[1]
Perron, F.; Albizati, K.F. Chemistry of spiroketals. Chem. Rev., 1989, 89, 1617-1661.
[2]
Aho, J.E.; Pihko, P.M.; Rissa, T.K. Nonanomeric spiroketals in Natural products: Structures, sources, and synthetic strategies. Chem. Rev., 2005, 105, 4406-4440.
[3]
Raju, B.R.; Saikia, A.K. Asymmetric synthesis of naturally occuring spiroketals. Molecules, 2008, 13, 1942-2038.
[4]
Brasholz, M.; Sörge, S.; Azap, C.; Reißig, H.U. Rubromycins: Structurally intriguing, biologically valuable, synthetically challenging antitumour antibiotics. Eur. J. Org. Chem., 2007, 23, 3801-3814.
[5]
Booth, Y.K.; Kitching, W.; De Voss, J.J. Biosynthesis of insect spiroacetals. Nat. Prod. Rep., 2009, 26, 490-525.
[6]
Zinzalla, G.; Milroy, L.G.; Ley, S.V. Chemical variation of natural product-like scaffolds: design and synthesis of spiroketal derivatives. Org. Biomol. Chem., 2006, 4, 1977-2002.
[7]
Zheng, Y.; Tice, C.M.; Singh, S.B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett., 2014, 24, 3673-3682.
[8]
Rizvi, S.A.; Liu, S.; Chen, Z.; Skau, C.; Pytynia, M.; Kovar, D.R.; Chmura, S.J.; Kozmin, S.A. Rationally simplified bistramide analog reversibly targets actin polymerization and inhibits cancer progression In Vitro and In Vivo. J. Am. Chem. Soc., 2010, 132, 7288-7290.
[9]
Choi, K.W.; Brimble, M.A. Synthesis of spiroacetal-nucleosides as privileged natural product-like scaffolds. Org. Biomol. Chem., 2009, 7, 1424-1436.
[10]
Fuggetta, M.P.; De-Mico, A.; Cottarelli, A.; Morelli, F.; Zonfrillo, M.; Ulgheri, F.; Peluso, P.; Mannu, A.; Deligia, F.; Marchetti, M.; Roviello, G.; Reyes Romero, A.; Dömling, A.; Spanu, P. Synthesis and enantiomeric separation of a novel spiroketal derivative: A potent human telomerase inhibitor with High In Vitro anticancer activity. J. Med. Chem., 2016, 59, 9140-9149.
[11]
De-Mico, A.; Cottarelli, A.; Fuggetta, M.P.; Lanzilli, G.; Tricarico, M. Dioxaspiroketal derivatives, process for their preparation and
uses thereof. Patent WO2007/132496, 2007: US Patent
20100227919, 2010.
[12]
Uckun, F.M.; Mao, C.; Vassilev, A.O.; Huang, H.; Jan, S.T. Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg. Med. Chem. Lett., 2000, 10, 541-545.
[13]
Barun, O.; Kumar, K.; Sommer, S.; Langerak, A.; Mayer, T.U.; Müller, O.; Waldmann, H. Natural product-guided synthesis of a spiroacetal collection reveals modulators of tubulin cytoskeleton integrity. Eur. J. Org. Chem., 2005, 11, 4773-4788.
[14]
Mitsuhashi, S.; Shima, H.; Kawamura, T.; Kikuchi, K.; Oikawah, M.; Ichiharab, A.; Oikawa, H. The spiroketals containing a benzyloxymethyl moiety at C8 position showed the most potent apoptosis-inducing activity. Bioorg. Med. Chem. Lett., 1999, 9(14), 2007-2012.
[15]
Scheepstra, M.; Andrei, S.A.; Unver, M.Y.; Hirsch, A.K.H.; Leysen, S.; Ottmann, C.; Brunsveld, L.; Milroy, L.G. Designed spiroketal protein modulation. Angew. Chem. Int. Ed. Engl., 2017, 56, 5480-5484.
[16]
Ohtake, Y.; Sato, T.; Kobayashi, T.; Nishimoto, M.; Taka, N.; Takano, K.; Yamamoto, K.; Ohmori, M.; Yamaguchi, M.; Takami, K.; Yeu, S.Y.; Ahn, K.H.; Matsuoka, H.; Morikawa, K.; Suzuki, M.; Hagita, H.; Ozawa, K.; Yamaguchi, K.; Kato, M.; Ikeda, S. Discovery of tofogliflozin, a novel c-arylglucoside with an o-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2012, 55, 7828-7840.
[17]
Lv, B.; Feng, Y.; Dong, J.; Xu, M.; Xu, B.; Zhang, W.; Sheng, Z.; Welihinda, A.; Seed, B.; Chen, Y. Conformationally constrained spiro c-arylglucosides as potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors. ChemMedChem, 2010, 5, 827-831.
[18]
Milroy, L.G.; Zinzalla, G.; Loiseau, F.; Qian, Z.; Prencipe, G.; Pepper, C.; Fegan, C.; Ley, S.V. Natural-product-like spiroketals and fused bicyclic acetals as potential therapeutic agents for b-cell chronic lymphocytic leukaemia. ChemMedChem, 2008, 3, 1922-1935.
[19]
Dimitrov, I.; Furkert, D.P.; Fraser, J.D.; Radcliff, F.J.; Fincha, O.; Brimble, M.A. Synthesis and anti-helicobacter pylori activity of analogues of spirolaxine methyl ether. MedChemComm, 2012, 3, 938-943.
[20]
Loftus, S.K.; Baxter, L.L.; Cronin, J.C.; Fufa, T.D.; Pavan, W.J.; Barnabas, B.B. Hypoxia-induced HIF1α targets in melanocytes reveal a molecular profile associated with poor melanoma prognosis. Pigment Cell Melanoma Res., 2017, 30, 339-352.
[21]
Lambrechts, A.; Van-Troys, M.; Ampe, C. The actin cytoskeleton in normal and pathological cell motility. Int. J. Biochem. Cell Biol., 2004, 36, 1890-1909.
[22]
Yamaguchi, H.; Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta, 2007, 5, 642-652.
[23]
Ki, H.H.; Poudel, B.; Lee, J.H.; Lee, Y.M.; Kim, D.K. In Vitro and In Vivo anti-cancer activity of dichloromethane fraction of Triticum aestivum sprouts. Biomed. Pharmacother., 2017, 96, 120-128.
[24]
Li, Z.; Qin, B.; Qi, X.; Mao, J.; Wu, D. Isoalantolactone induces apoptosis in human breast cancer cells via ROS-mediated mitochondrial pathway and downregulation of SIRT1. Arch. Pharm. Res., 2016, 39, 1441-1453.
[25]
Del-Bufalo, D.; Rizzo, A.; Trisciuoglio, D.; Cardinali, G.; Torrisi, M.R.; Zangemeister-Wittke, U.; Zupi, G.; Biroccio, A. Involvemen of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ., 2005, 12, 1429-1438.
[26]
Kitai, Y.; Zhang, X.; Hayashida, Y.; Kakehi, Y.; Tamura, H. Induction of G2/M arrest and apoptosis through mitochondria pathway by a dimer sesquiterpene lactone from Smallanthus sonchifolius in HeLa cells. J. Food Drug Anal., 2017, 25(3), 619-627.
[27]
Semenza, G.L. Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life, 2008, 60(9), 591-597.
[28]
Masoud, G.N.; Li, W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin., 2015, 5, 378-389.
[29]
Keith, B.; Johnson, R.S.; Simon, M.C. HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer, 2011, 12(1), 9-22.
[30]
Cai, F.; Xu, C.; Pan, X.; Cai, L.; Lin, X.Y.; Chen, S.; Biskup, E. Prognostic value of plasma levels of HIF-1α and PGC-1α in breast cancer. Oncotarget, 2016, 7, 77793-77806.
[31]
Tatè, R.; Zona, E.; De-Cicco, R.; Trotta, V.; Urciuoli, M.; Morelli, A.; Baiano, S.; Carnuccio, R.; Fuggetta, M.P.; Morelli, F. Simvastatin inhibits the expression of stemness-related genes and the metastatic invasion of human cancer cells via destruction of the cytoskeleton. Int. J. Oncol., 2017, 51, 1851-1859.