Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

3D Pharmacophore-based Ligand Alignment, Virtual Screening and Molecular Docking Protocols Towards the Discovery of 2-((1H-1,2,4-triazol-1- yl)methyl) Derivatives as Antifungal Inhibitors

Author(s): Mohamed E. I. Badawy* and Saad R. El-Zemity

Volume 16, Issue 4, 2020

Page: [498 - 513] Pages: 16

DOI: 10.2174/1573407215666190131110930

Price: $65

Abstract

Background: 1,2,4-Triazoles are important five-membered heterocyclic scaffolds due to their extensive biological activities. These products have been an area of growing interest to many researchers around the world as of their diverse biological activities including antifungal and antibacterial activity against broad spectrum of microbial pathogens.

Methods: A series of 2-((1H-1,2,4-triazol-1-yl)methyl) derivatives was designed, synthesized and evaluated as antifungal agents against five plant pathogenic fungi (Alternaria tennis, Botryodiplodia theobromae, Fusarium moniliforme, Fusarium oxysporum and Helminthosporium turcicum) to meet the urgent need of new antifungal agents with improved activity and broader spectrum. In silico studies including pharmacophore modeling, virtual screening, drug-likeness analysis and ADMET prediction were examined. In addition, the elucidation of the activity is based on the molecular docking to the active site of the Sterol 14α-Demethylase Cytochrome P450 (CYP51) was investigated.

Results: The results of antifungal activity indicated that the compounds containing tert or sec-butyl as hydrophobic substituents on a phenyl ring significantly increased the activity (compounds 4, 5 and 6) with EC50 in the range of 8-84 mg/L of all tested fungi. The pharmacophore modeling produced an accurate projecting model (Hypo 1) from these derivatives. The superlative Hypo1 consists of three features counting two hydrogen bond acceptors (HBA) and one hydrophobic (HYD). The docking results showed approximately a similar binding degree at the active sites of the fungal enzyme (CYP51) as a standard fungicide penconazole.

Conclusion: According to data obtained, some derivatives, especially those with tert or sec-butyl substituents on the phenyl ring, were more potent against phytopathogenic fungi. These compounds (e.g., 4, 5, and 6) should develop into new potential fungicides as a desirable activity.

Keywords: 2-((1H-1, 2, 4-triazol-1-yl)methyl) derivatives, antifungal activity, 3D pharmacophore modeling, virtual screening, docking, enzyme.

Graphical Abstract

[1]
Navidpour, L.; Shafaroodi, H.; Abdi, K.; Amini, M.; Ghahremani, M.H.; Dehpour, A.R.; Shafiee, A. Design, synthesis, and biological evaluation of substituted 3-alkylthio-4,5-diaryl-4H-1,2,4-triazoles as selective COX-2 inhibitors. Bioorg. Med. Chem., 2006, 14(8), 2507-2517.
[http://dx.doi.org/10.1016/j.bmc.2005.11.029] [PMID: 16337127]
[2]
Chakraborti, A.K.; Garg, S.K.; Kumar, R.; Motiwala, H.F.; Jadhavar, P.S. Progress in COX-2 inhibitors: A journey so far. Curr. Med. Chem., 2010, 17(15), 1563-1593.
[http://dx.doi.org/10.2174/092986710790979980] [PMID: 20166930]
[3]
Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Saeedi, M.; Sabourian, R.; Safavi, M.; Khanavi, M.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, biological evaluation, and docking study of acetylcholinesterase inhibitors: New acridone‐1, 2, 4‐oxadiazole‐1, 2, 3‐triazole hybrids. Chem. Biol. Drug Des., 2015, 86(6), 1425-1432.
[http://dx.doi.org/10.1111/cbdd.12609] [PMID: 26077890]
[4]
Saeedi, M.; Ansari, S.; Mahdavi, M.; Sabourian, R.; Akbarzadeh, T.; Foroumadi, A.; Shafiee, A. Synthesis of novel 1, 2, 3-triazole-dihydro [3, 2-c] chromenones as acetylcholinesterase inhibitors. Synth. Commun., 2015, 45, 2311-2318.
[http://dx.doi.org/10.1080/00397911.2015.1077971]
[5]
Holan, G.; Virgona, C.; Watson, K.G. Synthesis and anti-acetylcholinesterase activity of some 5-substituted 1-methyl-1h-1, 2, 4-triazol-3-yl methanesulfonates. Aust. J. Chem., 1997, 50, 153-158.
[http://dx.doi.org/10.1071/C96163]
[6]
Lin, R.; Connolly, P.J.; Huang, S.; Wetter, S.K.; Lu, Y.; Murray, W.V.; Emanuel, S.L.; Gruninger, R.H.; Fuentes-Pesquera, A.R.; Rugg, C.A.; Middleton, S.A.; Jolliffe, L.K. 1-Acyl-1H-[1,2,4]triazole-3,5-diamine analogues as novel and potent anticancer cyclin-dependent kinase inhibitors: Synthesis and evaluation of biological activities. J. Med. Chem., 2005, 48(13), 4208-4211.
[http://dx.doi.org/10.1021/jm050267e] [PMID: 15974571]
[7]
Rostom, S.A.F.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.A. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies. Eur. J. Med. Chem., 2017, 139, 263-279.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.053] [PMID: 28803043]
[8]
Duan, J-R.; Liu, H-B.; Jeyakkumar, P.; Gopala, L.; Li, S.; Geng, R-X.; Zhou, C-H. Design, synthesis and biological evaluation of novel Schiff base-bridged tetrahydroprotoberberine triazoles as a new type of potential antimicrobial agents. MedChemComm, 2017, 8(5), 907-916.
[http://dx.doi.org/10.1039/C6MD00688D] [PMID: 30108806]
[9]
Lal, K.; Yadav, P.; Kumar, A.; Kumar, A.; Paul, A.K. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg. Chem., 2018, 77, 236-244.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.016] [PMID: 29421698]
[10]
Kaplancikli, Z.A.; Turan-Zitouni, G.; Özdemir, A.; Revial, G. New triazole and triazolothiadiazine derivatives as possible antimicrobial agents. Eur. J. Med. Chem., 2008, 43(1), 155-159.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.019] [PMID: 17499887]
[11]
Saag, M.S.; Dismukes, W.E. Azole antifungal agents: Emphasis on new triazoles. Antimicrob. Agents Chemother., 1988, 32(1), 1-8.
[http://dx.doi.org/10.1128/AAC.32.1.1] [PMID: 2831809]
[12]
Park, J.S.; Yu, K.A.; Kang, T.H.; Kim, S.; Suh, Y-G. Discovery of novel indazole-linked triazoles as antifungal agents. Bioorg. Med. Chem. Lett., 2007, 17(12), 3486-3490.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.074] [PMID: 17433670]
[13]
Groll, A.H.; Townsend, R.; Desai, A.; Azie, N.; Jones, M.; Engelhardt, M.; Schmitt-Hoffman, A.H.; Brüggemann, R.J.M. Drug-drug interactions between triazole antifungal agents used to treat invasive aspergillosis and immunosuppressants metabolized by cytochrome P450 3A4. Transpl. Infect. Dis., 2017, 19(5)
[http://dx.doi.org/10.1111/tid.12751] [PMID: 28722255]
[14]
Santos, T.F.; de Jesus, J.B.; Neufeld, P.M.; Jordão, A.K.; Campos, V.R.; Cunha, A.C.; Castro, H.C.; de Souza, M.C.B.V.; Ferreira, V.F.; Rodrigues, C.R. Exploring 1, 2, 3-triazole derivatives by using in vitro and in silico assays to target new antifungal agents and treat candidiasis. Med. Chem. Res., 2017, 26, 680-689.
[http://dx.doi.org/10.1007/s00044-017-1789-x]
[15]
Sangshetti, J.N.; Lokwani, D.K.; Sarkate, A.P.; Shinde, D.B. Synthesis, antifungal activity, and docking study of some new 1,2,4-triazole analogs. Chem. Biol. Drug Des., 2011, 78(5), 800-809.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01178.x] [PMID: 21752200]
[16]
Sangshetti, J.N.; Nagawade, R.R.; Shinde, D.B. Synthesis of novel 3-(1-(1-substituted piperidin-4-yl)-1H-1,2,3-triazol-4-yl)-1,2,4-oxadiazol-5(4H)-one as antifungal agents. Bioorg. Med. Chem. Lett., 2009, 19(13), 3564-3567.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.134] [PMID: 19464891]
[17]
Lepesheva, G.I.; Ott, R.D.; Hargrove, T.Y.; Kleshchenko, Y.Y.; Schuster, I.; Nes, W.D.; Hill, G.C.; Villalta, F.; Waterman, M.R. Sterol 14α-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. Chem. Biol., 2007, 14(11), 1283-1293.
[http://dx.doi.org/10.1016/j.chembiol.2007.10.011] [PMID: 18022567]
[18]
Luo, C-X.; Schnabel, G. The cytochrome P450 lanosterol 14α-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Appl. Environ. Microbiol., 2008, 74(2), 359-366.
[http://dx.doi.org/10.1128/AEM.02159-07] [PMID: 18024679]
[19]
Becher, R.; Wirsel, S.G.R. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl. Microbiol. Biotechnol., 2012, 95(4), 825-840.
[http://dx.doi.org/10.1007/s00253-012-4195-9] [PMID: 22684327]
[20]
Yu, S.; Chai, X.; Hu, H.; Yan, Y.; Guan, Z.; Zou, Y.; Sun, Q.; Wu, Q. Synthesis and antifungal evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase. Eur. J. Med. Chem., 2010, 45(10), 4435-4445.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.002] [PMID: 20675019]
[21]
Xu, K.; Huang, L.; Xu, Z.; Wang, Y.; Bai, G.; Wu, Q.; Wang, X.; Yu, S.; Jiang, Y. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group. Drug Des. Devel. Ther., 2015, 9, 1459-1467.
[PMID: 25792806]
[22]
Podust, L.M.; Poulos, T.L.; Waterman, M.R. Crystal structure of cytochrome P450 14α -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3068-3073.
[http://dx.doi.org/10.1073/pnas.061562898] [PMID: 11248033]
[23]
De Montellano, P.R.O. Cytochrome p450: Structure, mechanism, and biochemistry; Springer Science and Business Media, 2005.
[24]
Sanglard, D.; Ischer, F.; Koymans, L.; Bille, J. Amino acid substitutions in the cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob. Agents Chemother., 1998, 42(2), 241-253.
[http://dx.doi.org/10.1128/AAC.42.2.241] [PMID: 9527767]
[25]
Lamb, D.C.; Kelly, D.E.; Schunck, W-H.; Shyadehi, A.Z.; Akhtar, M.; Lowe, D.J.; Baldwin, B.C.; Kelly, S.L. The mutation T315A in Candida albicans sterol 14α-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J. Biol. Chem., 1997, 272(9), 5682-5688.
[http://dx.doi.org/10.1074/jbc.272.9.5682] [PMID: 9038178]
[26]
Boscott, P.E.; Grant, G.H. Modeling cytochrome P450 14 α demethylase (Candida albicans) from P450cam. J. Mol. Graph., 1994, 12(3), 185-192, 195.
[http://dx.doi.org/10.1016/0263-7855(94)80086-3] [PMID: 7819160]
[27]
Guardiola-Diaz, H.M.; Foster, L-A.; Mushrush, D.; Vaz, A.D. Azole-antifungal binding to a novel cytochrome P450 from Mycobacterium tuberculosis: implications for treatment of tuberculosis. Biochem. Pharmacol., 2001, 61(12), 1463-1470.
[http://dx.doi.org/10.1016/S0006-2952(01)00571-8] [PMID: 11377375]
[28]
Zhao, L.; Liu, D.; Zhang, Q.; Zhang, S.; Wan, J.; Xiao, W. Expression and homology modeling of sterol 14α-demethylase from Penicillium digitatum. FEMS Microbiol. Lett., 2007, 277(1), 37-43.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00929.x] [PMID: 17986082]
[29]
Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev., 1999, 12(1), 40-79.
[http://dx.doi.org/10.1128/CMR.12.1.40] [PMID: 9880474]
[30]
Ji, H.; Zhang, W.; Zhou, Y.; Zhang, M.; Zhu, J.; Song, Y.; Lü, J.; Zhu, J. A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interaction with azole antifungals. J. Med. Chem., 2000, 43(13), 2493-2505.
[http://dx.doi.org/10.1021/jm990589g] [PMID: 10891108]
[31]
Ji, H.; Zhang, W.; Zhang, M.; Kudo, M.; Aoyama, Y.; Yoshida, Y.; Sheng, C.; Song, Y.; Yang, S.; Zhou, Y.; Lü, J.; Zhu, J. Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for lanosterol 14α-demethylase of fungi. J. Med. Chem., 2003, 46(4), 474-485.
[http://dx.doi.org/10.1021/jm020362c] [PMID: 12570370]
[32]
Katritzky, A.R. EL‐Zemity S.R.; Lang H.: A novel and convenient route to (1h‐1, 2, 4‐triazol‐1‐ylmethyl) phenols, anilines, n‐alkylanilines and n, n‐dialkylanilines. Heterocycles, 1994, 38, 1813-1822.
[http://dx.doi.org/10.3987/COM-94-6747]
[33]
Finney, D.J. Probit analysis, 3rd ed; Cambridge University Press, 1971.
[34]
IBM. Corp. Released.Ibm spss statistics for windows, version 25.0; IBM Corp: Armonk, NY, 2017.
[35]
DiscoveryStudio.2.1 is a product of accelrys inc; San Diego, CA, USA, 2008.
[36]
Halgren, T.A. Mmff vi. Mmff94s option for energy minimization studies. J. Comput. Chem., 1999, 20, 720-729.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199905)20:7<720:AID-JCC7>3.0.CO;2-X]
[37]
Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem., 2008, 8(18), 1555-1572.
[http://dx.doi.org/10.2174/156802608786786624] [PMID: 19075767]
[38]
El Ashry, E.S.H.; Badawy, M.E.I.; El-kilany, Y.; Nahas, N.M.; Al-Ghamdi, M.A. 3d-qsar pharmacophore-based ligand alignment, virtual screening and molecular docking of arylidene (benzimidazol-1-yl) acetohydrazones as biomimetics of bacterial inhibitors. Der Chimica Sinica, 2017, 8, 421-485.
[39]
Zhu, Y.; Li, H-F.; Lu, S.; Zheng, Y-X.; Wu, Z.; Tang, W-F.; Zhou, X.; Lu, T. Investigation on the isoform selectivity of histone deacetylase inhibitors using chemical feature based pharmacophore and docking approaches. Eur. J. Med. Chem., 2010, 45(5), 1777-1791.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.010] [PMID: 20153566]
[40]
Yang, S-Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today, 2010, 15(11-12), 444-450.
[http://dx.doi.org/10.1016/j.drudis.2010.03.013] [PMID: 20362693]
[41]
Rella, M.; Rushworth, C.A.; Guy, J.L.; Turner, A.J.; Langer, T.; Jackson, R.M. Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors. J. Chem. Inf. Model., 2006, 46(2), 708-716.
[http://dx.doi.org/10.1021/ci0503614] [PMID: 16563001]
[42]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[43]
Chemical ComputingGroup M.. Molecular operating environment., 2008.
[44]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[45]
Ali, A.; Badawy, M.E.I.; Shah, R.; Rehman, W. El kilany Y.; El Ashry E.S.H.; Tahir N.: Synthesis, characterization and in-silico admet screening of mono- and dicarbomethoxylated 6,6′-methylenebis(2-cyclohexyl-4-methylphenol) and their hydrazides and hydrazones. Der Chimica Sinica, 2017, 8, 446-460.
[46]
Labute, P. Protonate 3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins: Structure, Func. Bioinf., 2009, 75, 187-205.
[PMID: 18814299]
[47]
Goto, J.; Kataoka, R.; Muta, H.; Hirayama, N. ASEDock-docking based on alpha spheres and excluded volumes. J. Chem. Inf. Model., 2008, 48(3), 583-590.
[http://dx.doi.org/10.1021/ci700352q] [PMID: 18278891]
[48]
Papakonstantinou-Garoufalias, S.; Pouli, N.; Marakos, P.; Chytyroglou-Ladas, A. Synthesis antimicrobial and antifungal activity of some new 3 substituted derivatives of 4-(2,4-dichlorophenyl)-5-adamantyl-1H-1,2,4-triazole. Farmaco, 2002, 57(12), 973-977.
[http://dx.doi.org/10.1016/S0014-827X(02)01227-2] [PMID: 12564470]
[49]
Demirbas, N.; Karaoglu, S.A.; Demirbas, A.; Sancak, K. Synthesis and antimicrobial activities of some new 1-(5-phenylamino-[1,3,4]thiadiazol-2-yl)methyl-5-oxo-[1,2,4]triazole and 1-(4-phenyl-5-thioxo-[1,2,4]triazol-3-yl)methyl-5-oxo- [1,2,4]triazole derivatives. Eur. J. Med. Chem., 2004, 39(9), 793-804.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.007] [PMID: 15337292]
[50]
Wu, J.; Ni, T.; Chai, X.; Wang, T.; Wang, H.; Chen, J.; Jin, Y.; Zhang, D.; Yu, S.; Jiang, Y. Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives. Eur. J. Med. Chem., 2018, 143, 1840-1846.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.081] [PMID: 29133044]
[51]
Korkut, B.; Çevik, U.A.; Özkay, Y.; Atlı, Ö. Design, synthesis molecular docking study and antifungal activity evaluation of new benzimidazole-triazole derivatives. Multidiscip. Digit. Publish. Instit. Proceed., 2017, 1, 647.
[http://dx.doi.org/10.3390/proceedings1060647]
[52]
Mollica, A.; Zengin, G.; Durdagi, S.; Ekhteiari Salmas, R.; Macedonio, G.; Stefanucci, A.; Dimmito, M.P.; Novellino, E. Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary qsar models. J. Biomol. Struct. Dyn., 2018, 37(3), 1-15.
[PMID: 29421954]
[53]
Hosseini, Y.; Mollica, A.; Mirzaie, S. Structure-based virtual screening efforts against hiv-1 reverse transcriptase to introduce the new potent non-nucleoside reverse transcriptase inhibitor. J. Mol. Struct., 2016, 1125, 592-600.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.040]
[54]
Zou, Y.; Zhao, Q.; Liao, J.; Hu, H.; Yu, S.; Chai, X.; Xu, M.; Wu, Q. New triazole derivatives as antifungal agents: Synthesis via click reaction, in vitro evaluation and molecular docking studies. Bioorg. Med. Chem. Lett., 2012, 22(8), 2959-2962.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.042] [PMID: 22437114]
[55]
Rezaei, Z.; Khabnadideh, S.; Pakshir, K.; Hossaini, Z.; Amiri, F.; Assadpour, E. Design, synthesis, and antifungal activity of triazole and benzotriazole derivatives. Eur. J. Med. Chem., 2009, 44(7), 3064-3067.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.012] [PMID: 18760508]
[56]
Zhao, Q.J.; Hu, H.G.; Li, Y.W.; Song, Y.; Cai, L.Z.; Wu, Q.Y.; Jiang, Y.Y. Design, synthesis, and antifungal activities of novel 1H-triazole derivatives based on the structure of the active site of fungal lanosterol 14 α-demethylase (CYP51). Chem. Biodivers., 2007, 4(7), 1472-1479.
[http://dx.doi.org/10.1002/cbdv.200790125] [PMID: 17638327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy