[1]
Carosati, E.; Mannhold, R.; Wahl, P.; Hansen, J.B.; Fremming, T.; Zamora, I.; Cianchetta, G.; Baroni, M. Virtual screening for novel openers of pancreatic KATP channels. J. Med. Chem., 2007, 50(9), 2117-2126.
[2]
Heitsch, H. Non-Peptide antagonists and agonists of the bradykinin B2 receptor. Curr. Med. Chem., 2002, 9(9), 913-928.
[3]
Tsotinis, A.; Vlachou, M.; Zouroudis, S.; Jeney, A.; Timár, F.; Thurston, D.E.; Roussakis, C. A facile synthesis of c2-substituted pyrrolo [2, 3-f] quinolines with cytotoxic activity. Lett. Drug Des. Discov., 2005, 2(3), 189-192.
[4]
Joshi, A.A.; Viswanathan, C.L. Docking studies and development of novel 5-heteroarylamino-2, 4-diamino-8-chloropyrimido-[4, 5-b] quinolines as potential antimalarials. Bioorg. Med. Chem. Lett., 2006, 16(10), 2613-2617.
[5]
Kym, P.R.; Kort, M.E.; Coghlan, M.J.; Moore, J.L.; Tang, R.; Ratajczyk, J.D.; Larson, D.P.; Elmore, S.W.; Pratt, J.K.; Stashko, M.A. Nonsteroidal selective glucocorticoid modulators: The effect of C-10 substitution on receptor selectivity and functional potency of 5-allyl-2, 5-dihydro-2, 2, 4-trimethyl-1h-[1] benzopyrano [3, 4-f] quinolines. J. Med. Chem., 2003, 46(6), 1016-1030.
[6]
Matsuyama, N.; Kato, T.; Kimura, K.; Mizutani, T.; Saeki, K. Phenotype analysis of human cytochrome P450 2C9 polymorphism using a panel of fluorine-substituted benzo [h] quinolines as inhibitors of tolbutamide hydroxylation. J. Health Sci., 2006, 52(6), 821-824.
[7]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[8]
Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B.A.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U.S.N.; Rao, V.J. Synthesis of multisubstituted quinolines from baylis-hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity. Bioorg. Med. Chem., 2006, 14(13), 4600-4609.
[9]
Nayyar, A.; Malde, A.; Jain, R.; Coutinho, E. 3D-QSAR study of ring-substituted quinoline class of anti-tuberculosis agents. Bioorg. Med. Chem., 2006, 14(3), 847-856.
[10]
Ridley, R.G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature, 2002, 415, 686-693.
[11]
Robert, A.; Dechy-Cabaret, O.; Cazelles, J.; Meunier, B. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Acc. Chem. Res., 2002, 35(3), 167-174.
[12]
Agrawal, A.K.; Jenekhe, S.A. Synthesis and processing of heterocyclic polymers as electronic, optoelectronic, and nonlinear optical materials. 3. new conjugated polyquinolines with electron-donor or -acceptor side groups. Chem. Mater., 1993, 5(5), 633-640.
[13]
Jégou, G.; Jenekhe, S.A. Highly fluorescent poly(arylene ethynylene)s containing quinoline and 3-alkylthiophene. Macromolecules, 2001, 34(23), 7926-7928.
[14]
Jenekhe, S.A.; Lu, L.; Alam, M.M. New conjugated polymers with donor-acceptor architectures: Synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules, 2001, 34(21), 7315-7324.
[15]
Jenekhe, S.A.; Chen, X.L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science, 1998, 279(5358), 1903-1907.
[16]
Jenekhe, S.A. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science, 1999, 283(5400), 372-375.
[17]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Hamed, M.M.; Noaman, E.; Ghorab, M.M. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2009, 19(24), 6939-6942.
[18]
Al-Said, M.S.; Ghorab, M.M.; Al-Dosari, M.S.; Hamed, M.M. Synthesis and in vitro anticancer evaluation of some novel hexahydroquinoline derivatives having a benzenesulfonamide moiety. Eur. J. Med. Chem., 2011, 46(1), 201-207.
[19]
Gündüz, M.G.; Sevim Öztürk, G.; Vural, İ.M.; Şimşek, R.; Sarıoğlu, Y.; Şafak, C. Evaluation of myorelaxant activity of 7-substituted hexahydroquinoline derivatives in isolated rabbit gastric fundus. Eur. J. Med. Chem., 2008, 43(3), 562-568.
[20]
León, R.; Ríos C. , de los ; Marco-Contelles, J.; Huertas, O.; Barril, X.; Javier Luque, F.; López, M.G.; García, A.G.; Villarroya, M. New tacrine-dihydropyridine hybrids that inhibit acetylcholinesterase, calcium entry, and exhibit neuroprotection properties. Bioorg. Med. Chem., 2008, 16(16), 7759-7769.
[21]
Miri, R.; Javidnia, K.; Mirkhani, H.; Hemmateenejad, B.; Sepeher, Z.; Zalpour, M.; Behzad, T.; Khoshneviszadeh, M.; Edraki, N.; Mehdipour, A.R. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole. Chem. Biol. Drug Des., 2007, 70(4), 329-336.
[22]
El-Sabbagh, O.I.; Shabaan, M.A.; Kadry, H.H.; Al-Din, E.S. Synthesis of new nonclassical acridines, quinolines, and
quinazolines derived from dimedone for biological evaluation Arch. der Pharm. (Weinheim, Ger.),, 2010, 343(9), 519-527.
[23]
Godfraind, T.; Miller, R.; Wibo, M. Calcium antagonism and calcium entry blockade. Pharmacol. Rev., 1986, 38(4), 321-416.
[24]
Mager, P.P.; Coburn, R.A.; Solo, A.J.; Triggle, D.J.; Rothe, H. QSAR, diagnostic statistics and molecular modelling of 1,4-dihydropyridine calcium antagonists: A difficult road ahead. Drug Des. Discov., 1992, 8(4), 273-289.
[25]
Mannhold, R.; Jablonka, B.; Voigt, W.; Schönafinger, K.; Schraven, E. Calcium- and calmodulin-antagonism of elnadipine derivatives: Comparative SAR. Eur. J. Med. Chem., 1992, 27(3), 229-235.
[26]
Sawada, Y.; Kayakiri, H.; Abe, Y.; Mizutani, T.; Inamura, N.; Asano, M.; Hatori, C.; Aramori, I.; Oku, T.; Tanaka, H. Discovery of the first non-peptide full agonists for the human bradykinin B2 receptor incorporating 4-(2-picolyloxy)quinoline and 1-(2-picolyl)benzimidazole frameworks. J. Med. Chem., 2004, 47(11), 2853-2863.
[27]
Shan, R.; Velazquez, C.; Knaus, E.E. Syntheses, calcium channel agonist−antagonist modulation activities, and nitric oxide release studies of nitrooxyalkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)pyridine-5-carboxylate racemates, enantiomers, and diastereomers. J. Med. Chem., 2004, 47(1), 254-261.
[28]
Triggle, D.J.; Langs, D.A.; Janis, R.A. Ca2+ channel ligands: Structure-function relationships of the 1,4-dihydropyridines. Med. Res. Rev., 1989, 9(2), 123-180.
[29]
Aruoma, O.I.; Smith, C.; Cecchini, R.; Evans, P.J.; Halliwell, B. Free radical scavenging and inhibition of lipid peroxidation by β-blockers and by agents that interfere with calcium metabolism. Biochem. Pharmacol., 1991, 42(4), 735-743.
[30]
Hilgeroth, A. Dimeric 4-aryl-1,4-dihydropyridines: Development of a third class of nonpeptidic HIV-1 protease inhibitors. Mini Rev. Med. Chem., 2002, 2(3), 235-245.
[31]
Kawase, M.; Shah, A.; Gaveriya, H.; Motohashi, N. 3, 5-dibenzoyl-1, 4-dihydropyridines: Synthesis and MDR reversal in tumor cells. Bioorg. Med., 2002, 10(4), 1051-1055.
[32]
Boer, R.; Gekeler, V. Chemosensitizers in tumor therapy: New compounds promise better efficacy. Drugs Future, 1995, 20, 499.
[33]
Bretzel, R.G.; Bollen, C.C.; Maeser, E.; Federlin, K.F. Nephroprotective effects of nitrendipine in hypertensive Tune I and Type II diabetic patients. Am. J. Kidney Dis., 1993, 21(6), S53-S64.
[34]
Klusa, V. Cerebrocrast. Neuroprotectant, cognition enhancer. Drugs Future, 1995, 20, 135-138.
[35]
Sausins, A.; Duburs, G. Synthesis of 1, 4-dihydropyridines by cyclocondensation reactions. Heterocycles, 1988, 27(1), 269-289.
[36]
Lin, H.; Danishefsky, S.J. Gelsemine: A thought-provoking target for total synthesis. Angew. Chem. Int. Ed., 2003, 42(1), 36-51.
[37]
Marti, C.; Carreira, E.M. Construction of spiro[pyrrolidine-3,3′-oxindoles] - recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem., 2003, 2003(12), 2209-2219.
[38]
Trost, B.M.; Jiang, C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis (Stuttg), 2006, 3, 369-396.
[39]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. Engl., 2007, 46(46), 8748-8758.
[40]
Edmondson, S.; Danishefsky, S.J.; Sepp-Lorenzino, L.; Rosen, N. Total synthesis of spirotryprostatin a, leading to the discovery of some biologically promising analogues. J. Am. Chem. Soc., 1999, 121(10), 2147-2155.
[41]
Parthasarathy, K.; Praveen, C.; Balachandran, C.; Senthil Kumar, P.; Ignacimuthu, S.; Perumal, P.T. Cu(OTf)2 catalyzed three component reaction: Efficient synthesis of spiro[indoline-3,4′-pyrano[3,2-b]pyran derivatives and their anticancer potency towards A549 human lung cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(9), 2708-2713.
[42]
Parthasarathy, K.; Praveen, C.; Kumar, P.S.; Balachandran, C.; Perumal, P.T. Cu(OTf)2 catalyzed three component strategy for the synthesis of thienopyridine containing spirooxindoles and their cytotoxic evaluation. RSC Advances, 2015, 5(21), 15818-15830.
[43]
Parthasarathy, K.; Praveen, C.; Jeyaveeran, J.C.; Prince, A.A.M. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4310-4317.
[44]
Parthasarathy, K.; Praveen, C.; Saranraj, K.; Balachandran, C.; Kumar, P.S. Synthesis, antimicrobial and cytotoxic evaluation of spirooxindole.[pyrano-bis-2H-l-benzopyrans]. Med. Chem. Res., 2016, 25(10), 2155-2170.
[45]
Vadivelu, M.; Raheem, A.A.; Sugirdha, S.; Bhaskar, G.; Karthikeyan, K.; Praveen, C. Gold catalyzed synthesis of tetrahydropyrimidines and octahydroquinazolines under ball milling conditions and evaluation of anticonvulsant potency. ARKIVOC, 2017, 2018(3), 90-101.
[46]
Bello, D.; Ramon, R.; Lavilla, R. Mechanistic variations of the povarov multicomponent reaction and related processes. Curr. Org. Chem., 2010, 14(4), 332-356.
[47]
González-López, M.; Shaw, J.T. Cyclic anhydrides in formal cycloadditions and multicomponent reactions. Chem. Rev., 2009, 109(1), 164-189.
[48]
Yan, R-L.; Yan, H.; Ma, C.; Ren, Z-Y.; Gao, X-A.; Huang, G-S.; Liang, Y-M. Cu (I)-catalyzed synthesis of imidazo [1, 2-a] pyridines from aminopyridines and nitroolefins using air as the oxidant. J. Org. Chem., 2012, 77(4), 2024-2028.
[49]
Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. CO2 Incorporation reaction using arynes: Straightforward access to benzoxazinone. J. Am. Chem. Soc., 2006, 128(34), 11040-11041.
[50]
Zhu, J-P.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, Germany, 2005.
[51]
Groenendaal, B.; Ruijter, E.; Orru, R.V.A. 1-Azadienes in cycloaddition and multicomponent reactions towards N-heterocycles. Chem. Commun. , 2008, 43, 5474-5489.
[52]
Isambert, N.; Lavilla, R. Heterocycles as key substrates in multicomponent reactions: The fast lane towards molecular complexity. Chemistry Eur. J, 2008, 14(28), 8444-8454.
[53]
Liu, W.; Jiang, H.; Huang, L. One-pot silver-catalyzed and PIDA-mediated sequential reactions: Synthesis of polysubstituted pyrroles directly from alkynoates and amines. Org. Lett., 2009, 12(2), 312-315.
[54]
Marson, C.M. Multicomponent and sequential organocatalytic reactions: Diversity with atom-economy and enantiocontrol. Chem. Soc. Rev., 2012, 41(23), 7712-7722.
[55]
Perreault, S.; Rovis, T. Multi-component cycloaddition approaches in the catalytic asymmetric synthesis of alkaloid targets. Chem. Soc. Rev., 2009, 38(11), 3149-3159.
[56]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6234-6246.
[57]
Simon, C.; Constantieux, T.; Rodriguez, J. Utilisation of 1, 3α dicarbonyl derivatives in multicomponent reactions. Eur. J. Org. Chem., 2004, 2004(24), 4957-4980.
[58]
Yan, C.G.; Wang, Q.F.; Song, X.K.; Sun, J. One-step synthesis of pyrido [1, 2-a] benzimidazole derivatives by a novel multicomponent reaction of chloroacetonitrile, malononitrile, aromatic aldehyde, and pyridine. J. Org. Chem., 2008, 74(2), 710-718.
[59]
Bonne, D.; Dekhane, M.; Zhu, J. Modulating the reactivity of αα isocyanoacetates: Multicomponent synthesis of 5α methoxyoxazoles and furopyrrolones. Angew. Chem. Int. Ed., 2007, 46(14), 2485-2488.
[60]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[61]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[62]
Hong, D.; Zhu, Y.; Li, Y.; Lin, X.; Lu, P.; Wang, Y. Three-component synthesis of polysubstituted pyrroles from α-diazoketones, nitroalkenes, and amines. Org. Lett., 2011, 13(17), 4668-4671.
[63]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S-J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[64]
Lin, X.; Mao, Z.; Dai, X.; Lu, P.; Wang, Y. A straightforward one-pot multicomponent synthesis of polysubstituted pyrroles. Chem. Commun. , 2011, 47(23), 6620-6622.
[65]
Blackwell, H.E. Hitting the SPOT: Small-molecule macroarrays advance combinatorial synthesis. Curr. Opin. Chem. Biol., 2006, 10(3), 203-212.
[66]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[67]
Toure, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[68]
Yu, J.; Shi, F.; Gong, L-Z. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc. Chem. Res., 2011, 44(11), 1156-1171.
[69]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[70]
Jiang, B.; Tu, S-J.; Kaur, P.; Wever, W.; Li, G. Four-component domino reaction leading to multifunctionalized quinazolines. J. Am. Chem. Soc., 2009, 131(33), 11660-11661.
[71]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry Eur. J., 2009, 15(6), 1300-1308.
[72]
Tietze, L.F.; Kinzel, T.; Brazel, C.C. The domino multicomponent allylation reaction for the stereoselective synthesis of homoallylic alcohols. Acc. Chem. Res., 2009, 42(2), 367-378.
[73]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Nissan, Y.M.; Ghorab, W.M. Novel brominated quinoline and pyrimidoquinoline derivatives as potential cytotoxic agents with synergistic effects of γ-radiation. Arch. Pharm. Res., 2012, 35(8), 1335-1346.
[74]
El-Sadek, M.E.; Aboukull, M.; El-Sabbagh, O.I.; Shallal, H.M. Synthesis of hexahydro-1H-pyrido[3,2-c]azepines as hypotensive agents of expected calcium-channel blocking activity. Monatsh. Chem., 2007, 138(3), 219-225.
[75]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Noaman, E.; Ghorab, M.M. Novel quinolines and pyrimido[4,5-b]quinolines bearing biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(2), 738-744.
[76]
Ghorab, M.M.; Al-Said, M.S.; El-Hossary, E.M. In vitro cytotoxic evaluation of some new heterocyclic sulfonamide derivatives. J. Heterocycl. Chem., 2011, 48(3), 563-571.
[77]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Arafa, R.K.; El-Hossary, E.M. In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety. Eur. J. Med. Chem., 2010, 45(9), 3677-3684.
[78]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Ghorab, M.M.; Noaman, E. Discovering some novel tetrahydroquinoline derivatives bearing the biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(5), 1849-1853.
[79]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Arafa, R.K.; El-Hossary, E.M. Docking study, in vitro anticancer screening and radiosensitizing evaluation of some new fluorine-containing quinoline and pyrimidoquinoline derivatives bearing a sulfonamide moiety. Med. Chem. Res., 2010, 20(3), 388-400.
[80]
Ghozlan, S.A.S.; Ahmed, A.G.; Abdelhamid, I.A. Regioorientation in the addition reaction of α-substituted cinnamonitrile to enamines utilizing chitosan as a green catalyst: Unambiguous structural characterization using 2D-HMBC NMR spectroscopy. J. Heterocycl. Chem., 2016, 53(3), 817-823.
[81]
Lichitsky, B.V.; Dudinov, A.A.; Krayushkin, M.M. Reaction of 3-
aminocyclohex-2-en-1-ones with arylidenemalononitriles:
Synthesis of N-substituted 1,4,5,6,7,8-hexahydroquinolin-5-ones Ark. (Gainesville, FL, United States),, 2001, 9, 73-79.
[82]
Lichitsky, B.V.; Ivanov, S.N.; Dudinov, A.A.; Woznesensky, S.A.; Krayushkin, M.M. Reactions of cyclic enaminoketones with benzylidenemalononitriles. synthesis of new fused heterocyclic systems containing the 1,4-dihydropyridine fragment. Russ. Chem. Bull., 2001, 50(12), 2428-2432.
[83]
Lichitsky, B.V; Yarovenko, V.N.; Zavarzin, I.V.; Krayushkin, M.M. Reactions of cyclic enehydrazinoketones with arylidene
derivatives of malononitrile. synthesis of fused N-substituted 1,4-
dihydropyridines. Russ. Chem. Bull. (Translation Izv. Akad. Nauk.
Seriya Khimicheskaya), 2000, 49(7), 1251-1254.
[84]
Alekseeva, A.Y.; Mikhailov, D.L.; Bardasov, I.N.; Ershov, O.V.; Nasakin, O.E. One-stage synthesis of highly functionalized NSubstituted
1,8-naphthyridines Russ. J. Org. Chem. (Translation
Zhurnal Org. Khimii), , 2013, 49(11), 1715-1717.
[85]
Singh, S.K.; Singh, K.N. DBU-catalyzed expeditious and facile multicomponent synthesis of N-arylquinolines under microwave irradiation. Monatsh. Chem., 2012, 143(5), 805-808.
[86]
Ahmadi, S.J.; Hosseinpour, M.; Sadjadi, S. Nanocrystalline Copper(II) oxide-catalyzed one-pot synthesis of imidazo[1,2-a]quinoline and quinolino[1,2-a]quinazoline derivatives via a three-component condensation. Synth. Commun., 2011, 41(3), 426-435.
[87]
Shi, C.; Chen, H.; Li, Y.; Shi, D.; Ji, M. A three-component synthesis of N-Substituted quinoline-3-carbonitrile derivatives catalysed by L-Proline. J. Chem. Res., 2008, 9, 534-537.
[88]
Gao, S.; Tsai, C.H.; Tseng, C.; Yao, C.F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-Chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron, 2008, 64(38), 9143-9149.
[89]
Wang, X-S.; Zhang, M-M.; Jiang, H.; Yao, C-S.; Tu, S-J. Uncatalyzed and solvent-free process for the synthesis of 1,4-diarylquinoline derivatives. Synth. Commun., 2008, 38(9), 1355-1364.
[90]
Wang, X-S.; Zhang, M-M.; Jiang, H.; Yao, C-S.; Tu, S-J. Three-component green synthesis of N-arylquinoline derivatives in ionic liquid [Bmim+][BF-4]: Reactions of arylaldehyde, 3-arylamino-5,5-dimethylcyclohex-2-enone, and active methylene compounds. Tetrahedron, 2007, 63(21), 4439-4449.
[91]
Tu, S-J.; Jiang, B.; Jia, R-H.; Zhang, J-Y.; Zhang, Y.; Yao, C-S.; Shi, F. An efficient one-pot, three-component synthesis of indeno[1,2-b]quinoline-9,11(6H,10H)-dione, acridine-1,8(2H,5H)-dione and quinoline-3-carbonitrile derivatives from enaminones. Org. Biomol. Chem., 2006, 4(19), 3664-3668.
[92]
Thumar, N.J.; Patel, M.P. Synthesis and antimicrobial activity of some new N-Substituted quinoline derivatives of 1H-Pyrazole. Arch. Pharm. Life Sci., 2011, 344(2), 91-101.
[93]
Makawana, J.A.; Patel, M.P.; Patel, R.G. Synthesis and in vitro antimicrobial activity of N-Arylquinoline derivatives bearing 2-morpholinoquinoline moiety. Chin. Chem. Lett., 2012, 23(4), 427-430.
[94]
Thumar, N.J.; Patel, M.P. Synthesis, characterization, and in vitro microbial evaluation of some new 4H-chromene and quinoline derivatives of 1H-Pyrazole. J. Heterocycl. Chem., 2012, 49(5), 1169-1178.
[95]
Shah, N.K.; Shah, N.M.; Patel, M.P.; Patel, R.G. Synthesis, characterization and antimicrobial activity of some new biquinoline derivatives containing a thiazole moiety. Chin. Chem. Lett., 2012, 23(4), 454-457.
[96]
Alizadeh, A.; Mikaeili, A.; Firuzyar, T. One-pot, pseudo five-component synthesis of spirooxindole derivatives containing fused 1,4-dihydropyridines in water. Synthesis (Stuttg), 2012, 44(9), 1380-1384.
[97]
Tu, S.; Li, C.; Li, G.; Cao, L.; Shao, Q.; Zhou, D.; Jiang, B.; Zhou, J.; Xia, M. Microwave-assisted combinatorial synthesis of polysubstituent imidazo[1,2-a]quinoline, pyrimido[1,2-a]quinoline and quinolino[1,2-a]quinazoline derivatives. J. Comb. Chem., 2007, 9(6), 1144-1148.
[98]
Shah, N.M.; Patel, M.P.; Patel, R.G. New N-arylamino biquinoline derivatives: Synthesis, antimicrobial, antituberculosis, and antimalarial evaluation. Eur. J. Med. Chem., 2012, 54, 239-247.
[99]
Shah, N.M.; Patel, M.P.; Patel, R.G. New N-arylamino biquinoline derivatives: Microwave-assisted synthesis and their antimicrobial activities. Med. Chem. Res., 2013, 22(1), 312-322.
[100]
Jardosh, H.H.; Patel, M.P. Design and synthesis of biquinolone-isoniazid hybrids as a new class of antitubercular and antimicrobial agents. Eur. J. Med. Chem., 2013, 65, 348-359.
[101]
Li, J.; Yu, Y.; Tu, M-S.; Jiang, B.; Wang, S-L.; Tu, S-J. New domino heteroannulation of enaminones: Synthesis of diverse fused naphthyridines. Org. Biomol. Chem., 2012, 10(28), 5361-5365.
[102]
Suarez, M.; Verdecia, Y.; Ochoa, E.; Martin, N.; Martinez, R.; Quinteiro, M.; Seoane, C.; Soto, J.L.; Novoa, H.; Blaton, N. Synthesis and structural study of novel 1,4,5,6,7,8-hexahydroquinolines. J. Heterocycl. Chem., 2000, 37(4), 735-742.
[103]
Mosslemin, M.H.; Nateghi, M.R. Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason. Sonochem., 2009, 17(1), 162-167.
[104]
Du, B-X.; Zhao, B.; Cai, G.; Li, Y-L.; Wang, X-S. Mild and efficient one-pot three-component synthesis of benzopyrimidoquinoline-tetralone derivatives in ionic liquids. J. Chem. Res., 2012, 36(8), 453-456.
[105]
Hassan, N.A.; Hegab, M.I.; Hashem, A.I.; Abdel-Motti, F.M.; Hebah, S.H.A.; Abdel-Megeid, F.M.E. Three-component, one-pot synthesis of pyrimido[4,5-b]-quinoline and pyrido[2,3-d] pyrimidine derivatives. J. Heterocycl. Chem., 2007, 44(4), 775-782.
[106]
Khurana, J.M.; Chaudhary, A.; Nand, B.; Lumb, A. Aqua mediated Indium(III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett., 2012, 53(24), 3018-3022.
[107]
Verma, G.K.; Raghuvanshi, K.; Kumar, R.; Singh, M.S. An efficient one-pot three-component synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Tetrahedron Lett., 2012, 53(4), 399-402.
[108]
Shi, D-Q.; Niu, L-H.; Yao, H.; Jiang, H. An efficient synthesis of pyrimido[4,5-b]quinoline derivatives via three-component reaction in aqueous media. J. Heterocycl. Chem., 2009, 46(2), 237-242.
[109]
Shi, D-Q.; Ni, S-N.; Yang, F.; Shi, J-W.; Dou, G-L.; Li, X-Y.; Wang, X-S.; Ji, S-J. An efficient synthesis of pyrimido[4,5-b]quinoline and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives via multicomponent reactions in ionic liquid. J. Heterocycl. Chem., 2008, 45(3), 693-702.
[110]
Jourshari, M.S.; Mamaghani, M.; Tabatabaeian, K.; Shirini, F.; Rassa, M.; Langhari, H. An efficient ultrasound promoted one-pot three-component synthesis and antibacterial activities of novel pyrimido[4,5-b]quinoline-4,6(3H,5H,7H,10H)-dione derivatives. Lett. Org. Chem., 2012, 9(9), 664-670.
[111]
Tu, S.; Fang, F.; Li, T.; Zhu, S.; Zhang, X. An efficient one-pot synthesis of novel pyrimidoquinoline derivatives under microwave irradiation without catalyst. J. Heterocycl. Chem., 2005, 42(4), 707-710.
[112]
Chen, Y.; Wu, S.; Tu, S.; Shi, F.; Li, C. An efficient synthesis of new benzo[1′,2′:6,7]quinolino[2,3-d]pyrimidine derivatives via three-component microwave-assisted reaction. J. Heterocycl. Chem., 2008, 45(4), 1243-1246.
[113]
Vilches-Herrera, M.; Knepper, I.; de Souza, N.; Villinger, A.; Sosnovskikh, V.Y.; Iaroshenko, V.O. One-pot, three-component synthesis of 7-azaindole derivatives from N-substituted 2-amino-4-cyanopyrroles, various aldehydes, and active methylene compounds. ACS Comb. Sci., 2012, 14(7), 434-441.
[114]
Chebanov, V.A.; Saraev, V.E.; Desenko, S.M.; Chernenko, V.N.; Knyazeva, I.V.; Groth, U.; Glasnov, T.N.; Kappe, C.O. Tuning of chemo- and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone, and aldehydes. J. Org. Chem., 2008, 73(13), 5110-5118.
[115]
Zhang, X.; Li, D.; Fan, X.; Wang, X.; Li, X.; Qu, G.; Wang, J. Ionic liquid-promoted multi-component reaction: Novel and efficient preparation of pyrazolo[3,4-b]pyridinone, pyrazolo[3,4-b]quinolinone and their hybrids with pyrimidine nucleoside. Mol. Divers., 2010, 14(1), 159-167.
[116]
Tu, S.; Wang, Q.; Zhang, Y.; Xu, J.; Zhang, J.; Zhu, X.; Shi, F. Design and synthesis of new and significative bifunctional compounds containing two pyrazolo[3,4-b]pyridine nucleis through multicomponent reaction under microwave irradiation. J. Heterocycl. Chem., 2007, 44(4), 811-814.
[117]
Wu, L.; Yang, L.; Yan, F.; Yang, C.; Fang, L. Molecular iodine: A versatile catalyst for the synthesis of 4-aryl-3-methyl-1-phenyl-1h-benzo[h]pyrazolo[3,4-b]quinoline-5,10-diones in water. Bull. Korean Chem. Soc., 2010, 31(4), 1051-1054.
[118]
Siddekha, A.; Azzam, S.H.S.; Pasha, M.A. Ultrasound-assisted, one-pot, four-component synthesis of 1,4,6,8-tetrahydroquinolines in aqueous medium. Synth. Commun., 2014, 44(3), 424-432.
[119]
Saha, M.; Luireingam, T.S.; Merry, T.; Pal, A.K. Catalyst-free, knoevenagel-michael addition reaction of dimedone under microwave irradiation: An efficient one-pot synthesis of polyhydroquinoline derivatives. J. Heterocycl. Chem., 2013, 50(4), 941-944.
[120]
Saha, M.; Pal, A.K. Palladium(0) nanoparticles: An efficient catalyst for the one-pot synthesis of polyhydroquinolines. Tetrahedron Lett., 2011, 52(38), 4872-4877.
[121]
Kassaee, M.Z.; Masrouri, H.; Movahedi, F. ZnO-nanoparticle-promoted synthesis of polyhydroquinoline derivatives via multicomponent Hantzsch reaction. Monatsh. Chem., 2010, 141(3), 317-322.
[122]
Kumar, S.; Sharma, P.; Kapoor, K.K.; Hundal, M.S. An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron, 2008, 64(3), 536-542.
[123]
Tu, S.; Zhang, J.; Zhu, X.; Zhang, Y.; Wang, Q.; Xu, J.; Jiang, B.; Jia, R.; Zhang, J.; Shi, F. One-pot synthesis of hexahydroquinolines via a four-component cyclocondensation under microwave irradiation in solvent free conditions: A green chemistry strategy. J. Heterocycl. Chem., 2006, 43(4), 985-988.
[124]
Khalafi-Nezhad, A.; Panahi, F. Synthesis of new dihydropyrimido[4,5-b]quinolinetrione derivatives using a four-component coupling reaction. Synthesis (Stuttg), 2011, 6, 984-992.
[125]
Khalafi-Nezhad, A.; Divar, M.; Panahi, F. Nucleosides as reagents in multicomponent reactions: One-pot synthesis of heterocyclic nucleoside analogues incorporating pyrimidine-fused rings. Tetrahedron Lett., 2013, 54(3), 220-222.
[126]
Ghozlan, S.A.S.; Mohamed, M.F.; Ahmed, A.G.; Shouman, S.A.; Attia, Y.M.; Abdelhamid, I.A. Cytotoxic and antimicrobial evaluations of novel apoptotic and anti-angiogenic spiro cyclic 2-oxindole derivatives of 2-amino-tetrahydroquinolin-5-one. Arch. Pharm. (Weinheim), 2015, 348(2), 113-124.
[127]
Hao, W-J.; Wang, S-Y.; Ji, S-J. Iodine-catalyzed cascade formal [3 + 3] cycloaddition reaction of indolyl alcohol derivatives with enaminones: Constructions of functionalized spirodihydrocarbolines. ACS Catal., 2013, 3(11), 2501-2504.
[128]
Kang, S.; Lee, Y. Efficient one-pot synthesis of spirooxindole derivatives bearing hexahydroquinolines using multicomponent reactions catalyzed by ethylenediamine diacetate. Synthesis (Stuttg), 2013, 45(18), 2593-2599.
[129]
Zhu, S-L.; Zhao, K.; Su, X-M.; Ji, S-J. Microwave-assisted synthesis of new spiro[indoline-3,4′-quinoline] derivatives via a one-pot multicomponent reaction. Synth. Commun., 2009, 39(8), 1355-1366.
[130]
Paul, S.; Das, A.R. Dual role of the polymer supported catalyst PEG-OSO3H in aqueous reaction medium: Synthesis of highly substituted structurally diversified coumarin and uracil fused spirooxindoles. Tetrahedron Lett., 2013, 54(9), 1149-1154.
[131]
Abdelmoniem, A.M.; Hassaneen, H.M.E.; Abdelhamid, I.A. An efficient one-pot synthesis of novel spiro cyclic 2-oxindole derivatives of pyrimido[4,5-b]quinoline, pyrido[2,3-d:6,5-d′] dipyrimidine and indeno[2′,1′:5,6]pyrido [2,3-d]pyrimidine in water. J. Heterocycl. Chem., 2016, 53(6), 2084-2090.
[132]
Jadidi, K.; Ghahremanzadeh, R.; Mirzaei, P.; Bazgir, A. Three-component synthesis of spiro[indoline-3,5′-pyrimido[4,5-b]quinoline]-triones in water. J. Heterocycl. Chem., 2011, 48(5), 1014-1018.
[133]
Quiroga, J.; Portillo, S.; Perez, A.; Galvez, J.; Abonia, R.; Insuasty, B. An efficient synthesis of pyrazolo[3,4-b]pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic β-diketones. Tetrahedron Lett., 2011, 52(21), 2664-2666.
[134]
Chen, H.; Shi, D. Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J. Comb. Chem., 2010, 12(4), 571-576.
[135]
Dabiri, M.; Tisseh, Z.N.; Nobahar, M.; Bazgir, A. Organic reaction in water: A highly efficient and environmentally friendly synthesis of spiro compounds catalyzed by L-Proline. Helv. Chim. Acta, 2011, 94(5), 824-830.
[136]
Kumar, M.; Sharma, K.; Arya, A.K. Use of SO3H-functionalized halogen free ionic liquid ([MIM(CH2)4SO3H] [HSO4]) as efficient promoter for the synthesis of structurally diverse spiroheterocycles. Tetrahedron Lett., 2012, 53(34), 4604-4608.
[137]
Balamurugan, K.; Perumal, S.; Menendez, J.C. New four-component reactions in water: A convergent approach to the metal-free synthesis of spiro[indoline/acenaphthylene-3,4′-pyrazolo[3,4-b]pyridine derivatives. Tetrahedron, 2011, 67(18), 3201-3208.
[138]
Kaplancıklı, Z.A.; Turan-Zitouni, G.; Özdemir, A.; Revial, G. New triazole and triazolothiadiazine derivatives as possible antimicrobial agents. Eur. J. Med. Chem., 2008, 43(1), 155-159.
[139]
De Souza, M.V.N.; Pais, K.C.; Kaiser, C.R.; Peralta, M.A.; Ferreira, M.L.; Lourenço, M.C.S. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem., 2009, 17(4), 1474-1480.
[140]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1, 2, 4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[141]
Shah, N.K.; Shah, N.M.; Patel, M.P.; Patel, R.G. The design, synthesis and antimicrobial activity of new biquinoline derivatives. J. Serb. Chem. Soc., 2012, 77(3), 279-286.
[142]
Gutierrez, P.L. The metabolism of quinone-containing alkylating agents: Free radical production and measurement. Front. Biosci., 2000, 5, 629-638.
[143]
Lin, A.J.; Cosby, L.A.; Shansky, C.W.; Sartorelli, A.C. Potential bioreductive alkylating agents. 1. benzoquinone derivatives. J. Med. Chem., 1972, 15(12), 1247-1252.
[144]
Wilson, I.; Wardman, P.; Lin, T.S.; Sartorelli, A.C. One-electron reduction of 2-and 6-methyl-1, 4-naphthoquinone bioreductive alkylating agents. J. Med. Chem., 1986, 29(8), 1381-1384.
[145]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Ghorab, W.M. Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase. J. Heterocycl. Chem., 2011, 48(6), 1269-1279.
[146]
Nishimura, Y. Rationale for chemoradiotherapy. Int. J. Clin. Oncol., 2004, 9(6), 414-420.
[147]
World Health Organization. Global Tuberculosis Report 2017, 2017.
[148]
Nath, H.; Ryoo, S. First- and Second-Line Drugs and Drug Resistance. In: Tuberculosis - Current Issues in Diagnosis and Management; InTech. , 2013.
[149]
Alcaide, F.; Santin, M. Multidrug-resistant tuberculosis. Enferm. Infecc. Microbiol. Clin., 2008, 26(Suppl. 1), 54-60.
[150]
LoBue, P. Extensively drug-resistant tuberculosis. Curr. Opin. Infect. Dis., 2009, 22(2), 167-173.
[151]
Velayati, A.A.; Farnia, P.; Masjedi, M.R. The Totally Drug
Resistant Tuberculosis (TDR-TB). International Journal of
Clinical and Experimental Medicine. e-Century Publishing
Corporation 2013, 307-309.
[152]
Matteelli, A.; Carvalho, A.C.C.; Dooley, K.E.; Kritski, A. TMC207: The first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol., 2010, 5(6), 849-858.
[153]
Asif, M.; Siddiqui, A.A.; Husain, A. Quinolone derivatives as antitubercular drugs. Med. Chem. Res., 2013, 22(3), 1029-1042.
[154]
Chai, Y.; Liu, M-L.; Lv, K.; Feng, L-S.; Li, S-J.; Sun, L-Y.; Wang, S.; Guo, H-Y. Synthesis and in vitro antibacterial activity of a series of novel gatifloxacin derivatives. Eur. J. Med. Chem., 2011, 46(9), 4267-4273.
[155]
Chai, Y.; Wan, Z-L.; Wang, B.; Guo, H-Y.; Liu, M-L. Synthesis and in vitro antibacterial activity of 7-(4-alkoxyimino-3-amino-3-methylpiperidin-1-yl) fluoroquinolone derivatives. Eur. J. Med. Chem., 2009, 44(10), 4063-4069.
[156]
Hoshino, K.; Inoue, K.; Murakami, Y.; Kurosaka, Y.; Namba, K.; Kashimoto, Y.; Uoyama, S.; Okumura, R.; Higuchi, S.; Otani, T. In vitro and in vivo antibacterial activities of DC-159a, a new fluoroquinolone. Antimicrob. Agents Chemother., 2008, 52(1), 65-76.
[157]
Jubie, S.; Prabitha, P.; Kumar, R.R.; Kalirajan, R.; Gayathri, R.; Sankar, S.; Elango, K. Design, synthesis, and docking studies of novel ofloxacin analogues as antimicrobial agents. Med. Chem. Res., 2012, 21(7), 1403-1410.
[158]
Plech, T.; Wujec, M.; Kosikowska, U.; Malm, A.; Rajtar, B.; Polz-Dacewicz, M. Synthesis and in vitro activity of 1, 2, 4-triazole-ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. Eur. J. Med. Chem., 2013, 60, 128-134.
[159]
Qi, Q-R.; Pan, J.; Guo, X-Q.; Weng, L-L.; Liang, Y-F. Synthesis and antibacterial activity of new fluoroquinolones containing a cis-or trans-cyclohexane moiety. Bioorg. Med. Chem. Lett., 2012, 22(24), 7688-7692.
[160]
Reck, F.; Alm, R.A.; Brassil, P.; Newman, J.V.; Ciaccio, P.; McNulty, J.; Barthlow, H.; Goteti, K.; Breen, J.; Comita-Prevoir, J. Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with Reduced p K a: Antibacterial agents with an improved safety profile. J. Med. Chem., 2012, 55(15), 6916-6933.
[161]
Villemagne, B.; Crauste, C.; Flipo, M.; Baulard, A.R.; Déprez, B.; Willand, N. Tuberculosis: The drug development pipeline at a glance. Eur. J. Med. Chem., 2012, 51, 1-16.
[162]
da Silva, P.E.A.; Ramos, D.F.; Bonacorso, H.G.; Agustina, I.; Oliveira, M.R.; Coelho, T.; Navarini, J.; Morbidoni, H.R.; Zanatta, N.; Martins, M.A.P. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro [chloro] methyl-4, 5-dihydro-1H-1-(isonicotinoyl) pyrazoles. Int. J. Antimicrob. Agents, 2008, 32(2), 139-144.
[163]
Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. Microwave assisted one-pot synthesis of highly potent novel isoniazid analogues. Bioorg. Med. Chem. Lett., 2011, 21(7), 2125-2128.
[164]
Myangar, K.N.; Raval, J.P. Design, Synthesis, and in vitro antimicrobial activities of novel azetidinyl-3-quinazolin-4-one hybrids. Med. Chem. Res., 2012, 21(10), 2762-2771.
[165]
Ramani, A.V.; Monika, A.; Indira, V.L.; Karyavardhi, G.; Venkatesh, J.; Jeankumar, V.U.; Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. Synthesis of highly potent novel anti-tubercular isoniazid analogues with preliminary pharmacokinetic evaluation. Bioorg. Med. Chem. Lett., 2012, 22(8), 2764-2767.
[166]
Shaharyar, M.; Siddiqui, A.A.; Ali, M.A.; Sriram, D.; Yogeeswari, P. Synthesis and in vitro antimycobacterial activity of N 1-nicotinoyl-3-(4′-hydroxy-3′-methyl phenyl)-5-[(sub) phenyl]-2-pyrazolines. Bioorg. Med. Chem. Lett., 2006, 16(15), 3947-3949.
[167]
Torres, E.; Moreno, E.; Ancizu, S.; Barea, C.; Galiano, S.; Aldana, I.; Monge, A.; Pérez-Silanes, S. New 1, 4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-mycobacterium tuberculosis agents. Bioorg. Med. Chem. Lett., 2011, 21(12), 3699-3703.
[168]
Kathrotiya, H.G.; Patel, M.P. Synthesis and identification of β-aryloxyquinoline based diversely fluorine substituted N-aryl quinolone derivatives as a new class of antimicrobial, antituberculosis and antioxidant agents. Eur. J. Med. Chem., 2013, 63, 675-684.
[169]
Khalafi-Nezhad, A.; Mohammadi, S. Magnetic, acidic, ionic liquid-catalyzed one-pot synthesis of spirooxindoles. ACS Comb. Sci., 2013, 15(9), 512-518.
[170]
Vilches-Herrera, M.; Spannenberg, A.; Langer, P.; Iaroshenko, V.O. Novel and efficient synthesis of 4,7-dihydro-1H-pyrrolo[2,3-b]pyridine derivatives via one-pot, three-component approach from N-substituted 5-amino-3-cyanopyrroles, various carbonyl and active methylene compounds. Tetrahedron, 2013, 69(29), 5955-5967.
[171]
Baydar, E.; Gündüz, M.G.; Krishna, V.S.; Şimşek, R.; Sriram, D.; Yıldırım, S.Ö.; Butcher, R.J.; Şafak, C. Synthesis, crystal structure and antimycobacterial activities of 4-indolyl-1, 4-dihydropyridine derivatives possessing various ester groups. Res. Chem. Intermed., 2017, 43(12), 7471-7489.
[172]
Parikh, S.L.; Xiao, G.; Tonge, P.J. Inhibition of InhA, the enoyl reductase from mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry, 2000, 39(26), 7645-7650.
[173]
Mahnam, K.; Sadeghi, A.; Mohammadpour, M.; Fassihi, A. Theoretical studies of 1, 4-dihydropyridine-3, 5-dicarboxamides as possible inhibitors of Mycobacterium tuberculosis enoyl reductase. Monatshefte Chemie-Chemical Mon., 2012, 143(1), 19-27.
[174]
Dolphin, A.C. A Short history of voltage-gated calcium channels. Br. J. Pharmacol., 2009, 147(S1), S56-S62.
[175]
Camerino, D.C.; Desaphy, J-F.; Tricarico, D.; Pierno, S.; Liantonio, A. Therapeutic approaches to ion channel diseases. Adv. Genet., 2008, 64, 81-145.
[176]
Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 2000, 1(1), 11-21.
[177]
Rash, B.G.; Ackman, J.B.; Rakic, P. Bidirectional radial Ca(2+) activity regulates neurogenesis and migration during early cortical column formation. Sci. Adv., 2016, 2(2)e1501733
[178]
Chafeev, M.; Costello, P.C.; Daynard, T.S.; Leung, D.; Sanghera, J.; Wang, S.; Yan, J.; Zhang, Z. Pyrazole compounds having anti proliferative activity., WO Patent 2,001,077,080, . 2001.
[179]
Triggle, D.J. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol., 2003, 23(3), 293-303.
[180]
Safak, C.; Simsek, R. Fused 1,4-dihydropyridines as potential calcium modulatory compounds. Mini Rev. Med. Chem., 2006, 6(7), 747-755.
[181]
León, R.; Ríos C, de los.; Marco-Contelles, J.; López, M.G.; García, A.G.; Villarroya, M. Synthesis of 6-amino-1,4-dihydropyridines that prevent calcium overload and neuronal death. Eur. J. Med. Chem., 2008, 43(3), 668-674.
[182]
Ioan, P.; Carosati, E.; Micucci, M.; Cruciani, G.; Broccatelli, F.S. Zhorov, B.; Chiarini, A.; Budriesi, R. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (Part 1): Action in ion channels and GPCRs. Curr. Med. Chem., 2011, 18(32), 4901-4922.
[183]
Bladen, C.; Gündüz, M.G.; Şimşek, R.; Şafak, C.; Zamponi, G.W. Synthesis and evaluation of 1,4-dihydropyridine derivatives with calcium channel blocking activity. Pflugers Arch.Eur. J. Physiol.,, 2014, 466(7), 1355-1363.
[184]
Simsek, R.; Öztürk, G.S.; Vural, I.M.; Gündüz, M.G.; Sarıoǧlu, Y.; Safak, C. Synthesis and calcium modulatory activity of 3-alkyloxy- carbonyl-4-(disubstituted)aryl-5-oxo-1,4,5,6,7,8-hexa-hydroquinoline derivatives. Arch. Pharm. (Weinheim), 2007, 341(1), 55-60.
[185]
Altaş, Y.; Şafak, C.; Batu, Ö.; Erol, K. Studies on calcium modulatory activities of 2,6,6-trimethyl-3-acetyl-4-aryl-5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives. Arzneimittelforschung, 2011, 49(10), 824-829.
[186]
Şimşek, R.; S¸afak, C.; Erol, K.; Ataman, Ş.; Ülgen, M.; Linden, A. Synthesis, evaluation of the calcium antagonistic activity and biotransformation of hexahydroquinoline and furoquinoline derivatives. Arzneimittelforschung, 2011, 53(03), 159-166.
[187]
Gözde Gündüz, M.; Albayrak, E.; İşli, F.; Sevim, G.; Fincan, Ö.; Yildirim, Ş.; Şimşek, R.; Şafak, C.; Sarioğlu, Y.; Yidirim, S.Ö. Synthesis, structural characterization and myorelaxant activity of 4-naphthylhexahydroquinoline derivatives containing different ester groups. J. Serb. Chem. Soc., 2016, 81(7), 729-738.
[188]
Özer, E.K.; Gündüz, M.G.; El-khouly, A.; Sara, M.Y.; Şimşek, R.; Iskit, A.B.; Şafak, O.C. Microwave-assisted synthesis of condensed 1, 4-dihydropyridines as potential calcium channel modulators. Turk. J. Chem., 2015, 39(4), 886-896.
[189]
Aydin, F.; Şafak, C.; Şimşek, R.; Erol, K.; Ülgen, M.; Linden, A. Studies on condensed 1, 4-dihydropyridine derivatives and their calcium modulatory activities. Die Pharm. Int. J. Pharm. Sci., 2006, 61(8), 655-659.
[190]
Guengerich, F.P.; Peterson, L.A.; Böcker, R.H. Cytochrome P-450-catalyzed hydroxylation and carboxylic acid ester cleavage of hantzsch pyridine esters. J. Biol. Chem., 1988, 263(17), 8176-8183.
[191]
Rose, U. Calcium modulators of the anellated dihydropyridine type. Synthesis and pharmacologic action. Arzneim Forsch Drug Res., 1989, 39, 1393-1398.