Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Synthetic Approaches and Biological Evaluations of Amino Hexahydroquinolines and Their Spirocyclic Structures

Author(s): Amr M. Abdelmoniem, Magda F. Mohamed, Doaa M. Abdelmoniem, Said A.S. Ghozlan and Ismail A. Abdelhamid*

Volume 19, Issue 7, 2019

Page: [875 - 915] Pages: 41

DOI: 10.2174/1871520619666190131140436

Price: $65

Abstract

In this review, the recent synthetic approaches of amino hexahydroquinolines and their spirocyclic structures were highlighted. The synthetic routes include, two-components, three-components or fourcomponents reactions. The two-component [3+3] atom combination reaction represents the simplest method. It involves Michael addition of the electron rich β-carbon of β-enaminones to the activated double bond of cinnamonitriles followed by cyclization to yield hexahydroquinoline compounds. The bioactivity profiles and SAR studies of these compounds were also reviewed with emphasis to the utility of these substances as antimicrobial, anticancer and antitubercular agents, as well as calcium channel modulators.

Keywords: Hexahydroquinolines, fused and spirocyclic derivatives, synthetic approaches, antimicrobial, anticancer, anti-tuberculosis activity, calcium channel modulators.

Graphical Abstract

[1]
Carosati, E.; Mannhold, R.; Wahl, P.; Hansen, J.B.; Fremming, T.; Zamora, I.; Cianchetta, G.; Baroni, M. Virtual screening for novel openers of pancreatic KATP channels. J. Med. Chem., 2007, 50(9), 2117-2126.
[2]
Heitsch, H. Non-Peptide antagonists and agonists of the bradykinin B2 receptor. Curr. Med. Chem., 2002, 9(9), 913-928.
[3]
Tsotinis, A.; Vlachou, M.; Zouroudis, S.; Jeney, A.; Timár, F.; Thurston, D.E.; Roussakis, C. A facile synthesis of c2-substituted pyrrolo [2, 3-f] quinolines with cytotoxic activity. Lett. Drug Des. Discov., 2005, 2(3), 189-192.
[4]
Joshi, A.A.; Viswanathan, C.L. Docking studies and development of novel 5-heteroarylamino-2, 4-diamino-8-chloropyrimido-[4, 5-b] quinolines as potential antimalarials. Bioorg. Med. Chem. Lett., 2006, 16(10), 2613-2617.
[5]
Kym, P.R.; Kort, M.E.; Coghlan, M.J.; Moore, J.L.; Tang, R.; Ratajczyk, J.D.; Larson, D.P.; Elmore, S.W.; Pratt, J.K.; Stashko, M.A. Nonsteroidal selective glucocorticoid modulators: The effect of C-10 substitution on receptor selectivity and functional potency of 5-allyl-2, 5-dihydro-2, 2, 4-trimethyl-1h-[1] benzopyrano [3, 4-f] quinolines. J. Med. Chem., 2003, 46(6), 1016-1030.
[6]
Matsuyama, N.; Kato, T.; Kimura, K.; Mizutani, T.; Saeki, K. Phenotype analysis of human cytochrome P450 2C9 polymorphism using a panel of fluorine-substituted benzo [h] quinolines as inhibitors of tolbutamide hydroxylation. J. Health Sci., 2006, 52(6), 821-824.
[7]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[8]
Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B.A.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U.S.N.; Rao, V.J. Synthesis of multisubstituted quinolines from baylis-hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity. Bioorg. Med. Chem., 2006, 14(13), 4600-4609.
[9]
Nayyar, A.; Malde, A.; Jain, R.; Coutinho, E. 3D-QSAR study of ring-substituted quinoline class of anti-tuberculosis agents. Bioorg. Med. Chem., 2006, 14(3), 847-856.
[10]
Ridley, R.G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature, 2002, 415, 686-693.
[11]
Robert, A.; Dechy-Cabaret, O.; Cazelles, J.; Meunier, B. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Acc. Chem. Res., 2002, 35(3), 167-174.
[12]
Agrawal, A.K.; Jenekhe, S.A. Synthesis and processing of heterocyclic polymers as electronic, optoelectronic, and nonlinear optical materials. 3. new conjugated polyquinolines with electron-donor or -acceptor side groups. Chem. Mater., 1993, 5(5), 633-640.
[13]
Jégou, G.; Jenekhe, S.A. Highly fluorescent poly(arylene ethynylene)s containing quinoline and 3-alkylthiophene. Macromolecules, 2001, 34(23), 7926-7928.
[14]
Jenekhe, S.A.; Lu, L.; Alam, M.M. New conjugated polymers with donor-acceptor architectures: Synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules, 2001, 34(21), 7315-7324.
[15]
Jenekhe, S.A.; Chen, X.L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science, 1998, 279(5358), 1903-1907.
[16]
Jenekhe, S.A. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science, 1999, 283(5400), 372-375.
[17]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Hamed, M.M.; Noaman, E.; Ghorab, M.M. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2009, 19(24), 6939-6942.
[18]
Al-Said, M.S.; Ghorab, M.M.; Al-Dosari, M.S.; Hamed, M.M. Synthesis and in vitro anticancer evaluation of some novel hexahydroquinoline derivatives having a benzenesulfonamide moiety. Eur. J. Med. Chem., 2011, 46(1), 201-207.
[19]
Gündüz, M.G.; Sevim Öztürk, G.; Vural, İ.M.; Şimşek, R.; Sarıoğlu, Y.; Şafak, C. Evaluation of myorelaxant activity of 7-substituted hexahydroquinoline derivatives in isolated rabbit gastric fundus. Eur. J. Med. Chem., 2008, 43(3), 562-568.
[20]
León, R.; Ríos C. , de los ; Marco-Contelles, J.; Huertas, O.; Barril, X.; Javier Luque, F.; López, M.G.; García, A.G.; Villarroya, M. New tacrine-dihydropyridine hybrids that inhibit acetylcholinesterase, calcium entry, and exhibit neuroprotection properties. Bioorg. Med. Chem., 2008, 16(16), 7759-7769.
[21]
Miri, R.; Javidnia, K.; Mirkhani, H.; Hemmateenejad, B.; Sepeher, Z.; Zalpour, M.; Behzad, T.; Khoshneviszadeh, M.; Edraki, N.; Mehdipour, A.R. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole. Chem. Biol. Drug Des., 2007, 70(4), 329-336.
[22]
El-Sabbagh, O.I.; Shabaan, M.A.; Kadry, H.H.; Al-Din, E.S. Synthesis of new nonclassical acridines, quinolines, and quinazolines derived from dimedone for biological evaluation Arch. der Pharm. (Weinheim, Ger.),, 2010, 343(9), 519-527.
[23]
Godfraind, T.; Miller, R.; Wibo, M. Calcium antagonism and calcium entry blockade. Pharmacol. Rev., 1986, 38(4), 321-416.
[24]
Mager, P.P.; Coburn, R.A.; Solo, A.J.; Triggle, D.J.; Rothe, H. QSAR, diagnostic statistics and molecular modelling of 1,4-dihydropyridine calcium antagonists: A difficult road ahead. Drug Des. Discov., 1992, 8(4), 273-289.
[25]
Mannhold, R.; Jablonka, B.; Voigt, W.; Schönafinger, K.; Schraven, E. Calcium- and calmodulin-antagonism of elnadipine derivatives: Comparative SAR. Eur. J. Med. Chem., 1992, 27(3), 229-235.
[26]
Sawada, Y.; Kayakiri, H.; Abe, Y.; Mizutani, T.; Inamura, N.; Asano, M.; Hatori, C.; Aramori, I.; Oku, T.; Tanaka, H. Discovery of the first non-peptide full agonists for the human bradykinin B2 receptor incorporating 4-(2-picolyloxy)quinoline and 1-(2-picolyl)benzimidazole frameworks. J. Med. Chem., 2004, 47(11), 2853-2863.
[27]
Shan, R.; Velazquez, C.; Knaus, E.E. Syntheses, calcium channel agonist−antagonist modulation activities, and nitric oxide release studies of nitrooxyalkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)pyridine-5-carboxylate racemates, enantiomers, and diastereomers. J. Med. Chem., 2004, 47(1), 254-261.
[28]
Triggle, D.J.; Langs, D.A.; Janis, R.A. Ca2+ channel ligands: Structure-function relationships of the 1,4-dihydropyridines. Med. Res. Rev., 1989, 9(2), 123-180.
[29]
Aruoma, O.I.; Smith, C.; Cecchini, R.; Evans, P.J.; Halliwell, B. Free radical scavenging and inhibition of lipid peroxidation by β-blockers and by agents that interfere with calcium metabolism. Biochem. Pharmacol., 1991, 42(4), 735-743.
[30]
Hilgeroth, A. Dimeric 4-aryl-1,4-dihydropyridines: Development of a third class of nonpeptidic HIV-1 protease inhibitors. Mini Rev. Med. Chem., 2002, 2(3), 235-245.
[31]
Kawase, M.; Shah, A.; Gaveriya, H.; Motohashi, N. 3, 5-dibenzoyl-1, 4-dihydropyridines: Synthesis and MDR reversal in tumor cells. Bioorg. Med., 2002, 10(4), 1051-1055.
[32]
Boer, R.; Gekeler, V. Chemosensitizers in tumor therapy: New compounds promise better efficacy. Drugs Future, 1995, 20, 499.
[33]
Bretzel, R.G.; Bollen, C.C.; Maeser, E.; Federlin, K.F. Nephroprotective effects of nitrendipine in hypertensive Tune I and Type II diabetic patients. Am. J. Kidney Dis., 1993, 21(6), S53-S64.
[34]
Klusa, V. Cerebrocrast. Neuroprotectant, cognition enhancer‏. Drugs Future, 1995, 20, 135-138.
[35]
Sausins, A.; Duburs, G. Synthesis of 1, 4-dihydropyridines by cyclocondensation reactions. Heterocycles, 1988, 27(1), 269-289.
[36]
Lin, H.; Danishefsky, S.J. Gelsemine: A thought-provoking target for total synthesis. Angew. Chem. Int. Ed., 2003, 42(1), 36-51.
[37]
Marti, C.; Carreira, E.M. Construction of spiro[pyrrolidine-3,3′-oxindoles] - recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem., 2003, 2003(12), 2209-2219.
[38]
Trost, B.M.; Jiang, C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis (Stuttg), 2006, 3, 369-396.
[39]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. Engl., 2007, 46(46), 8748-8758.
[40]
Edmondson, S.; Danishefsky, S.J.; Sepp-Lorenzino, L.; Rosen, N. Total synthesis of spirotryprostatin a, leading to the discovery of some biologically promising analogues. J. Am. Chem. Soc., 1999, 121(10), 2147-2155.
[41]
Parthasarathy, K.; Praveen, C.; Balachandran, C.; Senthil Kumar, P.; Ignacimuthu, S.; Perumal, P.T. Cu(OTf)2 catalyzed three component reaction: Efficient synthesis of spiro[indoline-3,4′-pyrano[3,2-b]pyran derivatives and their anticancer potency towards A549 human lung cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(9), 2708-2713.
[42]
Parthasarathy, K.; Praveen, C.; Kumar, P.S.; Balachandran, C.; Perumal, P.T. Cu(OTf)2 catalyzed three component strategy for the synthesis of thienopyridine containing spirooxindoles and their cytotoxic evaluation. RSC Advances, 2015, 5(21), 15818-15830.
[43]
Parthasarathy, K.; Praveen, C.; Jeyaveeran, J.C.; Prince, A.A.M. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4310-4317.
[44]
Parthasarathy, K.; Praveen, C.; Saranraj, K.; Balachandran, C.; Kumar, P.S. Synthesis, antimicrobial and cytotoxic evaluation of spirooxindole.[pyrano-bis-2H-l-benzopyrans]. Med. Chem. Res., 2016, 25(10), 2155-2170.
[45]
Vadivelu, M.; Raheem, A.A.; Sugirdha, S.; Bhaskar, G.; Karthikeyan, K.; Praveen, C. Gold catalyzed synthesis of tetrahydropyrimidines and octahydroquinazolines under ball milling conditions and evaluation of anticonvulsant potency. ARKIVOC, 2017, 2018(3), 90-101.
[46]
Bello, D.; Ramon, R.; Lavilla, R. Mechanistic variations of the povarov multicomponent reaction and related processes. Curr. Org. Chem., 2010, 14(4), 332-356.
[47]
González-López, M.; Shaw, J.T. Cyclic anhydrides in formal cycloadditions and multicomponent reactions. Chem. Rev., 2009, 109(1), 164-189.
[48]
Yan, R-L.; Yan, H.; Ma, C.; Ren, Z-Y.; Gao, X-A.; Huang, G-S.; Liang, Y-M. Cu (I)-catalyzed synthesis of imidazo [1, 2-a] pyridines from aminopyridines and nitroolefins using air as the oxidant. J. Org. Chem., 2012, 77(4), 2024-2028.
[49]
Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. CO2 Incorporation reaction using arynes: Straightforward access to benzoxazinone. J. Am. Chem. Soc., 2006, 128(34), 11040-11041.
[50]
Zhu, J-P.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, Germany, 2005.
[51]
Groenendaal, B.; Ruijter, E.; Orru, R.V.A. 1-Azadienes in cycloaddition and multicomponent reactions towards N-heterocycles. Chem. Commun. , 2008, 43, 5474-5489.
[52]
Isambert, N.; Lavilla, R. Heterocycles as key substrates in multicomponent reactions: The fast lane towards molecular complexity. Chemistry Eur. J, 2008, 14(28), 8444-8454.
[53]
Liu, W.; Jiang, H.; Huang, L. One-pot silver-catalyzed and PIDA-mediated sequential reactions: Synthesis of polysubstituted pyrroles directly from alkynoates and amines. Org. Lett., 2009, 12(2), 312-315.
[54]
Marson, C.M. Multicomponent and sequential organocatalytic reactions: Diversity with atom-economy and enantiocontrol. Chem. Soc. Rev., 2012, 41(23), 7712-7722.
[55]
Perreault, S.; Rovis, T. Multi-component cycloaddition approaches in the catalytic asymmetric synthesis of alkaloid targets. Chem. Soc. Rev., 2009, 38(11), 3149-3159.
[56]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6234-6246.
[57]
Simon, C.; Constantieux, T.; Rodriguez, J. Utilisation of 1, 3α dicarbonyl derivatives in multicomponent reactions. Eur. J. Org. Chem., 2004, 2004(24), 4957-4980.
[58]
Yan, C.G.; Wang, Q.F.; Song, X.K.; Sun, J. One-step synthesis of pyrido [1, 2-a] benzimidazole derivatives by a novel multicomponent reaction of chloroacetonitrile, malononitrile, aromatic aldehyde, and pyridine. J. Org. Chem., 2008, 74(2), 710-718.
[59]
Bonne, D.; Dekhane, M.; Zhu, J. Modulating the reactivity of αα isocyanoacetates: Multicomponent synthesis of 5α methoxyoxazoles and furopyrrolones. Angew. Chem. Int. Ed., 2007, 46(14), 2485-2488.
[60]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[61]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[62]
Hong, D.; Zhu, Y.; Li, Y.; Lin, X.; Lu, P.; Wang, Y. Three-component synthesis of polysubstituted pyrroles from α-diazoketones, nitroalkenes, and amines. Org. Lett., 2011, 13(17), 4668-4671.
[63]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S-J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[64]
Lin, X.; Mao, Z.; Dai, X.; Lu, P.; Wang, Y. A straightforward one-pot multicomponent synthesis of polysubstituted pyrroles. Chem. Commun. , 2011, 47(23), 6620-6622.
[65]
Blackwell, H.E. Hitting the SPOT: Small-molecule macroarrays advance combinatorial synthesis. Curr. Opin. Chem. Biol., 2006, 10(3), 203-212.
[66]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[67]
Toure, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[68]
Yu, J.; Shi, F.; Gong, L-Z. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc. Chem. Res., 2011, 44(11), 1156-1171.
[69]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[70]
Jiang, B.; Tu, S-J.; Kaur, P.; Wever, W.; Li, G. Four-component domino reaction leading to multifunctionalized quinazolines. J. Am. Chem. Soc., 2009, 131(33), 11660-11661.
[71]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry Eur. J., 2009, 15(6), 1300-1308.
[72]
Tietze, L.F.; Kinzel, T.; Brazel, C.C. The domino multicomponent allylation reaction for the stereoselective synthesis of homoallylic alcohols. Acc. Chem. Res., 2009, 42(2), 367-378.
[73]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Nissan, Y.M.; Ghorab, W.M. Novel brominated quinoline and pyrimidoquinoline derivatives as potential cytotoxic agents with synergistic effects of γ-radiation. Arch. Pharm. Res., 2012, 35(8), 1335-1346.
[74]
El-Sadek, M.E.; Aboukull, M.; El-Sabbagh, O.I.; Shallal, H.M. Synthesis of hexahydro-1H-pyrido[3,2-c]azepines as hypotensive agents of expected calcium-channel blocking activity. Monatsh. Chem., 2007, 138(3), 219-225.
[75]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Noaman, E.; Ghorab, M.M. Novel quinolines and pyrimido[4,5-b]quinolines bearing biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(2), 738-744.
[76]
Ghorab, M.M.; Al-Said, M.S.; El-Hossary, E.M. In vitro cytotoxic evaluation of some new heterocyclic sulfonamide derivatives. J. Heterocycl. Chem., 2011, 48(3), 563-571.
[77]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Arafa, R.K.; El-Hossary, E.M. In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety. Eur. J. Med. Chem., 2010, 45(9), 3677-3684.
[78]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Ghorab, M.M.; Noaman, E. Discovering some novel tetrahydroquinoline derivatives bearing the biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(5), 1849-1853.
[79]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Arafa, R.K.; El-Hossary, E.M. Docking study, in vitro anticancer screening and radiosensitizing evaluation of some new fluorine-containing quinoline and pyrimidoquinoline derivatives bearing a sulfonamide moiety. Med. Chem. Res., 2010, 20(3), 388-400.
[80]
Ghozlan, S.A.S.; Ahmed, A.G.; Abdelhamid, I.A. Regioorientation in the addition reaction of α-substituted cinnamonitrile to enamines utilizing chitosan as a green catalyst: Unambiguous structural characterization using 2D-HMBC NMR spectroscopy. J. Heterocycl. Chem., 2016, 53(3), 817-823.
[81]
Lichitsky, B.V.; Dudinov, A.A.; Krayushkin, M.M. Reaction of 3- aminocyclohex-2-en-1-ones with arylidenemalononitriles: Synthesis of N-substituted 1,4,5,6,7,8-hexahydroquinolin-5-ones Ark. (Gainesville, FL, United States),, 2001, 9, 73-79.
[82]
Lichitsky, B.V.; Ivanov, S.N.; Dudinov, A.A.; Woznesensky, S.A.; Krayushkin, M.M. Reactions of cyclic enaminoketones with benzylidenemalononitriles. synthesis of new fused heterocyclic systems containing the 1,4-dihydropyridine fragment. Russ. Chem. Bull., 2001, 50(12), 2428-2432.
[83]
Lichitsky, B.V; Yarovenko, V.N.; Zavarzin, I.V.; Krayushkin, M.M. Reactions of cyclic enehydrazinoketones with arylidene derivatives of malononitrile. synthesis of fused N-substituted 1,4- dihydropyridines. Russ. Chem. Bull. (Translation Izv. Akad. Nauk. Seriya Khimicheskaya), 2000, 49(7), 1251-1254.
[84]
Alekseeva, A.Y.; Mikhailov, D.L.; Bardasov, I.N.; Ershov, O.V.; Nasakin, O.E. One-stage synthesis of highly functionalized NSubstituted 1,8-naphthyridines Russ. J. Org. Chem. (Translation Zhurnal Org. Khimii), , 2013, 49(11), 1715-1717.
[85]
Singh, S.K.; Singh, K.N. DBU-catalyzed expeditious and facile multicomponent synthesis of N-arylquinolines under microwave irradiation. Monatsh. Chem., 2012, 143(5), 805-808.
[86]
Ahmadi, S.J.; Hosseinpour, M.; Sadjadi, S. Nanocrystalline Copper(II) oxide-catalyzed one-pot synthesis of imidazo[1,2-a]quinoline and quinolino[1,2-a]quinazoline derivatives via a three-component condensation. Synth. Commun., 2011, 41(3), 426-435.
[87]
Shi, C.; Chen, H.; Li, Y.; Shi, D.; Ji, M. A three-component synthesis of N-Substituted quinoline-3-carbonitrile derivatives catalysed by L-Proline. J. Chem. Res., 2008, 9, 534-537.
[88]
Gao, S.; Tsai, C.H.; Tseng, C.; Yao, C.F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-Chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron, 2008, 64(38), 9143-9149.
[89]
Wang, X-S.; Zhang, M-M.; Jiang, H.; Yao, C-S.; Tu, S-J. Uncatalyzed and solvent-free process for the synthesis of 1,4-diarylquinoline derivatives. Synth. Commun., 2008, 38(9), 1355-1364.
[90]
Wang, X-S.; Zhang, M-M.; Jiang, H.; Yao, C-S.; Tu, S-J. Three-component green synthesis of N-arylquinoline derivatives in ionic liquid [Bmim+][BF-4]: Reactions of arylaldehyde, 3-arylamino-5,5-dimethylcyclohex-2-enone, and active methylene compounds. Tetrahedron, 2007, 63(21), 4439-4449.
[91]
Tu, S-J.; Jiang, B.; Jia, R-H.; Zhang, J-Y.; Zhang, Y.; Yao, C-S.; Shi, F. An efficient one-pot, three-component synthesis of indeno[1,2-b]quinoline-9,11(6H,10H)-dione, acridine-1,8(2H,5H)-dione and quinoline-3-carbonitrile derivatives from enaminones. Org. Biomol. Chem., 2006, 4(19), 3664-3668.
[92]
Thumar, N.J.; Patel, M.P. Synthesis and antimicrobial activity of some new N-Substituted quinoline derivatives of 1H-Pyrazole. Arch. Pharm. Life Sci., 2011, 344(2), 91-101.
[93]
Makawana, J.A.; Patel, M.P.; Patel, R.G. Synthesis and in vitro antimicrobial activity of N-Arylquinoline derivatives bearing 2-morpholinoquinoline moiety. Chin. Chem. Lett., 2012, 23(4), 427-430.
[94]
Thumar, N.J.; Patel, M.P. Synthesis, characterization, and in vitro microbial evaluation of some new 4H-chromene and quinoline derivatives of 1H-Pyrazole. J. Heterocycl. Chem., 2012, 49(5), 1169-1178.
[95]
Shah, N.K.; Shah, N.M.; Patel, M.P.; Patel, R.G. Synthesis, characterization and antimicrobial activity of some new biquinoline derivatives containing a thiazole moiety. Chin. Chem. Lett., 2012, 23(4), 454-457.
[96]
Alizadeh, A.; Mikaeili, A.; Firuzyar, T. One-pot, pseudo five-component synthesis of spirooxindole derivatives containing fused 1,4-dihydropyridines in water. Synthesis (Stuttg), 2012, 44(9), 1380-1384.
[97]
Tu, S.; Li, C.; Li, G.; Cao, L.; Shao, Q.; Zhou, D.; Jiang, B.; Zhou, J.; Xia, M. Microwave-assisted combinatorial synthesis of polysubstituent imidazo[1,2-a]quinoline, pyrimido[1,2-a]quinoline and quinolino[1,2-a]quinazoline derivatives. J. Comb. Chem., 2007, 9(6), 1144-1148.
[98]
Shah, N.M.; Patel, M.P.; Patel, R.G. New N-arylamino biquinoline derivatives: Synthesis, antimicrobial, antituberculosis, and antimalarial evaluation. Eur. J. Med. Chem., 2012, 54, 239-247.
[99]
Shah, N.M.; Patel, M.P.; Patel, R.G. New N-arylamino biquinoline derivatives: Microwave-assisted synthesis and their antimicrobial activities. Med. Chem. Res., 2013, 22(1), 312-322.
[100]
Jardosh, H.H.; Patel, M.P. Design and synthesis of biquinolone-isoniazid hybrids as a new class of antitubercular and antimicrobial agents. Eur. J. Med. Chem., 2013, 65, 348-359.
[101]
Li, J.; Yu, Y.; Tu, M-S.; Jiang, B.; Wang, S-L.; Tu, S-J. New domino heteroannulation of enaminones: Synthesis of diverse fused naphthyridines. Org. Biomol. Chem., 2012, 10(28), 5361-5365.
[102]
Suarez, M.; Verdecia, Y.; Ochoa, E.; Martin, N.; Martinez, R.; Quinteiro, M.; Seoane, C.; Soto, J.L.; Novoa, H.; Blaton, N. Synthesis and structural study of novel 1,4,5,6,7,8-hexahydroquinolines. J. Heterocycl. Chem., 2000, 37(4), 735-742.
[103]
Mosslemin, M.H.; Nateghi, M.R. Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason. Sonochem., 2009, 17(1), 162-167.
[104]
Du, B-X.; Zhao, B.; Cai, G.; Li, Y-L.; Wang, X-S. Mild and efficient one-pot three-component synthesis of benzopyrimidoquinoline-tetralone derivatives in ionic liquids. J. Chem. Res., 2012, 36(8), 453-456.
[105]
Hassan, N.A.; Hegab, M.I.; Hashem, A.I.; Abdel-Motti, F.M.; Hebah, S.H.A.; Abdel-Megeid, F.M.E. Three-component, one-pot synthesis of pyrimido[4,5-b]-quinoline and pyrido[2,3-d] pyrimidine derivatives. J. Heterocycl. Chem., 2007, 44(4), 775-782.
[106]
Khurana, J.M.; Chaudhary, A.; Nand, B.; Lumb, A. Aqua mediated Indium(III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett., 2012, 53(24), 3018-3022.
[107]
Verma, G.K.; Raghuvanshi, K.; Kumar, R.; Singh, M.S. An efficient one-pot three-component synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Tetrahedron Lett., 2012, 53(4), 399-402.
[108]
Shi, D-Q.; Niu, L-H.; Yao, H.; Jiang, H. An efficient synthesis of pyrimido[4,5-b]quinoline derivatives via three-component reaction in aqueous media. J. Heterocycl. Chem., 2009, 46(2), 237-242.
[109]
Shi, D-Q.; Ni, S-N.; Yang, F.; Shi, J-W.; Dou, G-L.; Li, X-Y.; Wang, X-S.; Ji, S-J. An efficient synthesis of pyrimido[4,5-b]quinoline and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives via multicomponent reactions in ionic liquid. J. Heterocycl. Chem., 2008, 45(3), 693-702.
[110]
Jourshari, M.S.; Mamaghani, M.; Tabatabaeian, K.; Shirini, F.; Rassa, M.; Langhari, H. An efficient ultrasound promoted one-pot three-component synthesis and antibacterial activities of novel pyrimido[4,5-b]quinoline-4,6(3H,5H,7H,10H)-dione derivatives. Lett. Org. Chem., 2012, 9(9), 664-670.
[111]
Tu, S.; Fang, F.; Li, T.; Zhu, S.; Zhang, X. An efficient one-pot synthesis of novel pyrimidoquinoline derivatives under microwave irradiation without catalyst. J. Heterocycl. Chem., 2005, 42(4), 707-710.
[112]
Chen, Y.; Wu, S.; Tu, S.; Shi, F.; Li, C. An efficient synthesis of new benzo[1′,2′:6,7]quinolino[2,3-d]pyrimidine derivatives via three-component microwave-assisted reaction. J. Heterocycl. Chem., 2008, 45(4), 1243-1246.
[113]
Vilches-Herrera, M.; Knepper, I.; de Souza, N.; Villinger, A.; Sosnovskikh, V.Y.; Iaroshenko, V.O. One-pot, three-component synthesis of 7-azaindole derivatives from N-substituted 2-amino-4-cyanopyrroles, various aldehydes, and active methylene compounds. ACS Comb. Sci., 2012, 14(7), 434-441.
[114]
Chebanov, V.A.; Saraev, V.E.; Desenko, S.M.; Chernenko, V.N.; Knyazeva, I.V.; Groth, U.; Glasnov, T.N.; Kappe, C.O. Tuning of chemo- and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone, and aldehydes. J. Org. Chem., 2008, 73(13), 5110-5118.
[115]
Zhang, X.; Li, D.; Fan, X.; Wang, X.; Li, X.; Qu, G.; Wang, J. Ionic liquid-promoted multi-component reaction: Novel and efficient preparation of pyrazolo[3,4-b]pyridinone, pyrazolo[3,4-b]quinolinone and their hybrids with pyrimidine nucleoside. Mol. Divers., 2010, 14(1), 159-167.
[116]
Tu, S.; Wang, Q.; Zhang, Y.; Xu, J.; Zhang, J.; Zhu, X.; Shi, F. Design and synthesis of new and significative bifunctional compounds containing two pyrazolo[3,4-b]pyridine nucleis through multicomponent reaction under microwave irradiation. J. Heterocycl. Chem., 2007, 44(4), 811-814.
[117]
Wu, L.; Yang, L.; Yan, F.; Yang, C.; Fang, L. Molecular iodine: A versatile catalyst for the synthesis of 4-aryl-3-methyl-1-phenyl-1h-benzo[h]pyrazolo[3,4-b]quinoline-5,10-diones in water. Bull. Korean Chem. Soc., 2010, 31(4), 1051-1054.
[118]
Siddekha, A.; Azzam, S.H.S.; Pasha, M.A. Ultrasound-assisted, one-pot, four-component synthesis of 1,4,6,8-tetrahydroquinolines in aqueous medium. Synth. Commun., 2014, 44(3), 424-432.
[119]
Saha, M.; Luireingam, T.S.; Merry, T.; Pal, A.K. Catalyst-free, knoevenagel-michael addition reaction of dimedone under microwave irradiation: An efficient one-pot synthesis of polyhydroquinoline derivatives. J. Heterocycl. Chem., 2013, 50(4), 941-944.
[120]
Saha, M.; Pal, A.K. Palladium(0) nanoparticles: An efficient catalyst for the one-pot synthesis of polyhydroquinolines. Tetrahedron Lett., 2011, 52(38), 4872-4877.
[121]
Kassaee, M.Z.; Masrouri, H.; Movahedi, F. ZnO-nanoparticle-promoted synthesis of polyhydroquinoline derivatives via multicomponent Hantzsch reaction. Monatsh. Chem., 2010, 141(3), 317-322.
[122]
Kumar, S.; Sharma, P.; Kapoor, K.K.; Hundal, M.S. An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron, 2008, 64(3), 536-542.
[123]
Tu, S.; Zhang, J.; Zhu, X.; Zhang, Y.; Wang, Q.; Xu, J.; Jiang, B.; Jia, R.; Zhang, J.; Shi, F. One-pot synthesis of hexahydroquinolines via a four-component cyclocondensation under microwave irradiation in solvent free conditions: A green chemistry strategy. J. Heterocycl. Chem., 2006, 43(4), 985-988.
[124]
Khalafi-Nezhad, A.; Panahi, F. Synthesis of new dihydropyrimido[4,5-b]quinolinetrione derivatives using a four-component coupling reaction. Synthesis (Stuttg), 2011, 6, 984-992.
[125]
Khalafi-Nezhad, A.; Divar, M.; Panahi, F. Nucleosides as reagents in multicomponent reactions: One-pot synthesis of heterocyclic nucleoside analogues incorporating pyrimidine-fused rings. Tetrahedron Lett., 2013, 54(3), 220-222.
[126]
Ghozlan, S.A.S.; Mohamed, M.F.; Ahmed, A.G.; Shouman, S.A.; Attia, Y.M.; Abdelhamid, I.A. Cytotoxic and antimicrobial evaluations of novel apoptotic and anti-angiogenic spiro cyclic 2-oxindole derivatives of 2-amino-tetrahydroquinolin-5-one. Arch. Pharm. (Weinheim), 2015, 348(2), 113-124.
[127]
Hao, W-J.; Wang, S-Y.; Ji, S-J. Iodine-catalyzed cascade formal [3 + 3] cycloaddition reaction of indolyl alcohol derivatives with enaminones: Constructions of functionalized spirodihydrocarbolines. ACS Catal., 2013, 3(11), 2501-2504.
[128]
Kang, S.; Lee, Y. Efficient one-pot synthesis of spirooxindole derivatives bearing hexahydroquinolines using multicomponent reactions catalyzed by ethylenediamine diacetate. Synthesis (Stuttg), 2013, 45(18), 2593-2599.
[129]
Zhu, S-L.; Zhao, K.; Su, X-M.; Ji, S-J. Microwave-assisted synthesis of new spiro[indoline-3,4′-quinoline] derivatives via a one-pot multicomponent reaction. Synth. Commun., 2009, 39(8), 1355-1366.
[130]
Paul, S.; Das, A.R. Dual role of the polymer supported catalyst PEG-OSO3H in aqueous reaction medium: Synthesis of highly substituted structurally diversified coumarin and uracil fused spirooxindoles. Tetrahedron Lett., 2013, 54(9), 1149-1154.
[131]
Abdelmoniem, A.M.; Hassaneen, H.M.E.; Abdelhamid, I.A. An efficient one-pot synthesis of novel spiro cyclic 2-oxindole derivatives of pyrimido[4,5-b]quinoline, pyrido[2,3-d:6,5-d′] dipyrimidine and indeno[2′,1′:5,6]pyrido [2,3-d]pyrimidine in water. J. Heterocycl. Chem., 2016, 53(6), 2084-2090.
[132]
Jadidi, K.; Ghahremanzadeh, R.; Mirzaei, P.; Bazgir, A. Three-component synthesis of spiro[indoline-3,5′-pyrimido[4,5-b]quinoline]-triones in water. J. Heterocycl. Chem., 2011, 48(5), 1014-1018.
[133]
Quiroga, J.; Portillo, S.; Perez, A.; Galvez, J.; Abonia, R.; Insuasty, B. An efficient synthesis of pyrazolo[3,4-b]pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic β-diketones. Tetrahedron Lett., 2011, 52(21), 2664-2666.
[134]
Chen, H.; Shi, D. Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J. Comb. Chem., 2010, 12(4), 571-576.
[135]
Dabiri, M.; Tisseh, Z.N.; Nobahar, M.; Bazgir, A. Organic reaction in water: A highly efficient and environmentally friendly synthesis of spiro compounds catalyzed by L-Proline. Helv. Chim. Acta, 2011, 94(5), 824-830.
[136]
Kumar, M.; Sharma, K.; Arya, A.K. Use of SO3H-functionalized halogen free ionic liquid ([MIM(CH2)4SO3H] [HSO4]) as efficient promoter for the synthesis of structurally diverse spiroheterocycles. Tetrahedron Lett., 2012, 53(34), 4604-4608.
[137]
Balamurugan, K.; Perumal, S.; Menendez, J.C. New four-component reactions in water: A convergent approach to the metal-free synthesis of spiro[indoline/acenaphthylene-3,4′-pyrazolo[3,4-b]pyridine derivatives. Tetrahedron, 2011, 67(18), 3201-3208.
[138]
Kaplancıklı, Z.A.; Turan-Zitouni, G.; Özdemir, A.; Revial, G. New triazole and triazolothiadiazine derivatives as possible antimicrobial agents. Eur. J. Med. Chem., 2008, 43(1), 155-159.
[139]
De Souza, M.V.N.; Pais, K.C.; Kaiser, C.R.; Peralta, M.A.; Ferreira, M.L.; Lourenço, M.C.S. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem., 2009, 17(4), 1474-1480.
[140]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1, 2, 4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[141]
Shah, N.K.; Shah, N.M.; Patel, M.P.; Patel, R.G. The design, synthesis and antimicrobial activity of new biquinoline derivatives. J. Serb. Chem. Soc., 2012, 77(3), 279-286.
[142]
Gutierrez, P.L. The metabolism of quinone-containing alkylating agents: Free radical production and measurement. Front. Biosci., 2000, 5, 629-638.
[143]
Lin, A.J.; Cosby, L.A.; Shansky, C.W.; Sartorelli, A.C. Potential bioreductive alkylating agents. 1. benzoquinone derivatives. J. Med. Chem., 1972, 15(12), 1247-1252.
[144]
Wilson, I.; Wardman, P.; Lin, T.S.; Sartorelli, A.C. One-electron reduction of 2-and 6-methyl-1, 4-naphthoquinone bioreductive alkylating agents. J. Med. Chem., 1986, 29(8), 1381-1384.
[145]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Ghorab, W.M. Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase. J. Heterocycl. Chem., 2011, 48(6), 1269-1279.
[146]
Nishimura, Y. Rationale for chemoradiotherapy. Int. J. Clin. Oncol., 2004, 9(6), 414-420.
[147]
World Health Organization. Global Tuberculosis Report 2017, 2017.
[148]
Nath, H.; Ryoo, S. First- and Second-Line Drugs and Drug Resistance. In: Tuberculosis - Current Issues in Diagnosis and Management; InTech. , 2013.
[149]
Alcaide, F.; Santin, M. Multidrug-resistant tuberculosis. Enferm. Infecc. Microbiol. Clin., 2008, 26(Suppl. 1), 54-60.
[150]
LoBue, P. Extensively drug-resistant tuberculosis. Curr. Opin. Infect. Dis., 2009, 22(2), 167-173.
[151]
Velayati, A.A.; Farnia, P.; Masjedi, M.R. The Totally Drug Resistant Tuberculosis (TDR-TB). International Journal of Clinical and Experimental Medicine. e-Century Publishing Corporation 2013, 307-309.
[152]
Matteelli, A.; Carvalho, A.C.C.; Dooley, K.E.; Kritski, A. TMC207: The first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol., 2010, 5(6), 849-858.
[153]
Asif, M.; Siddiqui, A.A.; Husain, A. Quinolone derivatives as antitubercular drugs. Med. Chem. Res., 2013, 22(3), 1029-1042.
[154]
Chai, Y.; Liu, M-L.; Lv, K.; Feng, L-S.; Li, S-J.; Sun, L-Y.; Wang, S.; Guo, H-Y. Synthesis and in vitro antibacterial activity of a series of novel gatifloxacin derivatives. Eur. J. Med. Chem., 2011, 46(9), 4267-4273.
[155]
Chai, Y.; Wan, Z-L.; Wang, B.; Guo, H-Y.; Liu, M-L. Synthesis and in vitro antibacterial activity of 7-(4-alkoxyimino-3-amino-3-methylpiperidin-1-yl) fluoroquinolone derivatives. Eur. J. Med. Chem., 2009, 44(10), 4063-4069.
[156]
Hoshino, K.; Inoue, K.; Murakami, Y.; Kurosaka, Y.; Namba, K.; Kashimoto, Y.; Uoyama, S.; Okumura, R.; Higuchi, S.; Otani, T. In vitro and in vivo antibacterial activities of DC-159a, a new fluoroquinolone. Antimicrob. Agents Chemother., 2008, 52(1), 65-76.
[157]
Jubie, S.; Prabitha, P.; Kumar, R.R.; Kalirajan, R.; Gayathri, R.; Sankar, S.; Elango, K. Design, synthesis, and docking studies of novel ofloxacin analogues as antimicrobial agents. Med. Chem. Res., 2012, 21(7), 1403-1410.
[158]
Plech, T.; Wujec, M.; Kosikowska, U.; Malm, A.; Rajtar, B.; Polz-Dacewicz, M. Synthesis and in vitro activity of 1, 2, 4-triazole-ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. Eur. J. Med. Chem., 2013, 60, 128-134.
[159]
Qi, Q-R.; Pan, J.; Guo, X-Q.; Weng, L-L.; Liang, Y-F. Synthesis and antibacterial activity of new fluoroquinolones containing a cis-or trans-cyclohexane moiety. Bioorg. Med. Chem. Lett., 2012, 22(24), 7688-7692.
[160]
Reck, F.; Alm, R.A.; Brassil, P.; Newman, J.V.; Ciaccio, P.; McNulty, J.; Barthlow, H.; Goteti, K.; Breen, J.; Comita-Prevoir, J. Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with Reduced p K a: Antibacterial agents with an improved safety profile. J. Med. Chem., 2012, 55(15), 6916-6933.
[161]
Villemagne, B.; Crauste, C.; Flipo, M.; Baulard, A.R.; Déprez, B.; Willand, N. Tuberculosis: The drug development pipeline at a glance. Eur. J. Med. Chem., 2012, 51, 1-16.
[162]
da Silva, P.E.A.; Ramos, D.F.; Bonacorso, H.G.; Agustina, I.; Oliveira, M.R.; Coelho, T.; Navarini, J.; Morbidoni, H.R.; Zanatta, N.; Martins, M.A.P. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro [chloro] methyl-4, 5-dihydro-1H-1-(isonicotinoyl) pyrazoles. Int. J. Antimicrob. Agents, 2008, 32(2), 139-144.
[163]
Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. Microwave assisted one-pot synthesis of highly potent novel isoniazid analogues. Bioorg. Med. Chem. Lett., 2011, 21(7), 2125-2128.
[164]
Myangar, K.N.; Raval, J.P. Design, Synthesis, and in vitro antimicrobial activities of novel azetidinyl-3-quinazolin-4-one hybrids. Med. Chem. Res., 2012, 21(10), 2762-2771.
[165]
Ramani, A.V.; Monika, A.; Indira, V.L.; Karyavardhi, G.; Venkatesh, J.; Jeankumar, V.U.; Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. Synthesis of highly potent novel anti-tubercular isoniazid analogues with preliminary pharmacokinetic evaluation. Bioorg. Med. Chem. Lett., 2012, 22(8), 2764-2767.
[166]
Shaharyar, M.; Siddiqui, A.A.; Ali, M.A.; Sriram, D.; Yogeeswari, P. Synthesis and in vitro antimycobacterial activity of N 1-nicotinoyl-3-(4′-hydroxy-3′-methyl phenyl)-5-[(sub) phenyl]-2-pyrazolines. Bioorg. Med. Chem. Lett., 2006, 16(15), 3947-3949.
[167]
Torres, E.; Moreno, E.; Ancizu, S.; Barea, C.; Galiano, S.; Aldana, I.; Monge, A.; Pérez-Silanes, S. New 1, 4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-mycobacterium tuberculosis agents. Bioorg. Med. Chem. Lett., 2011, 21(12), 3699-3703.
[168]
Kathrotiya, H.G.; Patel, M.P. Synthesis and identification of β-aryloxyquinoline based diversely fluorine substituted N-aryl quinolone derivatives as a new class of antimicrobial, antituberculosis and antioxidant agents. Eur. J. Med. Chem., 2013, 63, 675-684.
[169]
Khalafi-Nezhad, A.; Mohammadi, S. Magnetic, acidic, ionic liquid-catalyzed one-pot synthesis of spirooxindoles. ACS Comb. Sci., 2013, 15(9), 512-518.
[170]
Vilches-Herrera, M.; Spannenberg, A.; Langer, P.; Iaroshenko, V.O. Novel and efficient synthesis of 4,7-dihydro-1H-pyrrolo[2,3-b]pyridine derivatives via one-pot, three-component approach from N-substituted 5-amino-3-cyanopyrroles, various carbonyl and active methylene compounds. Tetrahedron, 2013, 69(29), 5955-5967.
[171]
Baydar, E.; Gündüz, M.G.; Krishna, V.S.; Şimşek, R.; Sriram, D.; Yıldırım, S.Ö.; Butcher, R.J.; Şafak, C. Synthesis, crystal structure and antimycobacterial activities of 4-indolyl-1, 4-dihydropyridine derivatives possessing various ester groups. Res. Chem. Intermed., 2017, 43(12), 7471-7489.
[172]
Parikh, S.L.; Xiao, G.; Tonge, P.J. Inhibition of InhA, the enoyl reductase from mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry, 2000, 39(26), 7645-7650.
[173]
Mahnam, K.; Sadeghi, A.; Mohammadpour, M.; Fassihi, A. Theoretical studies of 1, 4-dihydropyridine-3, 5-dicarboxamides as possible inhibitors of Mycobacterium tuberculosis enoyl reductase. Monatshefte Chemie-Chemical Mon., 2012, 143(1), 19-27.
[174]
Dolphin, A.C. A Short history of voltage-gated calcium channels. Br. J. Pharmacol., 2009, 147(S1), S56-S62.
[175]
Camerino, D.C.; Desaphy, J-F.; Tricarico, D.; Pierno, S.; Liantonio, A. Therapeutic approaches to ion channel diseases. Adv. Genet., 2008, 64, 81-145.
[176]
Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 2000, 1(1), 11-21.
[177]
Rash, B.G.; Ackman, J.B.; Rakic, P. Bidirectional radial Ca(2+) activity regulates neurogenesis and migration during early cortical column formation. Sci. Adv., 2016, 2(2)e1501733
[178]
Chafeev, M.; Costello, P.C.; Daynard, T.S.; Leung, D.; Sanghera, J.; Wang, S.; Yan, J.; Zhang, Z. Pyrazole compounds having anti proliferative activity., WO Patent 2,001,077,080, . 2001.
[179]
Triggle, D.J. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol., 2003, 23(3), 293-303.
[180]
Safak, C.; Simsek, R. Fused 1,4-dihydropyridines as potential calcium modulatory compounds. Mini Rev. Med. Chem., 2006, 6(7), 747-755.
[181]
León, R.; Ríos C, de los.; Marco-Contelles, J.; López, M.G.; García, A.G.; Villarroya, M. Synthesis of 6-amino-1,4-dihydropyridines that prevent calcium overload and neuronal death. Eur. J. Med. Chem., 2008, 43(3), 668-674.
[182]
Ioan, P.; Carosati, E.; Micucci, M.; Cruciani, G.; Broccatelli, F.S. Zhorov, B.; Chiarini, A.; Budriesi, R. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (Part 1): Action in ion channels and GPCRs. Curr. Med. Chem., 2011, 18(32), 4901-4922.
[183]
Bladen, C.; Gündüz, M.G.; Şimşek, R.; Şafak, C.; Zamponi, G.W. Synthesis and evaluation of 1,4-dihydropyridine derivatives with calcium channel blocking activity. Pflugers Arch.Eur. J. Physiol.,, 2014, 466(7), 1355-1363.
[184]
Simsek, R.; Öztürk, G.S.; Vural, I.M.; Gündüz, M.G.; Sarıoǧlu, Y.; Safak, C. Synthesis and calcium modulatory activity of 3-alkyloxy- carbonyl-4-(disubstituted)aryl-5-oxo-1,4,5,6,7,8-hexa-hydroquinoline derivatives. Arch. Pharm. (Weinheim), 2007, 341(1), 55-60.
[185]
Altaş, Y.; Şafak, C.; Batu, Ö.; Erol, K. Studies on calcium modulatory activities of 2,6,6-trimethyl-3-acetyl-4-aryl-5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives. Arzneimittelforschung, 2011, 49(10), 824-829.
[186]
Şimşek, R.; S¸afak, C.; Erol, K.; Ataman, Ş.; Ülgen, M.; Linden, A. Synthesis, evaluation of the calcium antagonistic activity and biotransformation of hexahydroquinoline and furoquinoline derivatives. Arzneimittelforschung, 2011, 53(03), 159-166.
[187]
Gözde Gündüz, M.; Albayrak, E.; İşli, F.; Sevim, G.; Fincan, Ö.; Yildirim, Ş.; Şimşek, R.; Şafak, C.; Sarioğlu, Y.; Yidirim, S.Ö. Synthesis, structural characterization and myorelaxant activity of 4-naphthylhexahydroquinoline derivatives containing different ester groups. J. Serb. Chem. Soc., 2016, 81(7), 729-738.
[188]
Özer, E.K.; Gündüz, M.G.; El-khouly, A.; Sara, M.Y.; Şimşek, R.; Iskit, A.B.; Şafak, O.C. Microwave-assisted synthesis of condensed 1, 4-dihydropyridines as potential calcium channel modulators. Turk. J. Chem., 2015, 39(4), 886-896.
[189]
Aydin, F.; Şafak, C.; Şimşek, R.; Erol, K.; Ülgen, M.; Linden, A. Studies on condensed 1, 4-dihydropyridine derivatives and their calcium modulatory activities. Die Pharm. Int. J. Pharm. Sci., 2006, 61(8), 655-659.
[190]
Guengerich, F.P.; Peterson, L.A.; Böcker, R.H. Cytochrome P-450-catalyzed hydroxylation and carboxylic acid ester cleavage of hantzsch pyridine esters. J. Biol. Chem., 1988, 263(17), 8176-8183.
[191]
Rose, U. Calcium modulators of the anellated dihydropyridine type. Synthesis and pharmacologic action. Arzneim Forsch Drug Res., 1989, 39, 1393-1398.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy