Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Advances in Chiral Separations at Nano Level

Author(s): Al Arsh Basheer, Iqbal Hussain, Marcus T. Scotti, Luciana Scotti and Imran Ali*

Volume 16, Issue 4, 2020

Page: [351 - 368] Pages: 18

DOI: 10.2174/1573407215666190131122413

Price: $65

Abstract

Background: Nano level chiral separation is necessary and demanding in the development of the drug, genomic, proteomic, and other chemical and the environmental sciences. Few drugs exist in human body cells for some days at nano level concentrations, that are out of the jurisdiction of the detection by standard separation techniques. Likewise, the separation and identification of xenobiotics and other environmental contaminants (at nano or low levels) are necessary for our healthiness.

Discussion: This review article reports the state-of-the-art of nano level chiral analyses by nano liquid chromatography (NLC) and nano capillary electrophoresis (NCE). The optimization procedure of the enantiomeric resolution is also deliberated. Also, the efforts are made to describe the chiral resolution mechanisms of in NLC and NCE. Finally, the future perspectives are also emphasized.

Conclusion: This article will be beneficial for chiral chromatographers, academicians, pharmaceutical industries, environmental researchers and Government regulation authorities.

Keywords: Chiral recognition mechanisms, drug, enantioseparation, genomic, nano capillary electrophoresis, nano liquid chromatography, proteomic.

Graphical Abstract

[1]
Haüy, R.J. Tableaux comparatif des resultats de la crystallographie et de l’analyse chimique relativement a la classification des mineraux; Paris, 1809, p. XVII.
[2]
Pasteur, L. Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. C. R. Hebd. Seances Acad. Sci., 1848, 26, 535-538.
[3]
Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci., 2006, 2(2), 85-100.
[PMID: 23674971]
[4]
Ward, T.J.; Ward, K.D. Chiral separations: a review of current topics and trends. Anal. Chem., 2012, 84(2), 626-635.
[http://dx.doi.org/10.1021/ac202892w] [PMID: 22066781]
[5]
Ali, I.; Aboul-Enein, H.Y.; Gupta, V.K. Nano Chromatography and Capillary Electrophoresis: Pharmaceutical and Environmental Analyses; Wiley & Sons: Hoboken, USA, 2009.
[6]
Aboul-Enein, H.Y.; Ali, I. Optimization strategies for HPLC enantioseparation of racemic drugs using polysaccharides and macrocyclic glycopeptide antibiotic chiral stationary phases. Farmaco, 2002, 57(7), 513-529.
[http://dx.doi.org/10.1016/S0014-827X(02)01242-9] [PMID: 12164206]
[7]
Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y.; Singh, P.; Sharma, B. Role of racemization in optically active drug development. Chirality, 2007, 19, 453-463.
[http://dx.doi.org/10.1002/chir.20397] [PMID: 17393472]
[8]
Aboul-Enein, H.Y.; Ali, I. Studies on the effect of alcohols on the chiral discrimination mechanisms of amylose stationary phase on the enantioseparation of nebivolol by HPLC. J. Biochem. Biophys. Methods, 2001, 48(2), 175-188.
[http://dx.doi.org/10.1016/S0165-022X(01)00148-8] [PMID: 11356487]
[9]
Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y.; Hussain, A. Hyphenation in sample preparation: advancement from the micro to the nano world. J. Sep. Sci., 2008, 31(11), 2040-2053.
[http://dx.doi.org/10.1002/jssc.200800123] [PMID: 18615807]
[10]
Ali, I.; Naim, L.; Ghanem, A.; Aboul-Enein, H.Y. Chiral separations of piperidine-2,6-dione analogues on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta, 2006, 69(4), 1013-1017.
[http://dx.doi.org/10.1016/j.talanta.2005.12.004] [PMID: 18970673]
[11]
Aboul-Enein, H.Y.; Ali, I. A comparative study of the enantiomeric resolution of econazole, miconazole and sulconazole by HPLC on various cellulose chiral columns in normal phase mode. J. Pharm. Biomed. Anal., 2002, 27, 441-446.
[http://dx.doi.org/10.1016/S0731-7085(01)00575-1] [PMID: 11755745]
[12]
Ali, I.; Aboul-Enein, H.Y. Enantioseparation of some clinically used drugs by HPLC using cellulose Tris (3,5-dichlorophenylcarbamate) chiral stationary phase. Biomed. Chromatogr., 2003, 17(2-3), 113-117.
[http://dx.doi.org/10.1002/bmc.220] [PMID: 12717799]
[13]
Aboul-Enein, H.Y.; Ali, I. HPLC enantiomeric resolution of nebivolol on normal and reversed amylose based chiral phases. Pharmazie, 2001, 56(3), 214-216.
[PMID: 11265585]
[14]
Ali, I.; Sanagi, M.M.; Aboul-Enein, H.Y. Advances in chiral separations by nonaqueous capillary electrophoresis in pharmaceutical and biomedical analysis. Electrophoresis, 2014, 35(7), 926-936.
[http://dx.doi.org/10.1002/elps.201300222] [PMID: 23913555]
[15]
Ali, I.; Aboul-Enein, H.Y.; Ghanem, A. Enantioselective toxicities and carcinogenesis. Curr. Pharm. Anal., 2005, 2005(1), 109-125.
[http://dx.doi.org/10.2174/1573412052953328]
[16]
Jáč, P.; Scriba, G.K.E. Recent advances in electrodriven enantioseparations. J. Sep. Sci., 2013, 36(1), 52-74.
[http://dx.doi.org/10.1002/jssc.201200836] [PMID: 23255223]
[17]
Rezanka, P.; Navrátilová, K.; Rezanka, M.; Král, V.; Sýkora, D. Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis, 2014, 35(19), 2701-2721.
[http://dx.doi.org/10.1002/elps.201400145] [PMID: 24853583]
[18]
Domínguez-Vega, E.; Montealegre, C.; Marina, M.L. Analysis of antibiotics by CE and their use as chiral selectors: An update. Electrophoresis, 2016, 37(1), 189-211.
[http://dx.doi.org/10.1002/elps.201500359] [PMID: 26471773]
[19]
Zhu, Q.F.; Scriba, G.K.E. Advances in the use of cyclodextrins as chiral selectors in capillary electrokinetic chromatography: Fundamentals and applications. Chromatographia, 2016, 79, 1403-1435.
[http://dx.doi.org/10.1007/s10337-016-3167-0]
[20]
Scriba, G.K.E. Chiral recognition in separation science - an update. J. Chromatogr. A, 2016, 1467, 56-78.
[http://dx.doi.org/10.1016/j.chroma.2016.05.061] [PMID: 27318504]
[21]
Schurig, V. Chiral separations using gas chromatography. TrAC Trend. Anal. Chem., 2002, 21, 647-661.
[22]
Greño, M.; Castro-Puyana, M.; García, M.A.; Marina, M.L. Analysis of antibiotics by CE and CEC and their use as chiral selectors: An update. Electrophoresis, 2018, 39(1), 235-259.
[http://dx.doi.org/10.1002/elps.201700306] [PMID: 28941242]
[23]
Saz, J.M.; Marina, M.L. Recent applications of chiral capillary electrophoresis in pharmaceutical analysis. Capillary Electrophoresis; Trends and Developments in Pharmaceutical Research, 2017, pp. 71-115.
[24]
Chankvetadze, B. Contemporary theory of enantioseparations in capillary electrophoresis. J. Chromatogr. A, 2018, 1567, 2-25.
[http://dx.doi.org/10.1016/j.chroma.2018.07.041] [PMID: 30025609]
[25]
Ali, I. ALOthman, Z.A.; Saleem, K.; Aboul-Enein, H.Y. Chiral analyses at nano-scale. Comb. Chem. High Through. Chem, 2010, 13, 562-567.
[26]
Fanali, S. Nano-liquid chromatography applied to enantiomers separation. J. Chromatogr. A, 2017, 1486, 20-34.
[http://dx.doi.org/10.1016/j.chroma.2016.10.028] [PMID: 27765419]
[27]
Fanali, S. An overview to nano-scale analytical techniques: Nano-liquid chromatography and capillary electrochromatography. Electrophoresis, 2017, 38(15), 1822-1829.
[http://dx.doi.org/10.1002/elps.201600573] [PMID: 28256745]
[28]
Cappiello, A.; Famiglini, G.; Fiorucci, C.; Mangani, F.; Palma, P.; Siviero, A. Variable-gradient generator for micro- and nano-HPLC. Anal. Chem., 2003, 75(5), 1173-1179.
[http://dx.doi.org/10.1021/ac026125z] [PMID: 12641238]
[29]
Vissers, J.P.C.; Claessens, H.A.; Cramers, C.A. Microcolumn liquidchromatography: Instrumentation detection and applications. J. Chromatogr. A, 1997, 779, 1-28.
[http://dx.doi.org/10.1016/S0021-9673(97)00422-6]
[30]
Aboul-Enein, H.Y.; Ali, I. Enantiomeric resolution of some imidazole antifungal agents on Chiralpak WH chiral stationary phase using HPLC. Chromatographia, 2001, 54, 200-202.
[http://dx.doi.org/10.1007/BF02492245]
[31]
Ali, I.; Aboul-Enein, H.Y.; Gaitonde, V.D.; Singh, P.; Rawat, M.S.M. Sharma, B. Chiral Separations of Imidazole Antifungal Drugs on AmyCoat RP Column in HPLC. Chromatographia, 2009, 70, 223-227.
[http://dx.doi.org/10.1365/s10337-009-1106-z]
[32]
Ali, I.; Saleem, K.; Gaitonde, V.D.; Aboul-Enein, H.Y.; Hussain, I. Chiral separations of some β-adrenergic agonists and antagonists on AmyCoat column by HPLC. Chirality, 2010, 22(1), 24-28.
[http://dx.doi.org/10.1002/chir.20697] [PMID: 19208401]
[33]
Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y. Chiral resolution of some environmental pollutants by capillary electrophoresis. Electrophoresis, 2003, 24(9), 1360-1374.
[http://dx.doi.org/10.1002/elps.200390175] [PMID: 12731021]
[34]
Ali, I.; Hussain, A.; Aboul-Enein, H.Y.; Bazylak, G. Supramolecular systems-based HPLC for chiral separation of β-adrenergics and β-adrenolytics in drug discovery schemes. Curr. Drug Discov. Technol., 2007, 4(4), 255-274.
[http://dx.doi.org/10.2174/157016307783220576] [PMID: 18045088]
[35]
Al-Othman, Z.A.; Al-Warthan, A.; Alam, S.D.; Ali, I. Enantio-separation of drugs with multiple chiral centers by chromatography and capillary electrophoresis. Biomed. Chromatogr., 2014, 28(11), 1514-1524.
[http://dx.doi.org/10.1002/bmc.3259] [PMID: 25067822]
[36]
Ali, I.; Alam, S.D.; Al-Othman, Z.A.; Farooqi, J.A. Recent advances in SPE-chiral-HPLC methods for enantiomeric separation of chiral drugs in biological samples. J. Chromatogr. Sci., 2013, 51(7), 645-654.
[http://dx.doi.org/10.1093/chromsci/bms262] [PMID: 23377648]
[37]
Ali, I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[38]
Aboul-Enein, H.Y.; Ali, I. The chiral resolution of clenbuterol, cimaterol and mabuterol on chiropbiotic V, T and TAG columns. J. Sep. Sci., 2002, 2002(25), 851-855.
[http://dx.doi.org/10.1002/1615-9314(20020901)25:13<851:AID-JSSC851>3.0.CO;2-M]
[39]
Schmid, M.G.; Gecse, O.; Szabo, Z.; Kilár, F.; Gübitz, G.; Ali, I.; Aboul-Enein, H.Y. Comparative study on the chiral resolution of β-blockers on cellulose tris-(3,5-imethylphenylcarbamate) phases in normal and reversed phase modes. J. Liq. Chromatogr. Relat. Technol., 2001, 24, 2493-2504.
[http://dx.doi.org/10.1081/JLC-100105955]
[40]
Ali, I.; Hussain, I.; Saleem, K.; Aboul-Enein, H.Y. Enantiomeric resolution of ibuprofen and flurbiprofen in human plasma by SPE-chiral HPLC methods. Comb. Chem. High Throughput Screen., 2012, 15(6), 509-514.
[http://dx.doi.org/10.2174/138620712800563882] [PMID: 22571370]
[41]
Ali, I.; Aboul-Enein, H.Y. Determination of chiral ratio of o,p-DDT and o,p-DDD pesticides on polysaccharides CSPs by HPLC under reversed phase mode. Environ. Toxicol., 2002, 17, 329-333.
[http://dx.doi.org/10.1002/tox.10069] [PMID: 12203953]
[42]
Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y. Chiral resolution of racemic environmental pollutants by capillary electrophoresis. Crit. Rev. Anal. Chem., 2008, 38(3), 132-146.
[http://dx.doi.org/10.1080/10408340701804467] [PMID: 26594826]
[43]
Ali, I.; Suhail, M.; Al-Othman, Z.A.; Alwarthan, A.; Aboul-Enein, H.Y. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis. Biomed. Chromatogr., 2016, 30(5), 683-694.
[http://dx.doi.org/10.1002/bmc.3691] [PMID: 26840015]
[44]
Gupta, V.K.; Ali, I.; Aggarwal, S. Enantiomeric Analysis of Citalopram in Human Plasma by SPE and Chiral HPLC Method. Int. J. Electrochem. Sci., 2011, 6, 5639-5648.
[45]
Aboul-Enein, H.Y.; Ali, I. Chiral resolution of cromakalim drug by high performance liquid chromatography using glycopeptide macrocyclic antibiotics CSPs. J. Liq. Chromatogr. Relat. Technol., 2002, 25, 2337-2344.
[http://dx.doi.org/10.1081/JLC-120014007]
[46]
Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.; Alam, S.D.; Farooqi, J.A. Enantiomeric separation and simulation studies of pheniramine, oxybutynin, cetirizine, and brinzolamide chiral drugs on amylose-based columns. Chirality, 2014, 26(3), 136-143.
[http://dx.doi.org/10.1002/chir.22276] [PMID: 24464520]
[47]
Aboul-Enein, H.Y.; Ali, I. Ali, Hyun, M.H.; Cho, Y.J.; Jin, J.S Effect of acidity on the enantiomeric resolution of thyroxine and tocainide on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid column using HPLC. J. Biochem. Biophys, 2002, 54, 407-413.
[http://dx.doi.org/10.1016/S0165-022X(02)00142-2] [PMID: 12543515]
[48]
Ali, I.; Haque, A.; Al Ajmi, M.F.; Hussain, A.; Sanagi, M.M.; Hussain, I.; Aboul-Enein, H.Y. Supramolecular chiro-biomedical aspect of β-blockers in drug development. Curr. Drug Targets, 2014, 15(7), 729-741.
[http://dx.doi.org/10.2174/1389450115666140429104516] [PMID: 24856145]
[49]
Ali, I.; Hussain, I.; Saleem, K.; Aboul-Enein, H.Y.; Bazylak, G. Supramolecular chiro-biomedical assays and enantioselective HPLC analyses for evaluation of profens as non-steroidal anti-inflammatory drugs, potential anticancer agents and common xenobiotics. Curr. Drug Discov. Technol., 2008, 5(2), 105-120.
[http://dx.doi.org/10.2174/157016308784746292] [PMID: 18673249]
[50]
Ali, I.; Alothman, Z.A.; Alwarthan, A.; Aboul-Enein, H.Y. Recent trends in chiral separations by nano liquid chromatography and nano capillary electrophoresis. Curr. Chromatogr., 2014, 1, 81-89.
[http://dx.doi.org/10.2174/2213240601666140301001948]
[51]
Aboul-Enein, H.Y.; Ali, I. Thermodynamic study of the enantiomeric resolution of flurbiprofen by HPLC using Chiralpak AD-RH column. Pharmazie, 2002, 57(10), 682-685.
[PMID: 12426948]
[52]
Ali, I.; Aboul-Enein, H.Y. Optimization of the chiral resolution of baclofen by capillary electrophoresis using β-cyclodextrin as the chiral selector. Electrophoresis, 2003, 24(12-13), 2064-2069.
[http://dx.doi.org/10.1002/elps.200305439] [PMID: 12858376]
[53]
Aboul-Enein, H.Y.; Ali, I. A comparative study of the enantiomeric resolution of several tetralone derivatives on macrocyclic antibiotic chiral stationary phases using HPLC under normal phase mode. Arch. Pharm. (Weinheim), 2001, 334(7), 258-260.
[http://dx.doi.org/10.1002/1521-4184(200107)334:7<258:AID-ARDP258>3.0.CO;2-G] [PMID: 11512279]
[54]
Ali, I.; Aboul-Enein, H.Y.; Gupta, V.K. Microchip based nano chromatographies and nano capillary electrophoresis: A need of the present century in genomics and proteomics areas. Chromatographia, 2009, 69, S13-S22.
[http://dx.doi.org/10.1365/s10337-008-0813-1]
[55]
Amabilino, D.B. Chirality at the nanoscale; Wiley-VCH: Weinhein, Germany, 2009.
[http://dx.doi.org/10.1002/9783527625345]
[56]
Chankvetadze, B. Capillary electrophoresis in chiral analysis; John Wiley & Sons: New York, 1997.
[57]
Gübitz, G.; Schmidt, M.G. (Edts.) Chiral separations - Methods and protocol; Humana Press: USA, 2004.
[58]
Aboul-Enein, H.Y.; Ali, I. Chiral separations by liquid chromatography and related technologies; Marcel Dekker, Inc.: New York, 2003.
[http://dx.doi.org/10.1201/9780203911112]
[59]
Ali, I.; Saleem, K.; Hussain, I.; Gaitonde, V.D.; Aboul-Enein, H.Y. Polysaccharides Chiral Stationary Phases in Liquid Chromatography. Sepn. & Purfn. Rev, 2009, 38, 1-29.
[http://dx.doi.org/10.1080/15422110802589916]
[60]
Zhang, T.; Kientzy, C.; Franco, P.; Ohnishi, A.; Kagamiharb, Y.; Kurosawa, H. Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J. Chromatogr. A, 2005, 1075(1-2), 65-75.
[http://dx.doi.org/10.1016/j.chroma.2005.03.116] [PMID: 15974119]
[61]
Chankvetadze, B. Enantioseparation in capillary chromatography and capillary electrochromatography using polysaccharide-type chiral stationary phases. Methods Mol. Biol., 2004, 243, 387-399.
[PMID: 14970638]
[62]
Nishi, H. Chiral separation by capillary electrophoresis using polysaccharides. Methods Mol. Biol., 2004, 243, 343-353.
[PMID: 14970634]
[63]
Aboul-Enein, H.Y.; Ali, I. Applications of polysaccharide-based chiral stationary phases for resolution of different compound classes. Methods Mol. Biol., 2004, 243, 183-196.
[PMID: 14970621]
[64]
Yamamoto, C.; Okamoto, Y. Chiral separation by HPLC using polysaccharide-based chiral stationary phases. Methods Mol. Biol., 2004, 243, 173-181.
[PMID: 14970620]
[65]
Ali, I.; Aboul-Enein, H.Y. Immobilized Polysaccharide CSPs: An advancement in Enantiomeric Separations. Curr. Pharm. Anal., 2007, 3, 71-82.
[http://dx.doi.org/10.2174/157341207779802368]
[66]
Wallenborg, S.R.; Lurie, I.S.; Arnold, D.W.; Bailey, C.G. On-chip chiral and achiral separation of amphetamine and related compounds labeled with 4-fluoro-7-nitrobenzofurazane. Electrophoresis, 2000, 21(15), 3257-3263.
[http://dx.doi.org/10.1002/1522-2683(20000901)21:15<3257:AID-ELPS3257>3.0.CO;2-M] [PMID: 11001224]
[67]
Rodríguez, I.; Jin, L.J.; Li, S.F.Y. High-speed chiral separations on microchip electrophoresis devices. Electrophoresis, 2000, 21(1), 211-219.
[http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<211:AID-ELPS211>3.0.CO;2-D] [PMID: 10634489]
[68]
Zeng, H.L.; Li, H.; Wang, X.; Lin, J.M. Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device. J. Capill. Electrophor. Microchip Technol., 2007, 10(1-2), 19-24.
[PMID: 17685238]
[69]
Pumera, M.; Jelinek, I.; Jindrich, J.; Benada, O. β-Cyclodextrin-modified monolithic stationary phases for capillary electrochromatography and nano-HPLC chiral analysis of ephedrine and ibuprofen. J. Liq. Chromatogr. Relat. Technol., 2002, 25, 2473-2484.
[http://dx.doi.org/10.1081/JLC-120014268]
[70]
Zeng, H.L.; Li, H.F.; Lin, J.M. Chiral separation of dansyl amino acids by PDMS ... bonded in poly acrylamide. Anal. Chim. Acta, 2005, 551, 1-8.
[http://dx.doi.org/10.1016/j.aca.2005.07.020]
[71]
Takeuchi, T. Separation of 1,1′-binaphthyl-2,2′-diyl hydrogen phosphateenantiomers by microcolumn liquid chromatography with γ-cyclodextrin asmobile phase additive. J. High Resolut. Chromatogr., 1991, 14, 560-561.
[http://dx.doi.org/10.1002/jhrc.1240140810]
[72]
Rocco, A.; Fanali, S. Enantiomeric separation of acidic compounds by nano-liquid chromatography with methylated-beta-cyclodextrin as a mobile phase additive. J. Sep. Sci., 2009, 32(10), 1696-1703.
[http://dx.doi.org/10.1002/jssc.200800667] [PMID: 19370733]
[73]
Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Rocco, A.; Fanali, S. Enantiomeric separation of ofloxacin by nano-liquid chromatography using a sulfated-β-cyclodextrin as a chiral selector in the mobile phase. Curr. Anal. Chem., 2010, 6, 209-216.
[http://dx.doi.org/10.2174/157341110791516972]
[74]
Perera, S.; Na, Y.C.; Doundoulakis, T.; Ngo, V.J.; Feng, Q.; Breitbach, Z.S.; Lovely, C.J.; Armstrong, D.W. The enantiomeric separation of tetrahydrobenzimidazoles cyclodextrins- and cyclofructans. Chirality, 2013, 25(2), 133-140.
[http://dx.doi.org/10.1002/chir.22127] [PMID: 23238886]
[75]
Wang, Y.; Zhang, S.; Breitbach, Z.S.; Petersen, H.; Ellegaard, P.; Armstrong, D.W. Enantioseparation of citalopram analogues with sulfated β-cyclodextrin by capillary electrophoresis. Electrophoresis, 2016, 37(5-6), 841-848.
[http://dx.doi.org/10.1002/elps.201500541] [PMID: 26757348]
[76]
Menéndez-López, N.; Valimaña-Traverso, J.; Castro-Puyana, M.; Salgado, A.; García, M.A.; Marina, M.L. Enantiomeric separation of the antiuremic drug colchicine by electrokinetic chromatography. Method development and quantitative analysis. J. Pharm. Biomed. Anal., 2017, 138, 189-196.
[http://dx.doi.org/10.1016/j.jpba.2017.02.001] [PMID: 28219795]
[77]
Krait, S.; Salgado, A.; Chankvetadze, B.; Gago, F.; Scriba, G.K.E. Investigation of the complexation between cyclodextrins and medetomidine enantiomers by capillary electrophoresis, NMR spectroscopy and molecular modeling. J. Chromatogr. A, 2018, 1567, 198-210.
[http://dx.doi.org/10.1016/j.chroma.2018.06.010] [PMID: 30055912]
[78]
Šolínová, V.; Mikysková, H.; Kaiser, M.M.; Janeba, Z.; Holý, A.; Kašička, V. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with β-cyclodextrin by affinity capillary electrophoresis. Electrophoresis, 2016, 37(2), 239-247.
[http://dx.doi.org/10.1002/elps.201500337] [PMID: 26426398]
[79]
Gogolashvili, A.; Tatunashvili, E.; Chankvetadze, L.; Sohajda, T.; Szeman, J.; Salgado, A.; Chankvetadze, B. Separation of enilconazole enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes by using nuclear magnetic resonance spectroscopy. Electrophoresis, 2017, 38(15), 1851-1859.
[http://dx.doi.org/10.1002/elps.201700078] [PMID: 28328068]
[80]
Schurig, V.; Jung, M.; Mayer, S.; Fluck, M.; Negura, S.; Jakubetz, H. Unified enantioselective capillary chromatography on a Chirasil-DEX stationary phase. Advantages of column miniaturization. J. Chromatogr. A, 1995, 694(1), 119-128.
[http://dx.doi.org/10.1016/0021-9673(94)01075-P] [PMID: 7719463]
[81]
Wistuba, D.; Banspach, L.; Schurig, V. Enantiomeric separation by capillary electrochromatography using monolithic capillaries with sol-gel-glued cyclodextrin-modified silica particles. Electrophoresis, 2005, 26(10), 2019-2026.
[http://dx.doi.org/10.1002/elps.200410251] [PMID: 15832302]
[82]
Ahmed, M.; Yajadda, M.M.; Han, Z.J.; Su, D.; Wang, G.; Ostrikov, K.K.; Ghanem, A. Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A, 2014, 1360, 100-109.
[http://dx.doi.org/10.1016/j.chroma.2014.07.052] [PMID: 25130087]
[83]
Ahmed, M.; Ghanem, A. Chiral β-cyclodextrin functionalized polymer monolith for the direct enantioselective reversed phase nano liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A, 2014, 1345, 115-127.
[http://dx.doi.org/10.1016/j.chroma.2014.04.023] [PMID: 24786651]
[84]
Zhang, Q.; Gil, V.; Sánchez-López, E.; García, M.Á.; Jiang, Z.; Marina, M.L. Evaluation of the potential of a quinidine-based monolithic column on the enantiomeric separation of erbicides by nano-liquid chromatography. Microchem. J., 2015, 123, 15-21.
[http://dx.doi.org/10.1016/j.microc.2015.05.011]
[85]
Lin, B.; Ng, S-C.; Feng, Y-Q. Chromatographic evaluation and comparison of three beta-cyclodextrin-based stationary phases by capillary liquid chromatography and pressure-assisted capillary electrochromatography. Electrophoresis, 2008, 29(19), 4045-4054.
[http://dx.doi.org/10.1002/elps.200800036] [PMID: 18958897]
[86]
Si-Ahmed, K.; Tazerouti, F.; Badjah-Hadj-Ahmed, A.Y.; Aturki, Z.; D’Orazio, G.; Rocco, A.; Fanali, S. Analysis of hesperetin enantiomers in human urine after ingestion of blood orange juice by using nano-liquid chromatography. J. Pharm. Biomed. Anal., 2010, 51(1), 225-229.
[http://dx.doi.org/10.1016/j.jpba.2009.08.015] [PMID: 19740618]
[87]
Wistuba, D.; Schurig, V. Enantiomer separation by capillary electrochromatography on a cyclodextrin-modified monolith. Electrophoresis, 2000, 21(15), 3152-3159.
[http://dx.doi.org/10.1002/1522-2683(20000901)21:15<3152:AID-ELPS3152>3.0.CO;2-L] [PMID: 11001213]
[88]
Zhang, Q.; Guo, J.; Wang, F.; Crommen, J.; Jiang, Z. Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations. J. Chromatogr. A, 2014, 1325, 147-154.
[http://dx.doi.org/10.1016/j.chroma.2013.12.019] [PMID: 24377739]
[89]
Rocco, A.; Maruska, A.; Fanali, S. Enantioseparation of drugs by means of continuous bed (monolithic) columns in nano-liquid chromatography. Chemija, 2012, 23, 294-300.
[90]
Silva, M.; Pérez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I.; Marina, M.L.; Aturki, Z.; Fanali, S. Ordered mesoporous silica functionalized with β-cyclodextrin derivative for stereoisomer separation of flavanones and flavanone glycosides by nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 2017, 1490, 166-176.
[http://dx.doi.org/10.1016/j.chroma.2017.02.012] [PMID: 28202192]
[91]
Aydoğan, C. Chiral separation and determination of amino acid enantiomers in fruit juice by open-tubular nano liquid chromatography. Chirality, 2018, 30(10), 1144-1149.
[http://dx.doi.org/10.1002/chir.23006] [PMID: 30096728]
[92]
Mskhiladze, A.; Karchkhadze, M.; Dadianidze, A.; Fanali, S.; Farkas, T.; Chankvetadze, B. Enantioseparation of chiral antimycotic drugs by hplc with polysaccharide-based chiral columns and polar organic mobile phases with emphasis on enantiomer elution order. Chromatographia, 2013, 76, 1449-1458.
[http://dx.doi.org/10.1007/s10337-013-2396-8]
[93]
Aturki, Z.; Schmid, M.G.; Chankvetadze, B.; Fanali, S. Enantiomeric separation of new cathinone derivatives designer drugs by capillary electrochromatography using a chiral stationary phase, based on amylose tris(5-chloro-2-methylphenylcarbamate). Electrophoresis, 2014, 35(21-22), 3242-3249.
[http://dx.doi.org/10.1002/elps.201400085] [PMID: 24854346]
[94]
Chankvetadze, B.; Yamamoto, C.; Tanaka, N.; Nakanishi, K.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with cellulose tris(3,5-dimethylphenylcarbamate). J. Sep. Sci., 2004, 27(10-11), 905-911.
[http://dx.doi.org/10.1002/jssc.200401819] [PMID: 15354567]
[95]
Chankvetadze, B.; Kubota, T.; Ikai, T.; Yamamoto, C.; Kamigaito, M.; Tanaka, N.; Nakanishi, K.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on capillary columns containing crosslinked polysaccharide phenylcarbamate derivatives attached to monolithic silica. J. Sep. Sci., 2006, 29(13), 1988-1995.
[http://dx.doi.org/10.1002/jssc.200500388] [PMID: 17017011]
[96]
Chankvetadze, B.; Yamamoto, C.; Kamigaito, M.; Tanaka, N.; Nakanishi, K.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate). J. Chromatogr. A, 2006, 1110(1-2), 46-52.
[http://dx.doi.org/10.1016/j.chroma.2006.01.076] [PMID: 16476435]
[97]
D’Orazio, G.; Fanali, C.; Karchkhadze, M.; Chankvetadze, B.; Fanali, S. Enantiomeric separation of some chiral analytes using amylose 3,5-dimethylphenylcarbamate covalently immobilized on silica by nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 2017, 1520, 127-134.
[http://dx.doi.org/10.1016/j.chroma.2017.09.017] [PMID: 28917599]
[98]
Fanali, S.; D’Orazio, G.; Lomsadze, K.; Samakashvili, S.; Chankvetadze, B. Enantioseparations on amylose tris(5-chloro-2-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 2010, 1217(7), 1166-1174.
[http://dx.doi.org/10.1016/j.chroma.2009.09.024] [PMID: 19800073]
[99]
Meyring, M.; Chankvetadze, B.; Blaschke, G. Simultaneous separation and enantioseparation of thalidomide and its hydroxylated metabolites using high-performance liquid chromatography in common-size columns, capillary liquid chromatography and nonaqueous capillary electrochromatography. J. Chromatogr. A, 2000, 876(1-2), 157-167.
[http://dx.doi.org/10.1016/S0021-9673(00)00156-4] [PMID: 10823511]
[100]
Domínguez-Vega, E.; Crego, A.L.; Lomsadze, K.; Chankvetadze, B.; Marina, M.L. Enantiomeric separation of FMOC-amino acids by nano-LC and CEC using a new chiral stationary phase, cellulose tris(3-chloro-4-methylphenylcarbamate). Electrophoresis, 2011, 32(19), 2700-2707.
[http://dx.doi.org/10.1002/elps.201000701] [PMID: 21983819]
[101]
Fanali, S.; D’Orazio, G.; Lomsadze, K.; Chankvetadze, B. Enantioseparations with cellulose tris(3-chloro-4-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 875(1), 296-303.
[http://dx.doi.org/10.1016/j.jchromb.2008.07.017] [PMID: 18691950]
[102]
Pérez-Fernández, V.; Dominguez-Vega, E.; Chankvetadze, B.; Crego, A.L.; García, M.Á.; Marina, M.L. Evaluation of new cellulose-based chiral stationary phases Sepapak-2 and Sepapak-4 for the enantiomeric separation of pesticides by nano liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 2012, 1234, 22-31.
[http://dx.doi.org/10.1016/j.chroma.2012.01.035] [PMID: 22321947]
[103]
Si-Ahmed, K.; Aturki, Z.; Chankvetadze, B.; Fanali, S. Evaluation of novel amylose and cellulose-based chiral stationary phases for the stereoisomer separation of flavanones by means of nano-liquid chromatography. Anal. Chim. Acta, 2012, 738, 85-94.
[http://dx.doi.org/10.1016/j.aca.2012.05.055] [PMID: 22790704]
[104]
Thurmann, S.; Lotter, C.; Heiland, J.J.; Chankvetadze, B.; Belder, D. Chip-based high-performance liquid chromatography for high-speed enantioseparations. Anal. Chem., 2015, 87(11), 5568-5576.
[http://dx.doi.org/10.1021/acs.analchem.5b00210] [PMID: 25936900]
[105]
Chen, X.; Zou, H.; Ye, M.; Zhang, Z. Separation of enantiomers by nanoliquid chromatography and capillary electrochromatography using a bonded cellulose trisphenylcarbamate stationary phase. Electrophoresis, 2002, 23(9), 1246-1254.
[http://dx.doi.org/10.1002/1522-2683(200205)23:9<1246:AID-ELPS1246>3.0.CO;2-C] [PMID: 12007123]
[106]
D’Orazio, G.; Kakava, R.; Volonterio, A.; Fanali, S.; Chankvetadze, B. An attempt for fast separation of enantiomers in nano-liquid chromatography and capillary electrochromatography. Electrophoresis, 2017, 38(15), 1932-1938.
[http://dx.doi.org/10.1002/elps.201700126] [PMID: 28398015]
[107]
Svensson, L.A.; Karlsson, K-E.; Karlsson, A.; Vessman, J. Immobilized vancomycin as chiral stationary phase in packed capillary liquid chromatography. Chirality, 1998, 40, 273-280.
[http://dx.doi.org/10.1002/(SICI)1520-636X(1998)10:3<273:AID-CHIR10>3.0.CO;2-X]
[108]
D’Orazio, G.; Aturki, Z.; Cristalli, M.; Quaglia, M.G.; Fanali, S. Use of vancomycin chiral stationary phase for the enantiomeric resolution of basic and acidic compounds by nano-liquid chromatography. J. Chromatogr. A, 2005, 1081(1), 105-113.
[http://dx.doi.org/10.1016/j.chroma.2005.02.025] [PMID: 16013606]
[109]
Rosales-Conrado, N.; León-González, M.E.; D’Orazio, G.; Fanali, S. Enantiomeric separation of chlorophenoxy acid herbicides by nano liquid chromatography-UV detection on a vancomycin-based chiral stationary phase. J. Sep. Sci., 2004, 27(15-16), 1303-1308.
[http://dx.doi.org/10.1002/jssc.200401896] [PMID: 15587279]
[110]
Fanali, S.; D’Orazio, G.; Quaglia, M.G.; Rocco, A. Use of a hepta-Tyr antibiotic modified silica stationary phase for the enantiomeric resolution of D,L-loxiglumide by electrochromatography and nano-liquid chromatography. J. Chromatogr. A, 2004, 1051(1-2), 247-252.
[http://dx.doi.org/10.1016/S0021-9673(04)00981-1] [PMID: 15532580]
[111]
D’Orazio, G.; Fanali, S. Use of teicoplanin stationary phase for the enantiomeric resolution of atenolol in human urine by nano-liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2006, 40(3), 539-544.
[http://dx.doi.org/10.1016/j.jpba.2005.07.039] [PMID: 16168605]
[112]
Rocchi, S.; Rocco, A.; Pesek, J.J.; Matyska, M.T.; Capitani, D.; Fanali, S. Enantiomers separation by nano-liquid chromatography: use of a novel sub-2 μm vancomycin silica hydride stationary phase. J. Chromatogr. A, 2015, 1381, 149-159.
[http://dx.doi.org/10.1016/j.chroma.2015.01.015] [PMID: 25614191]
[113]
Rocchi, S.; Fanali, C.; Fanali, S. Use of a novel sub-2μm silica hydride vancomycin stationary phase in nano-Liquid chromatography. II. Separation of derivatized amino acid enantiomers. Chirality, 2015, 27(11), 767-772.
[http://dx.doi.org/10.1002/chir.22495] [PMID: 26335144]
[114]
D’Orazio, G.; Cifuentes, A.; Fanali, S. Chiral nano-liquid chromatography-mass spectrometry applied to amino acids analysis for orange juice profiling. Food Chem., 2008, 108(3), 1114-1121.
[http://dx.doi.org/10.1016/j.foodchem.2007.11.062] [PMID: 26065779]
[115]
Maier, V.; Kalíková, K.; Přibylka, A.; Vozka, J.; Smuts, J.; Svidrnoch, M.; Sevčík, J.; Armstrong, D.W.; Tesařová, E. Isopropyl derivative of cyclofructan 6 as chiral selector in liquid chromatography and capillary electrophoresis. J. Chromatogr. A, 2014, 1338, 197-200.
[http://dx.doi.org/10.1016/j.chroma.2014.02.061] [PMID: 24630499]
[116]
Shu, Y.; Breitbach, Z.S.; Dissanayake, M.K.; Perera, S.; Aslan, J.M.; Alatrash, N.; MacDonnell, F.M.; Armstrong, D.W. Enantiomeric separations of ruthenium (II) polypyridyl complexes using HPLC with cyclofructan chiral stationary phases. Chirality, 2015, 27(1), 64-70.
[http://dx.doi.org/10.1002/chir.22389] [PMID: 25288031]
[117]
Maier, V.; Ranc, V.; Svidrnoch, M.; Petr, J.; Sevčík, J.; Tesařová, E.; Armstrong, D.W. Study on the use of boromycin as a chiral selector in capillary electrophoresis. J. Chromatogr. A, 2012, 1237, 128-132.
[http://dx.doi.org/10.1016/j.chroma.2012.02.073] [PMID: 22475183]
[118]
Gong, Y.; Xiang, Y.; Yue, B.; Xue, G.; Bradshaw, J.S.; Lee, H.K.; Lee, M.L. Application of diaza-18-crown-6-capped beta-cyclodextrin bonded silica particles as chiral stationary phases for ultrahigh pressure capillary liquid chromatography. J. Chromatogr. A, 2003, 1002(1-2), 63-70.
[http://dx.doi.org/10.1016/S0021-9673(03)00732-5] [PMID: 12885079]
[119]
Ciogli, A.; Pierri, G.; Kotoni, D.; Cavazzini, A.; Botta, L.; Villani, C.; Kocergin, J.; Gasparrini, F. Toward enantioselective nano ultrahigh-performance liquid chromatography with Whelk-O1 chiral stationary phase. Electrophoresis, 2014, 35(19), 2819-2823.
[http://dx.doi.org/10.1002/elps.201400240] [PMID: 25043154]
[120]
Fanali, S.; D’Orazio, G.; Rocco, A. Use of tert-butylbenzoylated tartardiamide chiral stationary phase for the enantiomeric resolution of acidic compounds by nano-liquid chromatography. J. Sep. Sci., 2006, 29(10), 1423-1431.
[http://dx.doi.org/10.1002/jssc.200600052] [PMID: 16894787]
[121]
Wang, P.C.; Gao, J.; Lee, C.S. High-resolution chiral separation using microfluidics-based membrane chromatography. J. Chromatogr. A, 2002, 942(1-2), 115-122.
[http://dx.doi.org/10.1016/S0021-9673(01)01399-1] [PMID: 11822377]
[122]
Vilkner, T.; Janasek, D.; Manz, A. Micro total analysis systems. Recent developments. Anal. Chem., 2004, 76(12), 3373-3385.
[http://dx.doi.org/10.1021/ac040063q] [PMID: 15193114]
[123]
Dittrich, P.S.; Tachikawa, K.; Manz, A. Micro total analysis systems. Latest advancements and trends. Anal. Chem., 2006, 78(12), 3887-3908.
[http://dx.doi.org/10.1021/ac0605602] [PMID: 16771530]
[124]
Pumera, M. Microfluidics in amino acid analysis. Electrophoresis, 2007, 28(13), 2113-2124.
[http://dx.doi.org/10.1002/elps.200600709] [PMID: 17542043]
[125]
Male, K.B.; Luong, J.H. Chiral analysis of neurotransmitters using cyclodextrin-modified capillary electrophoresis equipped with microfabricated interdigitated electrodes. J. Chromatogr. A, 2003, 1003(1-2), 167-178.
[http://dx.doi.org/10.1016/S0021-9673(03)00817-3] [PMID: 12899306]
[126]
Schwarz, M.A.; Hauser, P.C. Enantiomeric separation of underivatized small amines in conventional and on-chip capillary electrophoresis with contactless conductivity detection. J. Chromatogr. A, 2001, 928, 225-232.
[http://dx.doi.org/10.1016/S0021-9673(01)01131-1] [PMID: 11587341]
[127]
Balss, K.M.; Vreeland, W.N.; Phinney, K.W.; Ross, D. Simultaneous concentration and separation of enantiomers with chiral temperature gradient focusing. Anal. Chem., 2004, 76(24), 7243-7249.
[http://dx.doi.org/10.1021/ac049046r] [PMID: 15595865]
[128]
Gao, Y.; Shen, Z.; Wang, H.; Dai, Z.; Lin, B. Chiral separations on multichannel microfluidic chips. Electrophoresis, 2005, 26(24), 4774-4779.
[http://dx.doi.org/10.1002/elps.200500283] [PMID: 16278920]
[129]
Ludwig, M.; Kohler, F.; Belder, D. High-speed chiral separations on a microchip with UV detection. Electrophoresis, 2003, 24(18), 3233-3238.
[http://dx.doi.org/10.1002/elps.200305427] [PMID: 14518050]
[130]
Piehl, N.; Ludwig, M.; Belder, D. Subsecond chiral separations on a microchip. Electrophoresis, 2004, 25(21-22), 3848-3852.
[http://dx.doi.org/10.1002/elps.200406028] [PMID: 15565682]
[131]
Hutt, L.D.; Glavin, D.P.; Bada, J.L.; Mathies, R.A. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Anal. Chem., 1999, 71(18), 4000-4006.
[http://dx.doi.org/10.1021/ac9903959] [PMID: 10500487]
[132]
Zeng, H.L.; Li, H.F.; Wang, X.; Lin, J.M. Development of a gel monolithic column polydimethylsiloxane microfluidic device for rapid electrophoresis separation. Talanta, 2006, 69(1), 226-231.
[http://dx.doi.org/10.1016/j.talanta.2005.09.030] [PMID: 18970558]
[133]
Nakajima, H.; Kawata, K.; Shen, H.; Nakagama, T.; Uchiyama, K. Chiral separation of NBD-amino acids by ligand-exchange micro-channel electrophoresis. Anal. Sci., 2005, 21(1), 67-71.
[http://dx.doi.org/10.2116/analsci.21.67] [PMID: 15675519]
[134]
Gong, X.Y.; Hauser, P.C. Enantiomeric separation of underivatized small amines in conventional and on-chip capillary electrophoresis with contactless conductivity detection. Electrophoresis, 2006, 27(21), 4375-4382.
[http://dx.doi.org/10.1002/elps.200600258] [PMID: 17024687]
[135]
Weng, X.; Bi, H.; Liu, B.; Kong, J. On-chip chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in a microchannel. Electrophoresis, 2006, 27(15), 3129-3135.
[http://dx.doi.org/10.1002/elps.200500840] [PMID: 16807934]
[136]
Ali, I.; Kümmerer, K.; Aboul-Enein, H.Y. Mechanistic principles in chiral separations using LC and CE. Chromatographia, 2006, 63, 295-307.
[http://dx.doi.org/10.1365/s10337-006-0762-5]
[137]
Robbins-Roth, C. The Business of Biotechnology; Perseus Publishing: Cambridge, 2000.
[138]
Fanali, S.; D’Orazio, G.; Farkas, T.; Chankvetadze, B. Comparative performance of capillary columns made with totally porous and core-shell particles coated with a polysaccharide-based chiral selector in nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 2012, 1269, 136-142.
[http://dx.doi.org/10.1016/j.chroma.2012.06.021] [PMID: 22749363]
[139]
Rocchi, S.; Fanali, S.; Farkas, T.; Chankvetadze, B. Effect of content of chiral selector and pore size of core-shell type silica support on the performance of amylose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phases in nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 2014, 1363, 363-371.
[http://dx.doi.org/10.1016/j.chroma.2014.05.029] [PMID: 24908153]
[140]
Healy, L.O.; Murrihy, J.P.; Tan, A.; Cocker, D.; McEnery, M.; Glennon, J.D. Enantiomeric separation of R,S-naproxen by conventional and nano-liquid chromatography with methyl-beta-cyclodextrin as a mobile phase additive. J. Chromatogr. A, 2001, 924(1-2), 459-464.
[http://dx.doi.org/10.1016/S0021-9673(01)01044-5] [PMID: 11521897]
[141]
Ghanem, A.; Ahmed, M.; Ishii, H.; Ikegami, T. Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates. Talanta, 2015, 132, 301-314.
[http://dx.doi.org/10.1016/j.talanta.2014.09.006] [PMID: 25476312]
[142]
Si-Ahmed, K.; Tazerouti, F.; Badjah-Hadj-Ahmed, A.Y.; Aturki, Z.; D’Orazio, G.; Rocco, A.; Fanali, S. Optical isomer separation of flavanones and flavanone glycosides by nano-liquid chromatography using a phenyl-carbamate-propyl-β-cyclodextrin chiral stationary phase. J. Chromatogr. A, 2010, 1217(7), 1175-1182.
[http://dx.doi.org/10.1016/j.chroma.2009.07.053] [PMID: 19699481]
[143]
Chankvetadze, L.; Kartozia, I.; Yamamoto, C.; Chankvetadze, B.; Blaschke, G.; Okamoto, Y. Enantioseparation in capillary liquid chromatography and capillary electrochromatography using amylose tris(3,5-dimethylphenylcarbamate) in combination with aqueous organic mobile phase. J. Sep. Sci., 2002, 25, 653-660.
[http://dx.doi.org/10.1002/1615-9314(20020701)25:10/11<653:AID-JSSC653>3.0.CO;2-T]
[144]
Auditore, R.; Santagati, N.A.; Aturki, Z.; Fanali, S. Enantiomeric separation of amlodipine and its two chiral impurities by nano-liquid chromatography and capillary electrochromatography using a chiral stationary phase based on cellulose tris(4-chloro-3-methylphenylcarbamate). Electrophoresis, 2013, 34(17), 2593-2600.
[http://dx.doi.org/10.1002/elps.201300157] [PMID: 23775281]
[145]
Krause, K.; Girod, M.; Chankvetadze, B.; Blaschke, G. Enantioseparations in normal- and reversed-phase nano-high- performance liquid chromatography and capillary electrochromatography using polyacrylamide andpolysaccharide derivatives as chiral stationary phases. J. Chromatogr. A, 1999, 837, 51-63.
[http://dx.doi.org/10.1016/S0021-9673(99)00075-8]
[146]
Girod, M.; Chankvetadze, B.; Blaschke, G. Enantioseparations in non-aqueous capillary electrochromatography using polysaccharide type chiral stationary phases. J. Chromatogr. A, 2000, 887(1-2), 439-455.
[http://dx.doi.org/10.1016/S0021-9673(99)01204-2] [PMID: 10961332]
[147]
Chankvetadze, B.; Kartozia, I.; Okamoto, Y.; Blaschke, G. The effect of pore size of silica gel and concentration of buffer on capillary chromatographic and capillary electrochromatographic enantioseparations using cellulose tris(3,5-dichlorophenylcarbamate). J. Sep. Sci., 2001, 24, 635-642.
[http://dx.doi.org/10.1002/1615-9314(20010801)24:8<635:AID-JSSC635>3.0.CO;2-Q]
[148]
Fantacuzzi, M.; Bettoni, G.; D’Orazio, G.; Fanali, S. Enantiomeric separation of some demethylated analogues of clofibric acid by capillary zone electrophoresis and nano-liquid chromatography. Electrophoresis, 2006, 27(5-6), 1227-1236.
[http://dx.doi.org/10.1002/elps.200500715] [PMID: 16523460]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy