R.J.; Blank, I.H. Permeability of the skin. Physiol. Rev., 1971, 51, 702-747.
[19]
Roberts, M.S.; Anderson, R.A.; Swarbrick, J.; Moore, D.E. The percutaneous absorption of phenolic compounds: the mechanism of diffusion across the stratum corneum. J. Pharm. Pharmacol., 1978, 30, 486-490.
[20]
Michaels, A.S.; Chandrasekaran, S.K.; Shaw, J.E. Drug permeation through human skin: Theory and in vitro experimental measurement. AIChE J., 1975, 21, 985-996.
[21]
Pastore, M.N.; Kalia, Y.N.; Horstmann, M.; Roberts, M.S. Transdermal patches: History, development and pharmacology. Br. J. Pharmacol., 2015, 172, 2179-2209.
[22]
Isaac, M.; Holvey, C. Transdermal patches: The emerging mode of drug delivery system in psychiatry. Ther. Adv. Psychopharmacol., 2012, 2, 255-263.
[23]
McAfee, D.A.; Hadgraft, J.; Lane, M.E. Rotigotine: The first new chemical entity for transdermal drug delivery. Eur. J. Pharm. Biopharm., 2014, 88, 586-593.
[24]
Crank, J. The mathematics of diffusion, 2nd ed; Clarendon Press: Oxford, UK, 1979.
[25]
Yousef, S.; Liu, X.; Mostafa, A.; Mohammed, Y.; Grice, J.E.; Anissimov, Y.G.; Sakran, W.; Roberts, M.S. estimating maximal in vitro skin permeation flux from studies using non-sink receptor phase conditions. Pharm. Res., 2016, 33, 2180-2194.
[26]
Roberts, M.S.; Mohammed, Y.; Pastore, M.N.; Namjoshi, S.; Yousef, S.; Alinaghi, A.; Haridass, I.N.; Abd, E.; Leite-Silva, V.R.; Benson, H.; Grice, J.E. Topical and cutaneous delivery using nanosystems. J. Control. Release, 2017, 247, 86-105.
[27]
Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical nano and microemulsions for skin delivery. Pharmaceutics, 2017, 9, E37.
[28]
Ita, K.B. Chemical penetration enhancers for transdermal drug delivery-success and challenges. Curr. Drug Deliv., 2015, 12, 645-651.
[29]
Alkilani, A.Z.; McCrudden, M.T.; Donnelly, R.F. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7, 438-470.
[30]
McClements, D.J. Nanoemulsions versus microemulsions: Clarification of critical differences. Soft Matter, 2012, 8, 1719-1729.
[31]
Abd, E.; Namjoshi, S.; Mohammed, Y.H.; Roberts, M.S.; Grice, J.E. Synergistic skin penetration enhancer and nanoemulsion formulations promote the human epidermal permeation of caffeine and naproxen. J. Pharm. Sci., 2016, 105, 212-220.
[32]
Muller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[33]
Jenning, V.; Gysler, A.; Schafer-Korting, M.; Gohla, S.H. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm., 2000, 49, 211-218.
[34]
Zhang, Y.T.; Wu, Z.H.; Zhang, K.; Zhao, J.H.; Ye, B.N.; Feng, N.P. An in vitro and in vivo comparison of solid and liquid-oil cores in transdermal aconitine nanocarriers. J. Pharm. Sci., 2014, 103, 3602-3610.
[35]
Wissing, S.A.; Muller, R.H. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity--in vivo study. Eur. J. Pharm. Biopharm., 2003, 56, 67-72.
[36]
Khurana, S.; Bedi, P.M.; Jain, N.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem. Phys. Lipids, 2013, 175-176, 65-72.
[37]
Shrotriya, S.; Ranpise, N.; Satpute, P.; Vidhate, B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif. Cells Nanomed. Biotechnol., 2018, 46, 1471-1482.
[38]
Jin, S.E.; Kim, C.K. Charge-mediated topical delivery of plasmid DNA with cationic lipid nanoparticles to the skin. Colloids Surf. B Biointerfaces, 2014, 116, 582-590.
[39]
Xia, Q.; Saupe, A.; Muller, R.H.; Souto, E.B. Nanostructured lipid carriers as novel carrier for sunscreen formulations. Int. J. Cosmetic. Sci., 2007, 29, 473-482.
[40]
Pople, P.V.; Singh, K.K. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus. Eur. J. Pharm. Biopharm., 2011, 79, 82-94.
[41]
Pople, P.V.; Singh, K.K. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus, Part II--in vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur. J. Pharm. Biopharm., 2013, 84, 72-83.
[42]
Patlolla, R.R.; Desai, P.R.; Belay, K.; Singh, M.S. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials, 2010, 31, 5598-5607.
[43]
Shah, P.P.; Desai, P.R.; Channer, D.; Singh, M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J. Control. Release, 2012, 161, 735-745.
[44]
Cevc, G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 1996, 13, 257-388.
[45]
De Marco Almeida, F.; Silva, C.N.; de Araujo Lopes, S.C.; Santos, D.M.; Torres, F.S.; Cardoso, F.L.; Martinelli, P.M.; da Silva, E.R.; de Lima, M.E.; Miranda, L.A.F.; Oliveira, M.C. Physicochemical characterization and skin permeation of cationic transfersomes containing the synthetic peptide PnPP-19. Curr. Drug Deliv., 2018, 15, 1064-1071.
[46]
Manconi, M.; Manca, M.L.; Caddeo, C.; Valenti, D.; Cencetti, C.; Diez-Sales, O.; Nacher, A.; Mir-Palomo, S.; Terencio, M.C.; Demurtas, D.; Gomez-Fernandez, J.C.; Aranda, F.J.; Fadda, A.M.; Matricardi, P. Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomedicine, 2018, 14, 569-579.
[47]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14, 613-633.
[48]
Godin, B.; Touitou, E. Ethosomes: New prospects in transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20, 63-102.
[49]
Das, S.K.; Chakraborty, S.; Roy, C.; Rajabalaya, R.; Mohaimin, A.W.; Khanam, J.; Nanda, A.; David, S.R. Ethosomes as novel vesicular carrier: An overview of the principle, preparation and its applications. Curr. Drug Deliv., 2018, 15, 795-817.
[50]
Muzzalupo, R.; Tavano, L.; Cassano, R.; Trombino, S.; Ferrarelli, T.; Picci, N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur. J. Pharm. Biopharm., 2011, 79, 28-35.
[51]
Manosroi, J.; Khositsuntiwong, N.; Manosroi, W.; Gotz, F.; Werner, R.G.; Manosroi, A. Potent enhancement of transdermal absorption and stability of human tyrosinase plasmid (pAH7/Tyr) by Tat peptide and an entrapment in elastic cationic niosomes. Drug Deliv., 2013, 20, 10-18.
[52]
Dragicevic-Curic, N.; Scheglmann, D.; Albrecht, V.; Fahr, A. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies. J. Control. Release, 2008, 127, 59-69.
[53]
Shah, S.M.; Ashtikar, M.; Jain, A.S.; Makhija, D.T.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Jagtap, A.A.; Nagarsenker, M.S.; Fahr, A. LeciPlex, invasomes, and liposomes: A skin penetration study. Int. J. Pharm., 2015, 490, 391-403.
[54]
Geusens, B.; Van Gele, M.; Braat, S.; De Smedt, S.C.; Stuart, M.C.; Prow, T.W.; Sanchez, W.; Roberts, M.S.; Sanders, N.; Lambert, J. Flexible nanosomes (SECosomes) enable efficient siRNA delivery in cultured primary skin cells and in the viable epidermis of ex vivo human skin. Adv. Functional. Mater., 2010, 20, 4077-4090.
[55]
Bracke, S.; Carretero, M.; Guerrero-Aspizua, S.; Desmet, E.; Illera, N.; Navarro, M.; Lambert, J.; Del Rio, M. Targeted silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: Development of siRNA SECosome-based novel therapies. Exp. Dermatol., 2014, 23, 199-201.
[56]
Mura, S.; Manconi, M.; Fadda, A.M.; Sala, M.C.; Perricci, J.; Pini, E.; Sinico, C. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: In vitro evaluation of drug permeation by infrared spectroscopy. Pharm. Dev. Technol., 2013, 18, 1339-1345.
[57]
Manconi, M.; Caddeo, C.; Sinico, C.; Valenti, D.; Mostallino, M.C.; Biggio, G.; Fadda, A.M. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle-skin interaction. Eur. J. Pharm. Biopharm., 2011, 78, 27-35.
[58]
Manca, M.L.; Manconi, M.; Zaru, M.; Valenti, D.; Peris, J.E.; Matricardi, P.; Maccioni, A.M.; Fadda, A.M. Glycerosomes: Investigation of role of 1,2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC) on the assembling and skin delivery performances. Int. J. Pharm., 2017, 532, 401-407.
[59]
Dreier, J.; Sorensen, J.A.; Brewer, J.R. Superresolution and fluorescence dynamics evidence reveal that intact liposomes do not cross the human skin barrier. PloS One, 2016, 11, e0146514.
[60]
Brewer, J.; Bloksgaard, M.; Kubiak, J.; Sorensen, J.A.; Bagatolli, L.A. Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration. J. Invest. Dermatol., 2013, 133, 1260-1268.
[61]
Cevc, G.; Gebauer, D. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophysical. J., 2003, 84, 1010-1024.
[62]
Dragicevic-Curic, N.; Fahr, A. Liposomes in topical photodynamic therapy. Exp Opinion. Drug Deliv., 2012, 9, 1015-1032.
[63]
Dragicevic-Curic, N.; Grafe, S.; Gitter, B.; Winter, S.; Fahr, A. Surface charged temoporfin-loaded flexible vesicles: In vitro skin penetration studies and stability. Int. J. Pharm., 2010, 384, 100-108.
[64]
Yu, D.G.; Li, J.J.; Williams, G.R.; Zhao, M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Control. Release, 2018, 292, 91-110.
[65]
Li, J.J.; Yang, Y.Y.; Yu, D.G.; Du, Q.; Yang, X.L. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers. Eur. J. Pharm. Sci., 2018, 122, 195-204.
[66]
Hai, T.; Wan, X.; Yu, D-G.; Wang, K.; Yang, Y.; Liu, Z-P. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile. Mater. Des., 2019, 162, 70-79.
[67]
Mitragotri, S. Devices for overcoming biological barriers: The use of physical forces to disrupt the barriers. Adv. Drug Deliv. Rev., 2013, 65, 100-103.
[68]
Denet, A.R.; Vanbever, R.; Preat, V. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev., 2004, 56, 659-674.
[69]
Blagus, T.; Markelc, B.; Cemazar, M.; Kosjek, T.; Preat, V.; Miklavcic, D.; Sersa, G. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J. Control. Release, 2013, 172, 862-871.
[70]
Prausnitz, M.R. A practical assessment of transdermal drug delivery by skin electroporation. Adv. Drug Deliv. Rev., 1999, 35, 61-76.
[71]
Bommannan, D.B.; Tamada, J.; Leung, L.; Potts, R.O. Effect of electroporation on transdermal iontophoretic delivery of luteinizing hormone releasing hormone (LHRH) in vitro. Pharm. Res., 1994, 11, 1809-1814.
[72]
Chang, S.L.; Hofmann, G.A.; Zhang, L.; Deftos, L.J.; Banga, A.K. The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J. Control. Release, 2000, 66, 127-133.
[73]
Prausnitz, M.R.; Edelman, E.R.; Gimm, J.A.; Langer, R.; Weaver, J.C. Transdermal delivery of heparin by skin electroporation. Biotechnology, 1995, 13, 1205-1209.
[74]
Hooper, J.W.; Golden, J.W.; Ferro, A.M.; King, A.D. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine, 2007, 25, 1814-1823.
[75]
Rosati, M.; Valentin, A.; Jalah, R.; Patel, V.; von Gegerfelt, A.; Bergamaschi, C.; Alicea, C.; Weiss, D.; Treece, J.; Pal, R.; Markham, P.D.; Marques, E.T.; August, J.T.; Khan, A.; Draghia-Akli, R.; Felber, B.K.; Pavlakis, G.N. Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine, 2008, 26, 5223-5229.
[76]
Shen, X.; Soderholm, J.; Lin, F.; Kobinger, G.; Bello, A.; Gregg, D.A.; Broderick, K.E.; Sardesai, N.Y. Influenza A vaccines using linear expression cassettes delivered via electroporation afford full protection against challenge in a mouse model. Vaccine, 2012, 30, 6946-6954.
[77]
Zorec, B.; Becker, S.; Rebersek, M.; Miklavcic, D.; Pavselj, N. Skin electroporation for transdermal drug delivery: The influence of the order of different square wave electric pulses. Int. J. Pharm., 2013, 457, 214-223.
[78]
Kalia, Y.N.; Naik, A.; Garrison, J.; Guy, R.H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev., 2004, 56, 619-658.
[79]
Marro, D.; Kalia, Y.N.; Delgado-Charro, M.B.; Guy, R.H. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm. Res., 2001, 18, 1701-1708.
[80]
Marro, D.; Kalia, Y.N.; Delgado-Charro, M.B.; Guy, R.H. Optimizing iontophoretic drug delivery: Identification and distribution of the charge-carrying species. Pharm. Res., 2001, 18, 1709-1713.
[81]
Guy, R.H.; Kalia, Y.N.; Delgado-Charro, M.B.; Merino, V.; Lopez, A.; Marro, D. Iontophoresis: Electrorepulsion and electroosmosis. J. Control. Release, 2000, 64, 129-132.
[82]
Gratieri, T.; Kalia, Y.N. Targeted local simultaneous iontophoresis of chemotherapeutics for topical therapy of head and neck cancers. Int. J. Pharm., 2014, 460, 24-27.
[83]
Abla, N.; Naik, A.; Guy, R.H.; Kalia, Y.N. Contributions of electromigration and electroosmosis to peptide iontophoresis across intact and impaired skin. J. Control. Release, 2005, 108, 319-330.
[84]
Azagury, A.; Khoury, L.; Enden, G.; Kost, J. Ultrasound mediated transdermal drug delivery. Adv. Drug Deliv. Rev., 2014, 72, 127-143.
[85]
Polat, B.E.; Hart, D.; Langer, R.; Blankschtein, D. Ultrasound-mediated transdermal drug delivery: Mechanisms, scope, and emerging trends. J. Control. Release, 2011, 152, 330-348.
[86]
Krasovitski, B.; Frenkel, V.; Shoham, S.; Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. USA, 2011, 108, 3258-3263.
[87]
Benson, H.A.E.; McElnay, J.C.; Harland, R. Phonophoresis of lignocaine and prilocaine from Emla cream. Int. J. Pharm., 1988, 44, 65-69.
[88]
McElnay, J.C.; Benson, H.A.E.; Harland, R.; Hadgraft, J. Phonophoresis of methyl nicotinate: A preliminary study to elucidate the mechanism of action. Pharm. Res., 1993, 10, 1726-1731.
[89]
Benson, H.A.E.; McElnay, J.C. Transmission of ultrasound energy through topical pharmaceutical products. Physiotherapy, 1988, 74, 587-589.
[90]
Mitragotri, S.; Kost, J. Low-frequency sonophoresis: A review. Adv. Drug Deliv. Rev., 2004, 56, 589-601.
[91]
Schoellhammer, C.M.; Polat, B.E.; Mendenhall, J.; Maa, R.; Jones, B.; Hart, D.P.; Langer, R.; Blankschtein, D. Rapid skin permeabilization by the simultaneous application of dual-frequency, high-intensity ultrasound. J. Control. Release, 2012, 163, 154-160.
[92]
Park, E.J.; Werner, J.; Smith, N.B. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm. Res., 2007, 24, 1396-1401.
[93]
Doukas, A.G.; Kollias, N. Transdermal drug delivery with a pressure wave. Adv. Drug Deliv. Rev., 2004, 56, 559-579.
[94]
Murthy, S.N.; Sammeta, S.M.; Bowers, C. Magnetophoresis for enhancing transdermal drug delivery: Mechanistic studies and patch design. J. Control. Release, 2010, 148, 197-203.
[95]
Krishnan, G.; Edwards, J.; Chen, Y.; Benson, H.A.E. Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro. J. Pharm. Sci., 2010, 99, 2724-2731.
[96]
Vicenzino, B.; Lawrenson, P.; Khan, A.; Stephenson, A.; Heales, L.; Benson, H.A.E. Wright. A. A randomised pilot equivalence trial to evaluate 1 diamagnetically enhanced transdermal delivery of key ground substance components in comparison to an established transdermal non-steroidal anti-inflammatory formulation in males with prior knee injury. PLoS One, 2019. [Epub ahead of print].
[97]
Mohammed, Y.H.; Yamada, M.; Lin, L.L.; Grice, J.E.; Roberts, M.S.; Raphael, A.P.; Benson, H.A.; Prow, T.W. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin. PloS One, 2014, 9, e101956.
[98]
Karimipour, D.J.; Karimipour, G.; Orringer, J.S. Microdermabrasion: An evidence-based review. Plast. Reconstr. Surg., 2010, 125, 372-377.
[99]
Andrews, S.N.; Zarnitsyn, V.; Bondy, B.; Prausnitz, M.R. Optimization of microdermabrasion for controlled removal of stratum corneum. Int. J. Pharm., 2011, 407, 95-104.
[100]
Andrews, S.; Lee, J.W.; Prausnitz, M. Recovery of skin barrier after stratum corneum removal by microdermabrasion. AAPS PharmSciTech, 2011, 12, 1393-1400.
[101]
Zhou, Y.; Banga, A.K. Enhanced delivery of cosmeceuticals by microdermabrasion. J. Cosmet. Dermatol., 2011, 10, 179-184.
[102]
Lee, W.R.; Tsai, R.Y.; Fang, C.L.; Liu, C.J.; Hu, C.H.; Fang, J.Y. Microdermabrasion as a novel tool to enhance drug delivery via the skin: An animal study. Dermatol. Surg., 2006, 32, 1013-1022.
[103]
Andrews, S.; Lee, J.W.; Choi, S.O.; Prausnitz, M.R. Transdermal insulin delivery using microdermabrasion. Pharm. Res., 2011, 28, 2110-2118.
[104]
Linkner, R.V.; Jim On, S.; Haddican, M.; Singer, G.; Shim-Chang, H. Evaluating the efficacy of photodynamic therapy with 20% aminolevulinic acid and microdermabrasion as a combination treatment regimen for acne scarring: A split-face, randomized, double-blind pilot study. J. Clin. Aesthetic. Dermatol., 2014, 7, 32-35.
[105]
Lee, J.W.; Gadiraju, P.; Park, J.H.; Allen, M.G.; Prausnitz, M.R. Microsecond thermal ablation of skin for transdermal drug delivery. J. Control. Release, 2011, 154, 58-68.
[106]
Bramson, J.; Dayball, K.; Evelegh, C.; Wan, Y.H.; Page, D.; Smith, A. Enabling topical immunization via microporation: A novel method for pain-free and needle-free delivery of adenovirus-based vaccines. Gene Ther., 2003, 10, 251-260.
[107]
Sintov, A.C.; Krymberk, I.; Daniel, D.; Hannan, T.; Sohn, Z.; Levin, G. Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J. Control. Release, 2003, 89, 311-320.
[108]
Levin, G.; Gershonowitz, A.; Sacks, H.; Stern, M.; Sherman, A.; Rudaev, S.; Zivin, I.; Phillip, M. Transdermal delivery of human growth hormone through RF-microchannels. Pharm. Res., 2005, 22, 550-555.
[109]
Lin, C.H.; Aljuffali, I.A.; Fang, J.Y. Lasers as an approach for promoting drug delivery via skin. Exp Opin. Drug Deliv., 2014, 11, 599-614.
[110]
Scheiblhofer, S.; Strobl, A.; Hoepflinger, V.; Thalhamer, T.; Steiner, M.; Thalhamer, J.; Weiss, R. Skin vaccination via fractional infrared laser ablation - Optimization of laser-parameters and adjuvantation. Vaccine, 2017, 35, 1802-1809.
[111]
Scheiblhofer, S.; Thalhamer, J.; Weiss, R. Laser microporation of the skin: Prospects for painless application of protective and therapeutic vaccines. Exp Opin. Drug Deliv., 2013, 10, 761-773.
[112]
Rkein, A.; Ozog, D.; Waibel, J.S. Treatment of atrophic scars with fractionated CO2 laser facilitating delivery of topically applied poly-L-lactic acid. Dermatol. Surg., 2014, 40, 624-631.
[113]
Lee, W.R.; Shen, S.C.; Aljuffali, I.A.; Li, Y.C.; Fang, J.Y. Impact of different vehicles for laser-assisted drug permeation via skin: Full-surface versus fractional ablation. Pharm. Res., 2014, 31, 382-393.
[114]
Lee, W.R.; Shen, S.C.; Chen, W.Y.; Aljuffali, I.A.; Suen, S.Y.; Fang, J.Y. Noninvasive delivery of siRNA and plasmid DNA into skin by fractional ablation: Erbium:YAG laser versus CO2 laser. Eur. J. Pharm. Biopharm., 2014, 86, 315-323.
[115]
Mitragotri, S. Current status and future prospects of needle-free liquid jet injectors. Nat. Rev. Drug Discov., 2006, 5, 543-548.
[116]
Stachowiak, J.C.; Li, T.H.; Arora, A.; Mitragotri, S.; Fletcher, D.A. Dynamic control of needle-free jet injection. J. Control. Release, 2009, 135, 104-112.
[117]
Park, M.A.; Jang, H.J.; Sirotkin, F.V.; Yoh, J.J. Er:YAG laser pulse for small-dose splashback-free microjet transdermal drug delivery. Optics. Letts., 2012, 37, 3894-3896.
[118]
Jang, H.J.; Yu, H.; Lee, S.; Hur, E.; Kim, Y.; Lee, S.H.; Kang, N.; Yoh, J.J. Towards clinical use of a laser-induced microjet system aimed at reliable and safe drug delivery. J. Biomed. Optics., 2014, 19, 058001.
[119]
Jang, H.J.; Hur, E.; Kim, Y.; Lee, S.H.; Kang, N.G.; Yoh, J.J. Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery. J. Biomed. Optics., 2014, 19, 118002.
[120]
Jang, H.J.; Yeo, S.; Yoh, J.J. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration. Lasers Surg. Med., 2017, 49, 387-394.
[121]
Zilony, N.; Tzur-Balter, A.; Segal, E.; Shefi, O. Bombarding cancer: Biolistic delivery of therapeutics using porous Si carriers. Sci. Rep., 2013, 3, 2499.
[122]
Bergmann-Leitner, E.S.; Leitner, W.W. Improving DNA vaccines against malaria: Could immunization by gene gun be the answer? Therap. Deliv., 2013, 4, 767-770.
[123]
Wang, S.; Zhang, C.; Zhang, L.; Li, J.; Huang, Z.; Lu, S. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine, 2008, 26, 2100-2110.
[124]
Bragstad, K.; Martel, C.J.; Thomsen, J.S.; Jensen, K.L.; Nielsen, L.P.; Aasted, B.; Fomsgaard, A. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza Other Respir. Viruses, 2011, 5, 13-23.
[125]
Liu, Y.; Kendall, M.A. Optimization of a jet-propelled particle injection system for the uniform transdermal delivery of drug/vaccine. Biotechnol. Bioeng., 2007, 97, 1300-1308.
[126]
Quinn, H.L.; Kearney, M.C.; Courtenay, A.J.; McCrudden, M.T.; Donnelly, R.F. The role of microneedles for drug and vaccine delivery. Exp Opin. Drug Deliv., 2014, 11, 1769-1780.
[127]
Kim, Y.C.; Park, J.H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev., 2012, 64, 1547-1568.
[128]
Gill, H.S.; Denson, D.D.; Burris, B.A.; Prausnitz, M.R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain, 2008, 24, 585-594.
[129]
Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release, 2014, 185, 130-138.
[130]
Gupta, J.; Gill, H.S.; Andrews, S.N.; Prausnitz, M.R. Kinetics of skin resealing after insertion of microneedles in human subjects. J. Control. Release, 2011, 154, 148-155.
[131]
Gill, H.S.; Prausnitz, M.R. Coated microneedles for transdermal delivery. J. Control. Release, 2007, 117, 227-237.
[132]
Choi, H.J.; Yoo, D.G.; Bondy, B.J.; Quan, F.S.; Compans, R.W.; Kang, S.M.; Prausnitz, M.R. Stability of influenza vaccine coated onto microneedles. Biomaterials, 2012, 33, 3756-3769.
[133]
Vrdoljak, A.; McGrath, M.G.; Carey, J.B.; Draper, S.J.; Hill, A.V.; O’Mahony, C.; Crean, A.M.; Moore, A.C. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J. Control. Release, 2012, 159, 34-42.
[134]
Zhu, Q.; Zarnitsyn, V.G.; Ye, L.; Wen, Z.; Gao, Y.; Pan, L.; Skountzou, I.; Gill, H.S.; Prausnitz, M.R.; Yang, C.; Compans, R.W. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc. Natl. Acad. Sci. USA, 2009, 106, 7968-7973.
[135]
Du, G.; Woythe, L.; van der Maaden, K.; Leone, M.; Romeijn, S.; Kros, A.; Kersten, G.; Jiskoot, W.; Bouwstra, J.A. Coated and hollow microneedle-mediated intradermal immunization in mice with diphtheria toxoid loaded mesoporous silica nanoparticles. Pharm. Res., 2018, 35, 189.
[136]
Yang, H.W.; Ye, L.; Guo, X.D.; Yang, C.; Compans, R.W.; Prausnitz, M.R. Ebola vaccination using a DNA vaccine coated on PLGA-PLL/gammaPGA nanoparticles administered using a microneedle patch. Adv. Healthc. Mater., 2017, 6
[http://dx.doi.org/10.1002/adhm.201600750]
[137]
Dangol, M.; Kim, S.; Li, C.G.; Fakhraei Lahiji, S.; Jang, M.; Ma, Y.; Huh, I.; Jung, H. Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J. Control. Release, 2017, 265, 41-47.
[138]
Zhao, X.; Li, X.; Zhang, P.; Du, J.; Wang, Y. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J. Control. Release, 2018, 286, 201-209.
[139]
Lee, I.C.; Lin, W.M.; Shu, J.C.; Tsai, S.W.; Chen, C.H.; Tsai, M.T. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J. Biomed. Mater. Res. Part A, 2017, 105, 84-93.
[140]
Chen, X.; Wang, L.; Yu, H.; Li, C.; Feng, J.; Haq, F.; Khan, A.; Khan, R.U. Preparation, properties and challenges of the microneedles-based insulin delivery system. J. Control. Release, 2018, 288, 173-188.
[141]
Zhu, W.; Pewin, W.; Wang, C.; Luo, Y.; Gonzalez, G.X.; Mohan, T.; Prausnitz, M.R.; Wang, B.Z. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines. J. Control. Release, 2017, 261, 1-9.
[142]
Rodgers, A.M.; Courtenay, A.J.; Donnelly, R.F. Dissolving microneedles for intradermal vaccination: Manufacture, formulation, and stakeholder considerations. Exp Opin. Drug Deliv., 2018, 15, 1039-1043.
[143]
Leone, M.; Priester, M.I.; Romeijn, S.; Nejadnik, M.R.; Monkare, J.; O’Mahony, C.; Jiskoot, W.; Kersten, G.; Bouwstra, J.A. Hyaluronan-based dissolving microneedles with high antigen content for intradermal vaccination: Formulation, physicochemical characterization and immunogenicity assessment. Eur. J. Pharm. Biopharm., 2019, 134, 49-59.
[144]
Jin, Q.; Chen, H.J.; Li, X.; Huang, X.; Wu, Q.; He, G.; Hang, T.; Yang, C.; Jiang, Z.; Li, E.; Zhang, A.; Lin, Z.; Liu, F.; Xie, X. Reduced graphene oxide nanohybrid-assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing. Small, 2019, e1804298.
[145]
Martanto, W.; Moore, J.S.; Kashlan, O.; Kamath, R.; Wang, P.M.; O’Neal, J.M.; Prausnitz, M.R. Microinfusion using hollow microneedles. Pharm. Res., 2006, 23, 104-113.
[146]
Donnelly, R.F.; Mooney, K.; McCrudden, M.T.; Vicente-Perez, E.M.; Belaid, L.; Gonzalez-Vazquez, P.; McElnay, J.C.; Woolfson, A.D. Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected. J. Pharm. Sci., 2014, 103, 1478-1486.
[147]
Donnelly, R.F.; McCrudden, M.T.; Zaid Alkilani, A.; Larraneta, E.; McAlister, E.; Courtenay, A.J.; Kearney, M.C.; Singh, T.R.; McCarthy, H.O.; Kett, V.L.; Caffarel-Salvador, E.; Al-Zahrani, S.; Woolfson, A.D. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PloS One, 2014, 9, e111547.
[148]
Seong, K.Y.; Seo, M.S.; Hwang, D.Y.; O’Cearbhaill, E.D.; Sreenan, S.; Karp, J.M.; Yang, S.Y. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. J. Control. Release: Off. J. Control. Release, 2017, 265, 48-56.
[149]
Donnelly, R.F.; Mooney, K.; Caffarel-Salvador, E.; Torrisi, B.M.; Eltayib, E.; McElnay, J.C. Microneedle-mediated minimally invasive patient monitoring. Ther. Drug Monit., 2014, 36, 10-17.
[150]
Chang, H.; Zheng, M.; Yu, X.; Than, A.; Seeni, R.Z.; Kang, R.; Tian, J.; Khanh, D.P.; Liu, L.; Chen, P.; Xu, C. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv. Mater., 2017, 29 201702243
[http://dx.doi.org/10.1002/adma.]
[151]
Prausnitz, M.R. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin. Annu. Rev. Chem. Biomol. Eng., 2017, 8, 177-200.
[152]
Ye, Y.; Yu, J.; Wen, D.; Kahkoska, A.R.; Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev., 2018, 127, 106-118.
[153]
Nguyen, T.T.; Park, J.H. Human studies with microneedles for evaluation of their efficacy and safety. Exp Opin. Drug Deliv., 2018, 15, 235-245.
[154]
Arya, J.; Henry, S.; Kalluri, H.; McAllister, D.V.; Pewin, W.P.; Prausnitz, M.R. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials, 2017, 128, 1-7.
[155]
Donnelly, R.F.; Moffatt, K.; Alkilani, A.Z.; Vicente-Perez, E.M.; Barry, J.; McCrudden, M.T.; Woolfson, A.D. Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application: A pilot study centred on pharmacist intervention and a patient information leaflet. Pharm. Res., 2014, 31, 1989-1999.
[156]
Moffatt, K.; Wang, Y.; Raj Singh, T.R.; Donnelly, R.F. Microneedles for enhanced transdermal and intraocular drug delivery. Curr. Opin. Pharmacol., 2017, 36, 14-21.
[157]
Jin, X.; Zhu, D.D.; Chen, B.Z.; Ashfaq, M.; Guo, X.D. Insulin delivery systems combined with microneedle technology. Adv. Drug Deliv. Rev., 2018, 127, 119-137.
[158]
Raphael, A.P.; Primiero, C.A.; Ansaldo, A.B.; Keates, H.L.; Soyer, H.P.; Prow, T.W. Elongate microparticles for enhanced drug delivery to ex vivo and in vivo pig skin. J. Control. Release, 2013, 172, 96-104.
[159]
Raphael, A.P.; Primiero, C.A.; Lin, L.L.; Smith, R.F.; Dyer, P.; Soyer, H.P.; Prow, T.W. High aspect ratio elongated microparticles for enhanced topical drug delivery in human volunteers. Adv. Healthc. Mater., 2014, 3, 860-866.
[160]
Yamada, M.; Tayeb, H.; Wang, H.; Dang, N.; Mohammed, Y.H.; Osseiran, S.; Belt, P.J.; Roberts, M.S.; Evans, C.L.; Sainsbury, F.; Prow, T.W. Using elongated microparticles to enhance tailorable nanoemulsion delivery in excised human skin and volunteers. J. Control. Release, 2018, 288, 264-276.
[161]
Prow, T.W.; Mohammed, Y.H.; Ansaldo, A.B.; Benson, H.A.E. Topical microneedle drug delivery enhanced with magnetophoresis, in: Chilcott, R.P.; Brain, K.R. (Eds.)Advances in Dermatological Sciences; RSC Publishing, 2013, pp. 169-177.
[162]
Donnelly, R.F.; Garland, M.J.; Alkilani, A.Z. Microneedle-iontophoresis combinations for enhanced transdermal drug delivery. Methods Mol. Biol., 2014, 1141, 121-132.
[163]
Dragicevic, N.; Maibach, H. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv. Drug Deliv. Rev., 2018, 127, 58-84.
[164]
Hickling, J.K.; Jones, K.R.; Friede, M.; Zehrung, D.; Chen, D.; Kristensen, D. Intradermal delivery of vaccines: Potential benefits and current challenges. Bull. World Health Organ., 2011, 89, 221-226.
[165]
Kupper, T.S.; Fuhlbrigge, R.C. Immune surveillance in the skin: Mechanisms and clinical consequences. Nat. Rev. Immunol., 2004, 4, 211-222.
[166]
Levin, C.; Perrin, H.; Combadiere, B. Tailored immunity by skin antigen-presenting cells. Hum. Vaccin. Immunother., 2015, 11, 27-36.
[167]
McNeilly, C.L.; Crichton, M.L.; Primiero, C.A.; Frazer, I.H.; Roberts, M.S.; Kendall, M.A. Microprojection arrays to immunise at mucosal surfaces. J. Control. Release, 2014, 196, 252-260.
[168]
Rouphael, N.G.; Paine, M.; Mosley, R.; Henry, S.; McAllister, D.V.; Kalluri, H.; Pewin, W.; Frew, P.M.; Yu, T.; Thornburg, N.J.; Kabbani, S.; Lai, L.; Vassilieva, E.V.; Skountzou, I.; Compans, R.W.; Mulligan, M.J.; Prausnitz, M.R. Group, T.-M.S. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet, 2017, 390, 649-658.
[169]
McAllister, L.; Anderson, J.; Werth, K.; Cho, I.; Copeland, K.; Le Cam Bouveret, N.; Plant, D.; Mendelman, P.M.; Cobb, D.K. Needle-free jet injection for administration of influenza vaccine: A randomised non-inferiority trial. Lancet, 2014, 384, 674-681.
[170]
Needle-free jet injection in workplace influence climes. http://www.ondrugdelivery.com/publications/75/PharmaJet.pdf accessed 11 January 2009.
[171]
Yousafzai, M.T.; Saleem, A.F.; Mach, O.; Baig, A.; Sutter, R.W.; Zaidi, A.K.M. Feasibility of conducting intradermal vaccination campaign with inactivated poliovirus vaccine using Tropis intradermal needle free injection system, Karachi, Pakistan. Heliyon, 2017, 3, e00395.
[172]
Kim, Y.C.; Song, J.M.; Lipatov, A.S.; Choi, S.O.; Lee, J.W.; Donis, R.O.; Compans, R.W.; Kang, S.M.; Prausnitz, M.R. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur. J. Pharm. Biopharm., 2012, 81, 239-247.
[173]
Vassilieva, E.V.; Kalluri, H.; McAllister, D.; Taherbhai, M.T.; Esser, E.S.; Pewin, W.P.; Pulit-Penaloza, J.A.; Prausnitz, M.R.; Compans, R.W.; Skountzou, I. Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature. Drug Deliv. Trans. Res., 2015, 5, 360-371.
[174]
Wei, J.C.J.; Haridass, I.N.; Crichton, M.L.; Mohammed, Y.H.; Meliga, S.C.; Sanchez, W.Y.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S.; Kendall, M.A.F. Space- and time-resolved investigation on diffusion kinetics of human skin following macromolecule delivery by microneedle arrays. Sci. Rep., 2018, 8, 17759.
[175]
Fernando, G.J.; Chen, X.; Primiero, C.A.; Yukiko, S.R.; Fairmaid, E.J.; Corbett, H.J.; Frazer, I.H.; Brown, L.E.; Kendall, M.A. Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. J. Control. Release, 2012, 159, 215-221.
[176]
Fernando, G.J.; Zhang, J.; Ng, H.I.; Haigh, O.L.; Yukiko, S.R.; Kendall, M.A. Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8(+) T cell responses. J. Control. Release, 2016, 237, 35-41.
[177]
Chen, X.; Kask, A.S.; Crichton, M.L.; McNeilly, C.; Yukiko, S.; Dong, L.; Marshak, J.O.; Jarrahian, C.; Fernando, G.J.; Chen, D.; Koelle, D.M.; Kendall, M.A. Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J. Control. Release, 2010, 148, 327-333.
[178]
Corbett, H.J.; Fernando, G.J.; Chen, X.; Frazer, I.H.; Kendall, M.A. Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model. PloS One, 2010, 5, e13460.
[179]
Muller, D.A.; Fernando, G.J.P.; Owens, N.S.; Agyei-Yeboah, C.; Wei, J.C.J.; Depelsenaire, A.C.I.; Forster, A.; Fahey, P.; Weldon, W.C.; Oberste, M.S.; Young, P.R.; Kendall, M.A.F. High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses. Sci. Rep., 2017, 7, 12644.
[180]
Muller, D.A.; Pearson, F.E.; Fernando, G.J.; Agyei-Yeboah, C.; Owens, N.S.; Corrie, S.R.; Crichton, M.L.; Wei, J.C.; Weldon, W.C.; Oberste, M.S.; Young, P.R.; Kendall, M.A. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses. Sci. Rep., 2016, 6, 22094.
[181]
Baleeiro, R.B.; Wiesmuller, K.H.; Reiter, Y.; Baude, B.; Dahne, L.; Patzelt, A.; Lademann, J.; Barbuto, J.A.; Walden, P. Topical vaccination with functionalized particles targeting dendritic cells. J. Invest. Dermatol., 2013, 133, 1933-1941.
[182]
Gilliam, A.C.; Kremer, I.B.; Yoshida, Y.; Stevens, S.R.; Tootell, E.; Teunissen, M.B.; Hammerberg, C.; Cooper, K.D. The human hair follicle: A reservoir of CD40+ B7-deficient Langerhans cells that repopulate epidermis after UVB exposure. J. Invest. Dermatol., 1998, 110, 422-427.
[183]
Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F.S.; Buse, J.B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA, 2015, 112, 8260-8265.
[184]
Lee, H.; Song, C.; Hong, Y.S.; Kim, M.S.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv., 2017, 3, e1601314.
[185]
Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; Choi, S.H.; Kim, D.H. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol., 2016, 11, 566-572.
[186]
Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J.E.; Song, C.; Kim, S.J.; Lee, D.J.; Jun, S.W.; Yang, S.; Park, M.; Shin, J.; Do, K.; Lee, M.; Kang, K.; Hwang, C.S.; Lu, N.; Hyeon, T.; Kim, D.H. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol., 2014, 9, 397-404.

© 2025 Bentham Science Publishers | Privacy Policy