Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cardioprotective Properties of HDL: Structural and Functional Considerations

Author(s): Eleni Pappa, Moses S. Elisaf, Christina Kostara, Eleni Bairaktari and Vasilis K. Tsimihodimos*

Volume 27, Issue 18, 2020

Page: [2964 - 2978] Pages: 15

DOI: 10.2174/0929867326666190201142321

Price: $65

Abstract

Background: As Mendelian Randomization (MR) studies showed no effect of variants altering HDL-cholesterol (HDL-C) levels concerning Cardiovascular Disease (CVD) and novel therapeutic interventions aiming to raise HDL-C resulted to futility, the usefulness of HDL-C is unclear.

Objective: As the role of HDL-C is currently doubtful, it is suggested that the atheroprotective functions of HDLs can be attributed to the number of HDL particles, and their characteristics including their lipid and protein components. Scientific interest has focused on HDL function and on the causes of rendering HDL particles dysfunctional, whereas the relevance of HDL subclasses with CVD remains controversial.

Methods: The present review discusses changes in quality as much as in quantity of HDL in pathological conditions and the connection between HDL particle concentration and cardiovascular disease and mortality. Emphasis is given to the recently available data concerning the cholesterol efflux capacity and the parameters that determine HDL functionality, as well as to recent investigations concerning the associations of HDL subclasses with cardiovascular mortality.

Results: MR studies or pharmacological interventions targeting HDL-C are not in favor of the hypothesis of HDL-C levels and the relationship with CVD. The search of biomarkers that relate with HDL functionality is needed. Similarly, HDL particle size and number exhibit controversial data in the context of CVD and further studies are needed.

Conclusion: There is no room for the old concept of HDL as a silver bullet,as HDL-C cannot be considered a robust marker and does not reflect the importance of HDL particle size and number. Elucidation of the complex HDL system, as well as the finding of biomarkers, will allow the development of any HDL-targeted therapy.

Keywords: High density lipoprotein, cholesterol efflux capacity, HDL subfractions, HDL particle number, dysfunctional HDL, atherosclerosis.

[1]
Kontush, A.; Chapman, M.J. High-density lipoproteins: structure, metabolism, function, and therapeutics; John Wiley & Sons, Inc.: Hoboken, N.J., 2012.
[2]
Castelli, W.P.; Garrison, R.J.; Wilson, P.W.; Abbott, R.D.; Kalousdian, S.; Kannel, W.B. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA, 1986, 256(20), 2835-2838.
[http://dx.doi.org/10.1001/jama.1986.03380200073024] [PMID: 3773200]
[3]
Ridker, P.M.; Genest, J.; Boekholdt, S.M.; Libby, P.; Gotto, A.M.; Nordestgaard, B.G.; Mora, S.; MacFadyen, J.G.; Glynn, R.J.; Kastelein, J.J.; Group, J.T.S. HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. Lancet, 2010, 376(9738), 333-339.
[http://dx.doi.org/10.1016/S0140-6736(10)60713-1] [PMID: 20655105]
[4]
Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med., 1977, 62(5), 707-714.
[http://dx.doi.org/10.1016/0002-9343(77)90874-9] [PMID: 193398]
[5]
Gordon, D.J.; Knoke, J.; Probstfield, J.L.; Superko, R.; Tyroler, H.A. High-density lipoprotein cholesterol and coronary heart disease in hypercholesterolemic men: the Lipid Research Clinics Coronary Primary Prevention Trial. Circulation, 1986, 74(6), 1217-1225.
[http://dx.doi.org/10.1161/01.CIR.74.6.1217] [PMID: 3536151]
[6]
Enger, S.C.; Hjermann, I.; Foss, O.P.; Helgeland, A.; Holme, I.; Leren, P.; Norum, K.R. High density lipoprotein cholesterol and myocardial infarction or sudden coronary death: a prospective case-control study in middle-aged men of the Oslo study. Artery, 1979, 5(2), 170-181.
[PMID: 231954]
[7]
Miller, N.E.; Thelle, D.S.; Forde, O.H.; Mjos, O.D. The Tromsø heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet, 1977, 1(8019), 965-968.
[http://dx.doi.org/10.1016/S0140-6736(77)92274-7] [PMID: 67464]
[8]
Jacobs, D.R., Jr; Mebane, I.L.; Bangdiwala, S.I.; Criqui, M.H.; Tyroler, H.A. High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the follow-up study of the Lipid Research Clinics Prevalence Study. Am. J. Epidemiol., 1990, 131(1), 32-47.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a115483] [PMID: 2293751]
[9]
Pekkanen, J.; Linn, S.; Heiss, G.; Suchindran, C.M.; Leon, A.; Rifkind, B.M.; Tyroler, H.A. Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N. Engl. J. Med., 1990, 322(24), 1700-1707.
[http://dx.doi.org/10.1056/NEJM199006143222403] [PMID: 2342536]
[10]
Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur. Heart J., 2017, 38(32), 2478-2486.
[http://dx.doi.org/10.1093/eurheartj/ehx163] [PMID: 28419274]
[11]
Hamer, M.; O’Donovan, G.; Stamatakis, E. High-density lipoprotein cholesterol and mortality: too much of a good thing? Arterioscler. Thromb. Vasc. Biol., 2018, 38(3), 669-672.
[http://dx.doi.org/10.1161/ATVBAHA.117.310587] [PMID: 29326314]
[12]
Bowe, B.; Xie, Y.; Xian, H.; Balasubramanian, S.; Zayed, M.A.; Al-Aly, Z. High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. veterans. Clin. J. Am. Soc. Nephrol., 2016, 11(10), 1784-1793.
[http://dx.doi.org/10.2215/CJN.00730116] [PMID: 27515591]
[13]
Ko, D.T.; Alter, D.A.; Guo, H.; Koh, M.; Lau, G.; Austin, P.C.; Booth, G.L.; Hogg, W.; Jackevicius, C.A.; Lee, D.S.; Wijeysundera, H.C.; Wilkins, J.T.; Tu, J.V. High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: The CANHEART study. J. Am. Coll. Cardiol., 2016, 68(19), 2073-2083.
[http://dx.doi.org/10.1016/j.jacc.2016.08.038] [PMID: 27810046]
[14]
Madsen, C.M.; Varbo, A.; Tybjærg-Hansen, A.; Frikke-Schmidt, R.; Nordestgaard, B.G. U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies. Eur. Heart J., 2018, 39(14), 1181-1190.
[http://dx.doi.org/10.1093/eurheartj/ehx665] [PMID: 29228167]
[15]
Speer, T.; Zewinger, S. High-density lipoprotein (HDL) and infections: a versatile culprit. Eur. Heart J., 2018, 39(14), 1191-1193.
[http://dx.doi.org/10.1093/eurheartj/ehx734] [PMID: 29240892]
[16]
Rosenson, R.S. The high-density lipoprotein puzzle: why classic epidemiology, genetic epidemiology, and clinical trials conflict? Arterioscler. Thromb. Vasc. Biol., 2016, 36(5), 777-782.
[http://dx.doi.org/10.1161/ATVBAHA.116.307024] [PMID: 26966281]
[17]
von Eckardstein, A.; Rohrer, L. HDLs in crises. Curr. Opin. Lipidol., 2016, 27(3), 264-273.
[http://dx.doi.org/10.1097/MOL.0000000000000294] [PMID: 27031272]
[18]
Khera, A.V.; Demler, O.V.; Adelman, S.J.; Collins, H.L.; Glynn, R.J.; Ridker, P.M.; Rader, D.J.; Mora, S. Cholesterol efflux capacity, high-density lipoprotein particle number, and incident cardiovascular events: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). Circulation, 2017, 135(25), 2494-2504.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025678] [PMID: 28450350]
[19]
Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; Leitersdorf, E.; McMurray, J.J.; Mundl, H.; Nicholls, S.J.; Shah, P.K.; Tardif, J.C.; Wright, R.S. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med., 2012, 367(22), 2089-2099.
[http://dx.doi.org/10.1056/NEJMoa1206797] [PMID: 23126252]
[20]
Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T.; Tomson, J.; Wallendszus, K.; Craig, M.; Jiang, L.; Collins, R.; Armitage, J.; Armitage, J. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med., 2014, 371(3), 203-212.
[http://dx.doi.org/10.1056/NEJMoa1300955] [PMID: 25014686]
[21]
Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; Rader, D.; Tall, A.R.; McErlean, E.; Wolski, K.; Ruotolo, G.; Vangerow, B.; Weerakkody, G.; Goodman, S.G.; Conde, D.; McGuire, D.K.; Nicolau, J.C.; Leiva-Pons, J.L.; Pesant, Y.; Li, W.; Kandath, D.; Kouz, S.; Tahirkheli, N.; Mason, D.; Nissen, S.E.; Investigators, A. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N. Engl. J. Med., 2017, 376(20), 1933-1942.
[http://dx.doi.org/10.1056/NEJMoa1609581] [PMID: 28514624]
[22]
Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med., 2011, 365(24), 2255-2267.
[http://dx.doi.org/10.1056/NEJMoa1107579] [PMID: 22085343]
[23]
Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Hólm, H.; Ding, E.L.; Johnson, T.; Schunkert, H.; Samani, N.J.; Clarke, R.; Hopewell, J.C.; Thompson, J.F.; Li, M.; Thorleifsson, G.; Newton-Cheh, C.; Musunuru, K.; Pirruccello, J.P.; Saleheen, D.; Chen, L.; Stewart, A.; Schillert, A.; Thorsteinsdottir, U.; Thorgeirsson, G.; Anand, S.; Engert, J.C.; Morgan, T.; Spertus, J.; Stoll, M.; Berger, K.; Martinelli, N.; Girelli, D.; McKeown, P.P.; Patterson, C.C.; Epstein, S.E.; Devaney, J.; Burnett, M.S.; Mooser, V.; Ripatti, S.; Surakka, I.; Nieminen, M.S.; Sinisalo, J.; Lokki, M.L.; Perola, M.; Havulinna, A.; de Faire, U.; Gigante, B.; Ingelsson, E.; Zeller, T.; Wild, P.; de Bakker, P.I.; Klungel, O.H.; Maitland-van der Zee, A.H.; Peters, B.J.; de Boer, A.; Grobbee, D.E.; Kamphuisen, P.W.; Deneer, V.H.; Elbers, C.C.; Onland-Moret, N.C.; Hofker, M.H.; Wijmenga, C.; Verschuren, W.M.; Boer, J.M.; van der Schouw, Y.T.; Rasheed, A.; Frossard, P.; Demissie, S.; Willer, C.; Do, R.; Ordovas, J.M.; Abecasis, G.R.; Boehnke, M.; Mohlke, K.L.; Daly, M.J.; Guiducci, C.; Burtt, N.P.; Surti, A.; Gonzalez, E.; Purcell, S.; Gabriel, S.; Marrugat, J.; Peden, J.; Erdmann, J.; Diemert, P.; Willenborg, C.; König, I.R.; Fischer, M.; Hengstenberg, C.; Ziegler, A.; Buysschaert, I.; Lambrechts, D.; Van de Werf, F.; Fox, K.A.; El Mokhtari, N.E.; Rubin, D.; Schrezenmeir, J.; Schreiber, S.; Schäfer, A.; Danesh, J.; Blankenberg, S.; Roberts, R.; McPherson, R.; Watkins, H.; Hall, A.S.; Overvad, K.; Rimm, E.; Boerwinkle, E.; Tybjaerg-Hansen, A.; Cupples, L.A.; Reilly, M.P.; Melander, O.; Mannucci, P.M.; Ardissino, D.; Siscovick, D.; Elosua, R.; Stefansson, K.; O’Donnell, C.J.; Salomaa, V.; Rader, D.J.; Peltonen, L.; Schwartz, S.M.; Altshuler, D.; Kathiresan, S. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, 2012, 380(9841), 572-580.
[http://dx.doi.org/10.1016/S0140-6736(12)60312-2] [PMID: 22607825]
[24]
Haase, C.L.; Tybjærg-Hansen, A.; Qayyum, A.A.; Schou, J.; Nordestgaard, B.G.; Frikke-Schmidt, R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J. Clin. Endocrinol. Metab., 2012, 97(2), E248-E256.
[http://dx.doi.org/10.1210/jc.2011-1846] [PMID: 22090275]
[25]
Jansen, H.; Samani, N.J.; Schunkert, H. Mendelian randomization studies in coronary artery disease. Eur. Heart J., 2014, 35(29), 1917-1924.
[http://dx.doi.org/10.1093/eurheartj/ehu208] [PMID: 24917639]
[26]
Holmes, M.V.; Ala-Korpela, M.; Smith, G.D. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat. Rev. Cardiol., 2017, 14(10), 577-590.
[http://dx.doi.org/10.1038/nrcardio.2017.78] [PMID: 28569269]
[27]
Holmes, M.V.; Asselbergs, F.W.; Palmer, T.M.; Drenos, F.; Lanktree, M.B.; Nelson, C.P.; Dale, C.E.; Padmanabhan, S.; Finan, C.; Swerdlow, D.I.; Tragante, V.; van Iperen, E.P.; Sivapalaratnam, S.; Shah, S.; Elbers, C.C.; Shah, T.; Engmann, J.; Giambartolomei, C.; White, J.; Zabaneh, D.; Sofat, R.; McLachlan, S.; Doevendans, P.A.; Balmforth, A.J.; Hall, A.S.; North, K.E.; Almoguera, B.; Hoogeveen, R.C.; Cushman, M.; Fornage, M.; Patel, S.R.; Redline, S.; Siscovick, D.S.; Tsai, M.Y.; Karczewski, K.J.; Hofker, M.H.; Verschuren, W.M.; Bots, M.L.; van der Schouw, Y.T.; Melander, O.; Dominiczak, A.F.; Morris, R.; Ben-Shlomo, Y.; Price, J.; Kumari, M.; Baumert, J.; Peters, A.; Thorand, B.; Koenig, W.; Gaunt, T.R.; Humphries, S.E.; Clarke, R.; Watkins, H.; Farrall, M.; Wilson, J.G.; Rich, S.S.; de Bakker, P.I.; Lange, L.A.; Davey Smith, G.; Reiner, A.P.; Talmud, P.J.; Kivimäki, M.; Lawlor, D.A.; Dudbridge, F.; Samani, N.J.; Keating, B.J.; Hingorani, A.D.; Casas, J.P. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J., 2015, 36(9), 539-550.
[http://dx.doi.org/10.1093/eurheartj/eht571] [PMID: 24474739]
[28]
Zanoni, P.; Khetarpal, S.A.; Larach, D.B.; Hancock-Cerutti, W.F.; Millar, J.S.; Cuchel, M.; DerOhannessian, S.; Kontush, A.; Surendran, P.; Saleheen, D.; Trompet, S.; Jukema, J.W.; De Craen, A.; Deloukas, P.; Sattar, N.; Ford, I.; Packard, C.; Majumder, Aa.; Alam, D.S.; Di Angelantonio, E.; Abecasis, G.; Chowdhury, R.; Erdmann, J.; Nordestgaard, B.G.; Nielsen, S.F.; Tybjærg-Hansen, A.; Schmidt, R.F.; Kuulasmaa, K.; Liu, D.J.; Perola, M.; Blankenberg, S.; Salomaa, V.; Männistö, S.; Amouyel, P.; Arveiler, D.; Ferrieres, J.; Müller-Nurasyid, M.; Ferrario, M.; Kee, F.; Willer, C.J.; Samani, N.; Schunkert, H.; Butterworth, A.S.; Howson, J.M.; Peloso, G.M.; Stitziel, N.O.; Danesh, J.; Kathiresan, S.; Rader, D.J.; Consortium, C.H.D.E.; Consortium, C.A.E.; Global Lipids Genetics, C. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351(6278), 1166-1171.
[http://dx.doi.org/10.1126/science.aad3517] [PMID: 26965621]
[29]
Birner-Gruenberger, R.; Schittmayer, M.; Holzer, M.; Marsche, G. Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog. Lipid Res., 2014, 56, 36-46.
[http://dx.doi.org/10.1016/j.plipres.2014.07.003] [PMID: 25107698]
[30]
Annema, W.; von Eckardstein, A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl. Res., 2016, 173, 30-57.
[http://dx.doi.org/10.1016/j.trsl.2016.02.008] [PMID: 26972566]
[31]
Rader, D.J.; Tall, A.R. The not-so-simple HDL story: Is it time to revise the HDL cholesterol hypothesis? Nat. Med., 2012, 18(9), 1344-1346.
[http://dx.doi.org/10.1038/nm.2937] [PMID: 22961164]
[32]
Hovingh, G.K.; Rader, D.J.; Hegele, R.A. HDL re-examined. Curr. Opin. Lipidol., 2015, 26(2), 127-132.
[http://dx.doi.org/10.1097/MOL.0000000000000161] [PMID: 25692348]
[33]
Sposito, A.C. HDL metrics, let’s call the number thing off? Atherosclerosis, 2016, 251, 525-527.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.06.044] [PMID: 27406116]
[34]
Camont, L.; Chapman, M.J.; Kontush, A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med., 2011, 17(10), 594-603.
[http://dx.doi.org/10.1016/j.molmed.2011.05.013] [PMID: 21839683]
[35]
Hafiane, A.; Genest, J. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBA Clin., 2015, 3, 175-188.
[http://dx.doi.org/10.1016/j.bbacli.2015.01.005] [PMID: 26674734]
[36]
De Lalla, O.F.; Gofman, J.W. Ultracentrifugal analysis of serum lipoproteins. Methods Biochem. Anal., 1954, 1, 459-478.
[PMID: 13193538]
[37]
Kontush, A. HDL particle number and size as predictors of cardiovascular disease. Front. Pharmacol., 2015, 6, 218.
[http://dx.doi.org/10.3389/fphar.2015.00218] [PMID: 26500551]
[38]
Matera, R.; Horvath, K.V.; Nair, H.; Schaefer, E.J.; Asztalos, B.F. HDL particle measurement: comparison of 5 methods. Clin. Chem., 2018, 64(3), 492-500.
[http://dx.doi.org/10.1373/clinchem.2017.277632] [PMID: 29203475]
[39]
Shah, A.S.; Tan, L.; Long, J.L.; Davidson, W.S. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J. Lipid Res., 2013, 54(10), 2575-2585.
[http://dx.doi.org/10.1194/jlr.R035725] [PMID: 23434634]
[40]
Duriez, P.; Fruchart, J.C. High-density lipoprotein subclasses and apolipoprotein A-I. Clinica chimica acta, 1999, 286(1-2), 97-114.
[http://dx.doi.org/10.1016/S0009-8981(99)00096-0]
[41]
Filou, S.; Lhomme, M.; Karavia, E.A.; Kalogeropoulou, C.; Theodoropoulos, V.; Zvintzou, E.; Sakellaropoulos, G.C.; Petropoulou, P.I.; Constantinou, C.; Kontush, A.; Kypreos, K.E. Distinct roles of apolipoproteins A1 and E in the modulation of high-density lipoprotein composition and function. Biochemistry, 2016, 55(27), 3752-3762.
[http://dx.doi.org/10.1021/acs.biochem.6b00389] [PMID: 27332083]
[42]
Zvintzou, E.; Lhomme, M.; Chasapi, S.; Filou, S.; Theodoropoulos, V.; Xapapadaki, E.; Kontush, A.; Spyroulias, G.; Tellis, C.C.; Tselepis, A.D.; Constantinou, C.; Kypreos, K.E. Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity. J. Lipid Res., 2017, 58(9), 1869-1883.
[http://dx.doi.org/10.1194/jlr.M077925] [PMID: 28701354]
[43]
Duka, A.; Fotakis, P.; Georgiadou, D.; Kateifides, A.; Tzavlaki, K.; von Eckardstein, L.; Stratikos, E.; Kardassis, D.; Zannis, V.I. ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT. J. Lipid Res., 2013, 54(1), 107-115.
[http://dx.doi.org/10.1194/jlr.M030114] [PMID: 23132909]
[44]
Tudorache, I.F.; Trusca, V.G.; Gafencu, A.V. Apolipoprotein E - a multifunctional protein with implications in various pathologies as a result of its structural features. Comput. Struct. Biotechnol. J., 2017, 15, 359-365.
[http://dx.doi.org/10.1016/j.csbj.2017.05.003] [PMID: 28660014]
[45]
Madhavan, S.M.; O’Toole, J.F.; Konieczkowski, M.; Ganesan, S.; Bruggeman, L.A.; Sedor, J.R. APOL1 localization in normal kidney and nondiabetic kidney disease. J. Am. Soc. Nephrol., 2011, 22(11), 2119-2128.
[http://dx.doi.org/10.1681/ASN.2011010069] [PMID: 21997392]
[46]
Jonas, A. Lecithin cholesterol acyltransferase. Biochim. Biophys. Acta, 2000, 1529(1-3), 245-256.
[http://dx.doi.org/10.1016/S1388-1981(00)00153-0] [PMID: 11111093]
[47]
Ossoli, A.; Pavanello, C.; Calabresi, L. High-density lipoprotein, lecithin: cholesterol acyltransferase, and atherosclerosis. Endocrinol. Metab. (Seoul), 2016, 31(2), 223-229.
[http://dx.doi.org/10.3803/EnM.2016.31.2.223] [PMID: 27302716]
[48]
Mackness, B.; Beltran-Debon, R.; Aragones, G.; Joven, J.; Camps, J.; Mackness, M. Human tissue distribution of paraoxonases 1 and 2 mRNA. IUBMB Life, 2010, 62(6), 480-482.
[http://dx.doi.org/10.1002/iub.347] [PMID: 20503442]
[49]
Riwanto, M.; Rohrer, L.; von Eckardstein, A.; Landmesser, U.; Dysfunctional, H.D.L. Dysfunctional HDL: from structure-function-relationships to biomarkers. Handb. Exp. Pharmacol., 2015, 224, 337-366.
[http://dx.doi.org/10.1007/978-3-319-09665-0_10] [PMID: 25522994]
[50]
Alwaili, K.; Bailey, D.; Awan, Z.; Bailey, S.D.; Ruel, I.; Hafiane, A.; Krimbou, L.; Laboissiere, S.; Genest, J. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim. Biophys. Acta, 2012, 1821(3), 405-415.
[http://dx.doi.org/10.1016/j.bbalip.2011.07.013] [PMID: 21840418]
[51]
Kostara, C.E.; Tsimihodimos, V.; Elisaf, M.S.; Bairaktari, E.T. NMR-Based Lipid Profiling of High Density Lipoprotein Particles in Healthy Subjects with Low, Normal, and Elevated HDL-Cholesterol. J. Proteome Res., 2017, 16(4), 1605-1616.
[http://dx.doi.org/10.1021/acs.jproteome.6b00975] [PMID: 28287268]
[52]
Kostara, C.E.; Papathanasiou, A.; Psychogios, N.; Cung, M.T.; Elisaf, M.S.; Goudevenos, J.; Bairaktari, E.T. NMR-based lipidomic analysis of blood lipoproteins differentiates the progression of coronary heart disease. J. Proteome Res., 2014, 13(5), 2585-2598.
[http://dx.doi.org/10.1021/pr500061n] [PMID: 24689886]
[53]
Superko, H.R.; Pendyala, L.; Williams, P.T.; Momary, K.M.; King, S.B., III; Garrett, B.C. High-density lipoprotein subclasses and their relationship to cardiovascular disease. J. Clin. Lipidol., 2012, 6(6), 496-523.
[http://dx.doi.org/10.1016/j.jacl.2012.03.001] [PMID: 23312047]
[54]
Albers, J.J.; Slee, A.; Fleg, J.L.; O’Brien, K.D.; Marcovina, S.M. Relationship of baseline HDL subclasses, small dense LDL and LDL triglyceride to cardiovascular events in the AIM-HIGH clinical trial. Atherosclerosis, 2016, 251, 454-459.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.06.019] [PMID: 27320173]
[55]
Silbernagel, G.; Pagel, P.; Pfahlert, V.; Genser, B.; Scharnagl, H.; Kleber, M.E.; Delgado, G.; Ohrui, H.; Ritsch, A.; Grammer, T.B.; Koenig, W.; März, W. High-density lipoprotein subclasses, coronary artery disease, and cardiovascular mortality. Clin. Chem., 2017, 63(12), 1886-1896.
[http://dx.doi.org/10.1373/clinchem.2017.275636] [PMID: 29021325]
[56]
Otvos, J.D.; Collins, D.; Freedman, D.S.; Shalaurova, I.; Schaefer, E.J.; McNamara, J.R.; Bloomfield, H.E.; Robins, S.J. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation, 2006, 113(12), 1556-1563.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.565135] [PMID: 16534013]
[57]
El Harchaoui, K.; Arsenault, B.J.; Franssen, R.; Després, J.P.; Hovingh, G.K.; Stroes, E.S.; Otvos, J.D.; Wareham, N.J.; Kastelein, J.J.; Khaw, K.T.; Boekholdt, S.M. High-density lipoprotein particle size and concentration and coronary risk. Ann. Intern. Med., 2009, 150(2), 84-93.
[http://dx.doi.org/10.7326/0003-4819-150-2-200901200-00006] [PMID: 19153411]
[58]
Mora, S.; Otvos, J.D.; Rifai, N.; Rosenson, R.S.; Buring, J.E.; Ridker, P.M. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation, 2009, 119(7), 931-939.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.816181] [PMID: 19204302]
[59]
Parish, S.; Offer, A.; Clarke, R.; Hopewell, J.C.; Hill, M.R.; Otvos, J.D.; Armitage, J.; Collins, R. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study. Circulation, 2012, 125(20), 2469-2478.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.073684] [PMID: 22539783]
[60]
Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; Shaul, P.W. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med., 2014, 371(25), 2383-2393.
[http://dx.doi.org/10.1056/NEJMoa1409065] [PMID: 25404125]
[61]
Duprez, D.A.; Otvos, J.; Tracy, R.P.; Feingold, K.R.; Greenland, P.; Gross, M.D.; Lima, J.A.; Mackey, R.H.; Neaton, J.D.; Sanchez, O.A.; Jacobs, D.R. High-density lipoprotein subclasses and noncardiovascular, noncancer chronic inflammatory-related events versus cardiovascular events: the multi-ethnic study of atherosclerosis. J. Am. Heart Assoc., 2015, 4(9)e002295
[http://dx.doi.org/10.1161/JAHA.115.002295] [PMID: 26370448]
[62]
Mackey, R.H.; Greenland, P.; Goff, D.C., Jr; Lloyd-Jones, D.; Sibley, C.T.; Mora, S. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J. Am. Coll. Cardiol., 2012, 60(6), 508-516.
[http://dx.doi.org/10.1016/j.jacc.2012.03.060] [PMID: 22796256]
[63]
Salonen, J.T.; Salonen, R.; Seppänen, K.; Rauramaa, R.; Tuomilehto, J. HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction. A prospective population study in eastern Finnish men. Circulation, 1991, 84(1), 129-139.
[http://dx.doi.org/10.1161/01.CIR.84.1.129] [PMID: 2060089]
[64]
Lamarche, B.; Moorjani, S.; Cantin, B.; Dagenais, G.R.; Lupien, P.J.; Després, J.P. Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. Arterioscler. Thromb. Vasc. Biol., 1997, 17(6), 1098-1105.
[http://dx.doi.org/10.1161/01.ATV.17.6.1098] [PMID: 9194760]
[65]
Williams, P.T. Fifty-three year follow-up of coronary heart disease versus HDL2 and other lipoproteins in Gofman’s Livermore Cohort. J. Lipid Res., 2012, 53(2), 266-272.
[http://dx.doi.org/10.1194/jlr.M019356] [PMID: 22128321]
[66]
Holmes, M.V.; Millwood, I.Y.; Kartsonaki, C.; Hill, M.R.; Bennett, D.A.; Boxall, R.; Guo, Y.; Xu, X.; Bian, Z.; Hu, R.; Walters, R.G.; Chen, J.; Ala-Korpela, M.; Parish, S.; Clarke, R.J.; Peto, R.; Collins, R.; Li, L.; Chen, Z. Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J. Am. Coll. Cardiol., 2018, 71(6), 620-632.
[http://dx.doi.org/10.1016/j.jacc.2017.12.006] [PMID: 29420958]
[67]
Martin, S.S.; Khokhar, A.A.; May, H.T.; Kulkarni, K.R.; Blaha, M.J.; Joshi, P.H.; Toth, P.P.; Muhlestein, J.B.; Anderson, J.L.; Knight, S.; Li, Y.; Spertus, J.A.; Jones, S.R. HDL cholesterol subclasses, myocardial infarction, and mortality in secondary prevention: the Lipoprotein Investigators Collaborative. Eur. Heart J., 2015, 36(1), 22-30.
[http://dx.doi.org/10.1093/eurheartj/ehu264] [PMID: 24980493]
[68]
Joshi, P.H.; Toth, P.P.; Lirette, S.T.; Griswold, M.E.; Massaro, J.M.; Martin, S.S.; Blaha, M.J.; Kulkarni, K.R.; Khokhar, A.A.; Correa, A.; D’Agustino, R.B., Sr; Jones, S.R. Association of high-density lipoprotein subclasses and incident coronary heart disease: The Jackson Heart and Framingham Offspring Cohort Studies. Eur. J. Prev. Cardiol., 2016, 23(1), 41-49.
[http://dx.doi.org/10.1177/2047487314543890] [PMID: 25062744]
[69]
Sethi, A.A.; Sampson, M.; Warnick, R.; Muniz, N.; Vaisman, B.; Nordestgaard, B.G.; Tybjaerg-Hansen, A.; Remaley, A.T. High pre-beta1 HDL concentrations and low lecithin: cholesterol acyltransferase activities are strong positive risk markers for ischemic heart disease and independent of HDL-cholesterol. Clin. Chem., 2010, 56(7), 1128-1137.
[http://dx.doi.org/10.1373/clinchem.2009.139931] [PMID: 20511449]
[70]
März, W.; Kleber, M.E.; Scharnagl, H.; Speer, T.; Zewinger, S.; Ritsch, A.; Parhofer, K.G.; von Eckardstein, A.; Landmesser, U.; Laufs, U. HDL cholesterol: reappraisal of its clinical relevance. Clin. Res. Cardiol., 2017, 106(9), 663-675.
[http://dx.doi.org/10.1007/s00392-017-1106-1] [PMID: 28342064]
[71]
Michael Gibson, C.; Korjian, S.; Tricoci, P.; Daaboul, Y.; Yee, M.; Jain, P.; Alexander, J.H.; Steg, P.G.; Lincoff, A.M.; Kastelein, J.J.; Mehran, R.; D’Andrea, D.M.; Deckelbaum, L.I.; Merkely, B.; Zarebinski, M.; Ophuis, T.O.; Harrington, R.A. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I Trial (ApoA-I event reducing in ischemic syndromes I). Circulation, 2016, 134(24), 1918-1930.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025687] [PMID: 27881559]
[72]
White, J.; Swerdlow, D.I.; Preiss, D.; Fairhurst-Hunter, Z.; Keating, B.J.; Asselbergs, F.W.; Sattar, N.; Humphries, S.E.; Hingorani, A.D.; Holmes, M.V. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol., 2016, 1(6), 692-699.
[http://dx.doi.org/10.1001/jamacardio.2016.1884] [PMID: 27487401]
[73]
Soininen, P.; Kangas, A.J.; Würtz, P.; Suna, T.; Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet, 2015, 8(1), 192-206.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000216] [PMID: 25691689]
[74]
Kuller, L.H.; Grandits, G.; Cohen, J.D.; Neaton, J.D.; Prineas, R. Lipoprotein particles, insulin, adiponectin, C-reactive protein and risk of coronary heart disease among men with metabolic syndrome. Atherosclerosis, 2007, 195(1), 122-128.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.09.001] [PMID: 17011566]
[75]
Woudberg, N.J.; Pedretti, S.; Lecour, S.; Schulz, R.; Vuilleumier, N.; James, R.W.; Frias, M.A. Pharmacological intervention to modulate HDL: what do we target? Front. Pharmacol., 2018, 8, 989.
[http://dx.doi.org/10.3389/fphar.2017.00989] [PMID: 29403378]
[76]
Annema, W.; von Eckardstein, A. High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ. J., 2013, 77(10), 2432-2448.
[http://dx.doi.org/10.1253/circj.cj-13-1025] [PMID: 24067275]
[77]
Feig, J.E.; Feig, J.L.; Dangas, G.D. The role of HDL in plaque stabilization and regression: basic mechanisms and clinical implications. Coron. Artery Dis., 2016, 27(7), 592-603.
[http://dx.doi.org/10.1097/MCA.0000000000000408] [PMID: 27414247]
[78]
Phillips, M.C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem., 2014, 289(35), 24020-24029.
[http://dx.doi.org/10.1074/jbc.R114.583658] [PMID: 25074931]
[79]
Asztalos, B.F.; Tani, M.; Schaefer, E.J. Metabolic and functional relevance of HDL subspecies. Curr. Opin. Lipidol., 2011, 22(3), 176-185.
[http://dx.doi.org/10.1097/MOL.0b013e3283468061] [PMID: 21537175]
[80]
Pirillo, A.; Norata, G.D.; Catapano, A.L. High-density lipoprotein subfractions--what the clinicians need to know. Cardiology, 2013, 124(2), 116-125.
[http://dx.doi.org/10.1159/000346463] [PMID: 23428644]
[81]
Tian, L.; Fu, M. The relationship between high density lipoprotein subclass profile and plasma lipids concentrations. Lipids Health Dis., 2010, 9, 118.
[http://dx.doi.org/10.1186/1476-511X-9-118] [PMID: 20950490]
[82]
Phillips, M.C. Is ABCA1 a lipid transfer protein? J. Lipid Res., 2018, 59(5), 749-763.
[http://dx.doi.org/10.1194/jlr.R082313] [PMID: 29305383]
[83]
Curtiss, L.K.; Valenta, D.T.; Hime, N.J.; Rye, K.A. What is so special about apolipoprotein AI in reverse cholesterol transport? Arterioscler. Thromb. Vasc. Biol., 2006, 26(1), 12-19.
[http://dx.doi.org/10.1161/01.ATV.0000194291.94269.5a] [PMID: 16269660]
[84]
Jian, B.; de la Llera-Moya, M.; Ji, Y.; Wang, N.; Phillips, M.C.; Swaney, J.B.; Tall, A.R.; Rothblat, G.H. Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. J. Biol. Chem., 1998, 273(10), 5599-5606.
[http://dx.doi.org/10.1074/jbc.273.10.5599] [PMID: 9488688]
[85]
Egom, E.E. HDL-C/HDL-P ratio: a measure of reverse cholesterol transport rather than HDL functionality. J. Am. Coll. Cardiol., 2015, 65(23), 2576.
[http://dx.doi.org/10.1016/j.jacc.2015.02.076] [PMID: 26066001]
[86]
Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; Mohler, E.R.; Rothblat, G.H.; Rader, D.J. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med., 2011, 364(2), 127-135.
[http://dx.doi.org/10.1056/NEJMoa1001689] [PMID: 21226578]
[87]
Khera, A.V.; Rader, D.J. Cholesterol efflux capacity: full steam ahead or a bump in the road? Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1449-1451.
[http://dx.doi.org/10.1161/ATVBAHA.113.301519] [PMID: 23766382]
[88]
Li, X.M.; Tang, W.H.; Mosior, M.K.; Huang, Y.; Wu, Y.; Matter, W.; Gao, V.; Schmitt, D.; Didonato, J.A.; Fisher, E.A.; Smith, J.D.; Hazen, S.L. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1696-1705.
[http://dx.doi.org/10.1161/ATVBAHA.113.301373] [PMID: 23520163]
[89]
Qiu, C.; Zhao, X.; Zhou, Q.; Zhang, Z. High-density lipoprotein cholesterol efflux capacity is inversely associated with cardiovascular risk: a systematic review and meta-analysis. Lipids Health Dis., 2017, 16(1), 212.
[http://dx.doi.org/10.1186/s12944-017-0604-5] [PMID: 29126414]
[90]
Teramoto, T.; Shimano, H.; Yokote, K.; Urashima, M. Effects of pitavastatin (LIVALO Tablet) on high density lipoprotein cholesterol (HDL-C) in hypercholesterolemia. J. Atheroscler. Thromb., 2009, 16(5), 654-661.
[http://dx.doi.org/10.5551/jat.1719] [PMID: 19907105]
[91]
Torchovskaya, T.I.; Kudinov, V.A.; Zakharova, T.S.; Markin, S.S. [Dysfunctional High-Density Lipoproteins: Role in Atherogenesis and Potential Targets for Phospholipid Therapy]. Kardiologiia, 2018, (3), 73-83.
[http://dx.doi.org/10.18087/cardio.2018.3.10101] [PMID: 29782274]
[92]
Pownall, H.J. Detergent-mediated phospholipidation of plasma lipoproteins increases HDL cholesterophilicity and cholesterol efflux via SR-BI. Biochemistry, 2006, 45(38), 11514-11522.
[http://dx.doi.org/10.1021/bi0608717] [PMID: 16981711]
[93]
Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; Colhoun, H.; Braunwald, E.; La Rosa, J.; Pedersen, T.R.; Tonkin, A.; Davis, B.; Sleight, P.; Franzosi, M.G.; Baigent, C.; Keech, A. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet, 2015, 385(9976), 1397-1405.
[http://dx.doi.org/10.1016/S0140-6736(14)61368-4] [PMID: 25579834]
[94]
Gordon, D.J.; Rifkind, B.M. High-density lipoprotein--the clinical implications of recent studies. N. Engl. J. Med., 1989, 321(19), 1311-1316.
[http://dx.doi.org/10.1056/NEJM198911093211907] [PMID: 2677733]
[95]
Keene, D.; Price, C.; Shun-Shin, M.J.; Francis, D.P. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ, 2014, 349, g4379.
[http://dx.doi.org/10.1136/bmj.g4379] [PMID: 25038074]
[96]
Birjmohun, R.S.; Hutten, B.A.; Kastelein, J.J.; Stroes, E.S. Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J. Am. Coll. Cardiol., 2005, 45(2), 185-197.
[http://dx.doi.org/10.1016/j.jacc.2004.10.031] [PMID: 15653014]
[97]
Canner, P.L.; Berge, K.G.; Wenger, N.K.; Stamler, J.; Friedman, L.; Prineas, R.J.; Friedewald, W. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol., 1986, 8(6), 1245-1255.
[http://dx.doi.org/10.1016/S0735-1097(86)80293-5] [PMID: 3782631]
[98]
Anderson, T.J.; Boden, W.E.; Desvigne-Nickens, P.; Fleg, J.L.; Kashyap, M.L.; McBride, R.; Probstfield, J.L. Safety profile of extended-release niacin in the AIM-HIGH trial. N. Engl. J. Med., 2014, 371(3), 288-290.
[http://dx.doi.org/10.1056/NEJMc1311039] [PMID: 25014706]
[99]
Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J.C. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation, 1998, 98(19), 2088-2093.
[http://dx.doi.org/10.1161/01.CIR.98.19.2088] [PMID: 9808609]
[100]
Zhao, S.; Wang, F.; Dai, Y.; Lin, L.; Tong, Q.; Liao, Y.; Yin, Y.; Wang, G.; Yan, Y.; Li, X.; Wang, D.; Wei, P.; Cheng, X.; Xie, Q.; Sun, Y.; Fu, G.; Huang, H.; Dong, Y.; Liu, J.; Yan, J.; Yan, L.; Cui, S.; Liu, X.; Li, Z.; Chen, H.; Hu, T.; Gong, H. Efficacy and safety of fenofibrate as an add-on in patients with elevated triglyceride despite receiving statin treatment. Int. J. Cardiol., 2016, 221, 832-836.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.234] [PMID: 27434354]
[101]
Frick, M.H.; Elo, O.; Haapa, K.; Heinonen, O.P.; Heinsalmi, P.; Helo, P.; Huttunen, J.K.; Kaitaniemi, P.; Koskinen, P.; Manninen, V. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med., 1987, 317(20), 1237-1245.
[http://dx.doi.org/10.1056/NEJM198711123172001] [PMID: 3313041]
[102]
Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation, 2000, 102(1), 21-27.
[http://dx.doi.org/10.1161/01.CIR.102.1.21] [PMID: 10880410]
[103]
Goff, D.C., Jr; Gerstein, H.C.; Ginsberg, H.N.; Cushman, W.C.; Margolis, K.L.; Byington, R.P.; Buse, J.B.; Genuth, S.; Probstfield, J.L.; Simons-Morton, D.G.; Group, A.S. Prevention of cardiovascular disease in persons with type 2 diabetes mellitus: current knowledge and rationale for the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am. J. Cardiol., 2007, 99(12A), 4i-20i.
[http://dx.doi.org/10.1016/j.amjcard.2007.03.002] [PMID: 17599424]
[104]
Buse, J.B.; Bigger, J.T.; Byington, R.P.; Cooper, L.S.; Cushman, W.C.; Friedewald, W.T.; Genuth, S.; Gerstein, H.C.; Ginsberg, H.N.; Goff, D.C., Jr; Grimm, R.H., Jr; Margolis, K.L.; Probstfield, J.L. Simons-Morton, D.G.; Sullivan, M.D.; Sullivan, M.D. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. Am. J. Cardiol., 2007, 99(12A), 21i-33i.
[http://dx.doi.org/10.1016/j.amjcard.2007.03.003] [PMID: 17599422]
[105]
Ginsberg, H.N. The ACCORD (Action to Control Cardiovascular Risk in Diabetes) Lipid trial: what we learn from subgroup analyses. Diabetes Care, 2011, 34(Suppl. 2), S107-S108.
[http://dx.doi.org/10.2337/dc11-s203] [PMID: 21525439]
[106]
Keech, A.; Simes, R.J.; Barter, P.; Best, J.; Scott, R.; Taskinen, M.R.; Forder, P.; Pillai, A.; Davis, T.; Glasziou, P.; Drury, P.; Kesäniemi, Y.A.; Sullivan, D.; Hunt, D.; Colman, P.; d’Emden, M.; Whiting, M.; Ehnholm, C.; Laakso, M. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet, 2005, 366(9500), 1849-1861.
[http://dx.doi.org/10.1016/S0140-6736(05)67667-2] [PMID: 16310551]
[107]
Jun, M.; Foote, C.; Lv, J.; Neal, B.; Patel, A.; Nicholls, S.J.; Grobbee, D.E.; Cass, A.; Chalmers, J.; Perkovic, V. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet, 2010, 375(9729), 1875-1884.
[http://dx.doi.org/10.1016/S0140-6736(10)60656-3] [PMID: 20462635]
[108]
Ridker, P. Pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT). Available at: https://clinicaltrials.gov/ ct2/show/NCT03071692
[109]
Fruchart, J.C. Pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor alpha modulator for management of atherogenic dyslipidaemia. Cardiovasc. Diabetol., 2017, 16(1), 124.
[http://dx.doi.org/10.1186/s12933-017-0602-y] [PMID: 28978316]
[110]
Ishibashi, S.; Arai, H.; Yokote, K.; Araki, E.; Suganami, H.; Yamashita, S.; Group, K.S. Efficacy and safety of pemafibrate (K-877), a selective peroxisome proliferator-activated receptor α modulator, in patients with dyslipidemia: Results from a 24-week, randomized, double blind, active-controlled, phase 3 trial. J. Clin. Lipidol., 2018, 12(1), 173-184.
[http://dx.doi.org/10.1016/j.jacl.2017.10.006] [PMID: 29203092]
[111]
Calabresi, L.; Sirtori, C.R.; Paoletti, R.; Franceschini, G. Recombinant apolipoprotein A-IMilano for the treatment of cardiovascular diseases. Curr. Atheroscler. Rep., 2006, 8(2), 163-167.
[http://dx.doi.org/10.1007/s11883-006-0054-4] [PMID: 16510051]
[112]
Giannarelli, C.; Cimmino, G.; Ibanez, B.; Chiesa, G.; Garcia-Prieto, J.; Santos-Gallego, C.G.; Alique-Aguilar, M.; Fuster, V.; Sirtori, C.; Badimon, J.J. Acute ApoA-I Milano administration induces plaque regression and stabilisation in the long term. Thromb. Haemost., 2012, 108(6), 1246-1248.
[PMID: 23093000]
[113]
Tardif, J.C.; Ballantyne, C.M.; Barter, P.; Dasseux, J.L.; Fayad, Z.A.; Guertin, M.C.; Kastelein, J.J.; Keyserling, C.; Klepp, H.; Koenig, W.; L’Allier, P.L.; Lespérance, J.; Lüscher, T.F.; Paolini, J.F.; Tawakol, A.; Waters, D.D.; Can, H.D.L.I.S.Q.A.R.I. Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur. Heart J., 2014, 35(46), 3277-3286.
[http://dx.doi.org/10.1093/eurheartj/ehu171] [PMID: 24780501]
[114]
Rosenson, R.S. CETP inhibition improves the lipid profile but has no effect on clinical cardiovascular outcomes in high-risk patients. Evid. Based Med., 2017, 22(5), 184-185.
[http://dx.doi.org/10.1136/ebmed-2017-110791] [PMID: 28844064]
[115]
Filippatos, T.D.; Klouras, E.; Barkas, F.; Elisaf, M. Cholesteryl ester transfer protein inhibitors: challenges and perspectives. Expert Rev. Cardiovasc. Ther., 2016, 14(8), 953-962.
[http://dx.doi.org/10.1080/14779072.2016.1189327] [PMID: 27171534]
[116]
Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.C.; Waters, D.D.; Shear, C.L.; Revkin, J.H.; Buhr, K.A.; Fisher, M.R.; Tall, A.R.; Brewer, B.; Investigators, I. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med., 2007, 357(21), 2109-2122.
[http://dx.doi.org/10.1056/NEJMoa0706628] [PMID: 17984165]
[117]
Bowman, L.; Chen, F.; Sammons, E.; Hopewell, J.C.; Wallendszus, K.; Stevens, W.; Valdes- Marquez, E.; Wiviott, S.; Cannon, C.P.; Braunwald, E.; Collins, R.; Landray, M.J. Randomized Evaluation of the Effects of Anacetrapib through Lipid-modification (REVEAL)-A large-scale, randomized, placebo-controlled trial of the clinical effects of anacetrapib among people with established vascular disease: Trial design, recruitment, and baseline characteristics. Am. Heart J., 2017, 187, 182-190.
[http://dx.doi.org/10.1016/j.ahj.2017.02.021] [PMID: 28454801]
[118]
Tardif, J.C.; Rhainds, D.; Brodeur, M.; Feroz Zada, Y.; Fouodjio, R.; Provost, S.; Boulé, M.; Alem, S.; Grégoire, J.C.; L’Allier, P.L.; Ibrahim, R.; Guertin, M.C.; Mongrain, I.; Olsson, A.G.; Schwartz, G.G.; Rhéaume, E.; Dubé, M.P. Genotype-dependent effects of dalcetrapib on cholesterol efflux and inflammation: concordance with clinical outcomes. Circ Cardiovasc Genet, 2016, 9(4), 340-348.
[http://dx.doi.org/10.1161/CIRCGENETICS.116.001405] [PMID: 27418594]
[119]
Black, D.M. Effect of dalcetrapib vs placebo on CV risk in a genetically defined population with a recent ACS (dal-GenE). NCT02525939, ClinicalTrials.gov, 2015.
[120]
Filippatos, T.D.; Elisaf, M.S. Evacetrapib and cardiovascular outcomes: reasons for lack of efficacy. J. Thorac. Dis., 2017, 9(8), 2308-2310.
[http://dx.doi.org/10.21037/jtd.2017.07.75] [PMID: 28932532]
[121]
Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; Landray, M.J.; Landray, M.J. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med., 2017, 377(13), 1217-1227.
[http://dx.doi.org/10.1056/NEJMoa1706444] [PMID: 28847206]
[122]
Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; Collins, R. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 2010, 376(9753), 1670-1681.
[http://dx.doi.org/10.1016/S0140-6736(10)61350-5] [PMID: 21067804]
[123]
Shrestha, S.; Wu, B.J.; Guiney, L.; Barter, P.J.; Rye, K.A. Cholesteryl ester transfer protein and its inhibitors. J. Lipid Res., 2018, 59(5), 772-783.
[http://dx.doi.org/10.1194/jlr.R082735] [PMID: 29487091]
[124]
Masson, W.; Lobo, M.; Siniawski, D.; Huerín, M.; Molinero, G.; Valéro, R.; Nogueira, J.P. Therapy with cholesteryl ester transfer protein (CETP) inhibitors and diabetes risk. Diabetes Metab., 2018, 44(6), 508-513.
[http://dx.doi.org/10.1016/j.diabet.2018.02.005] [PMID: 29523487]
[125]
Ferri, N.; Corsini, A.; Sirtori, C.R.; Ruscica, M. Present therapeutic role of cholesteryl ester transfer protein inhibitors. Pharmacol. Res., 2018, 128, 29-41.
[http://dx.doi.org/10.1016/j.phrs.2017.12.028] [PMID: 29287689]
[126]
Filippatos, T.D.; Kei, A.; Elisaf, M.S. Anacetrapib, a new CETP inhibitor: the new tool for the management of dyslipidemias? Diseases, 2017, 5(4)E21
[http://dx.doi.org/10.3390/diseases5040021] [PMID: 28961179]
[127]
Tall, A.R.; Rader, D.J. Trials and tribulations of CETP inhibitors. Circ. Res., 2018, 122(1), 106-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311978] [PMID: 29018035]
[128]
Hegele, R.A. CETP inhibitors - a new inning? N. Engl. J. Med., 2017, 377(13), 1284-1285.
[http://dx.doi.org/10.1056/NEJMe1711407] [PMID: 28953440]
[129]
Sorrentino, S.A.; Besler, C.; Rohrer, L.; Meyer, M.; Heinrich, K.; Bahlmann, F.H.; Mueller, M.; Horváth, T.; Doerries, C.; Heinemann, M.; Flemmer, S.; Markowski, A.; Manes, C.; Bahr, M.J.; Haller, H.; von Eckardstein, A.; Drexler, H.; Landmesser, U. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation, 2010, 121(1), 110-122.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.836346] [PMID: 20026785]
[130]
Besler, C.; Heinrich, K.; Rohrer, L.; Doerries, C.; Riwanto, M.; Shih, D.M.; Chroni, A.; Yonekawa, K.; Stein, S.; Schaefer, N.; Mueller, M.; Akhmedov, A.; Daniil, G.; Manes, C.; Templin, C.; Wyss, C.; Maier, W.; Tanner, F.C.; Matter, C.M.; Corti, R.; Furlong, C.; Lusis, A.J.; von Eckardstein, A.; Fogelman, A.M.; Lüscher, T.F.; Landmesser, U. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest., 2011, 121(7), 2693-2708.
[http://dx.doi.org/10.1172/JCI42946] [PMID: 21701070]
[131]
Zewinger, S.; Speer, T.; Kleber, M.E.; Scharnagl, H.; Woitas, R.; Lepper, P.M.; Pfahler, K.; Seiler, S.; Heine, G.H.; März, W.; Silbernagel, G.; Fliser, D. HDL cholesterol is not associated with lower mortality in patients with kidney dysfunction. J. Am. Soc. Nephrol., 2014, 25(5), 1073-1082.
[http://dx.doi.org/10.1681/ASN.2013050482] [PMID: 24610925]
[132]
Weichhart, T.; Kopecky, C.; Kubicek, M.; Haidinger, M.; Döller, D.; Katholnig, K.; Suarna, C.; Eller, P.; Tölle, M.; Gerner, C.; Zlabinger, G.J.; van der Giet, M.; Hörl, W.H.; Stocker, R.; Säemann, M.D. Serum amyloid A in uremic HDL promotes inflammation. J. Am. Soc. Nephrol., 2012, 23(5), 934-947.
[http://dx.doi.org/10.1681/ASN.2011070668] [PMID: 22282592]
[133]
Patel, S.; Puranik, R.; Nakhla, S.; Lundman, P.; Stocker, R.; Wang, X.S.; Lambert, G.; Rye, K.A.; Barter, P.J.; Nicholls, S.J.; Celermajer, D.S. Acute hypertriglyceridaemia in humans increases the triglyceride content and decreases the anti-inflammatory capacity of high density lipoproteins. Atherosclerosis, 2009, 204(2), 424-428.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.07.047] [PMID: 19111829]
[134]
Vaisar, T.; Pennathur, S.; Green, P.S.; Gharib, S.A.; Hoofnagle, A.N.; Cheung, M.C.; Byun, J.; Vuletic, S.; Kassim, S.; Singh, P.; Chea, H.; Knopp, R.H.; Brunzell, J.; Geary, R.; Chait, A.; Zhao, X.Q.; Elkon, K.; Marcovina, S.; Ridker, P.; Oram, J.F.; Heinecke, J.W. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest., 2007, 117(3), 746-756.
[http://dx.doi.org/10.1172/JCI26206] [PMID: 17332893]
[135]
Agarwala, A.P.; Rodrigues, A.; Risman, M.; McCoy, M.; Trindade, K.; Qu, L.; Cuchel, M.; Billheimer, J.; Rader, D.J. High-Density Lipoprotein (HDL) phospholipid content and cholesterol efflux capacity are reduced in patients with very high HDL cholesterol and coronary disease. Arterioscler. Thromb. Vasc. Biol., 2015, 35(6), 1515-1519.
[http://dx.doi.org/10.1161/ATVBAHA.115.305504] [PMID: 25838421]
[136]
Rosenson, R.S.; Brewer, H.B., Jr; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol., 2016, 13(1), 48-60.
[http://dx.doi.org/10.1038/nrcardio.2015.124] [PMID: 26323267]
[137]
Delgado Alves, J.; Ames, P.R.; Donohue, S.; Stanyer, L.; Nourooz-Zadeh, J.; Ravirajan, C.; Isenberg, D.A. Antibodies to high-density lipoprotein and beta2-glycoprotein I are inversely correlated with paraoxonase activity in systemic lupus erythematosus and primary antiphospholipid syndrome. Arthritis Rheum., 2002, 46(10), 2686-2694.
[http://dx.doi.org/10.1002/art.10542] [PMID: 12384928]
[138]
McMahon, M.; Grossman, J.; FitzGerald, J.; Dahlin-Lee, E.; Wallace, D.J.; Thong, B.Y.; Badsha, H.; Kalunian, K.; Charles, C.; Navab, M.; Fogelman, A.M.; Hahn, B.H. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum., 2006, 54(8), 2541-2549.
[http://dx.doi.org/10.1002/art.21976] [PMID: 16868975]
[139]
Riwanto, M.; Landmesser, U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J. Lipid Res., 2013, 54(12), 3227-3243.
[http://dx.doi.org/10.1194/jlr.R037762] [PMID: 23873269]
[140]
Kalantar-Zadeh, K.; Kopple, J.D.; Kamranpour, N.; Fogelman, A.M.; Navab, M. HDL-inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int., 2007, 72(9), 1149-1156.
[http://dx.doi.org/10.1038/sj.ki.5002491] [PMID: 17728705]
[141]
Han, C.Y.; Tang, C.; Guevara, M.E.; Wei, H.; Wietecha, T.; Shao, B.; Subramanian, S.; Omer, M.; Wang, S.; O’Brien, K.D.; Marcovina, S.M.; Wight, T.N.; Vaisar, T.; de Beer, M.C.; de Beer, F.C.; Osborne, W.R.; Elkon, K.B.; Chait, A. Serum amyloid A impairs the antiinflammatory properties of HDL. J. Clin. Invest., 2016, 126(1), 266-281.
[http://dx.doi.org/10.1172/JCI83475] [PMID: 26642365]
[142]
Esteve, E.; Ricart, W.; Fernández-Real, J.M. Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin. Nutr., 2005, 24(1), 16-31.
[http://dx.doi.org/10.1016/j.clnu.2004.08.004] [PMID: 15681098]
[143]
Zewinger, S.; Drechsler, C.; Kleber, M.E.; Dressel, A.; Riffel, J.; Triem, S.; Lehmann, M.; Kopecky, C.; Säemann, M.D.; Lepper, P.M.; Silbernagel, G.; Scharnagl, H.; Ritsch, A.; Thorand, B.; de las Heras Gala, T.; Wagenpfeil, S.; Koenig, W.; Peters, A.; Laufs, U.; Wanner, C.; Fliser, D.; Speer, T.; März, W. Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur. Heart J., 2015, 36(43), 3007-3016.
[http://dx.doi.org/10.1093/eurheartj/ehv352] [PMID: 26248570]
[144]
Parks, J.S.; Rudel, L.L. Alteration of high density lipoprotein subfraction distribution with induction of serum amyloid A protein (SAA) in the nonhuman primate. J. Lipid Res., 1985, 26(1), 82-91.
[PMID: 3919135]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy