[1]
Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270(5235): 467-70.
[2]
Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics 2001; 17(6): 520-5.
[3]
Dede D, Oğul H. TriClust: A tool for cross-species analysis of gene regulation. Mol Inform 2014; 33(5): 382-7.
[4]
Hafez D, Karabacak A, Krueger S, et al. McEnhancer: Predicting gene expression via semi-supervised assignment of enhancers to target genes. Genome Biol 2017; 18(1): 199.
[5]
Ogul H, Akkaya MS. Data integration in functional analysis of microRNAs. Curr Bioinform 2011; 6: 462-72.
[6]
Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439): 531-7.
[7]
Khan J, Wei JS, Ringnér M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001; 7(6): 673-9.
[8]
van ’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871): 530-6.
[9]
Lee JS, Chu IS, Heo J, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 2004; 40(3): 667-76.
[10]
Azzawi H, Hou J, Xiang Y, Alanni R. Lung cancer prediction from microarray data by gene expression programming. IET Syst Biol 2016; 10(5): 168-78.
[11]
Beyan C, Ogul H. A fuzzy kNN aprroach for cancer diagnosis with microarray gene expression data Proceedings of 3rd International Sympoisum on Health. Informatics and Bioinformatics 2008.
[12]
Beer MA, Tavazoie S. Predicting gene expression from sequence. Cell 2004; 117(2): 185-98.
[13]
Yuan Y, Guo L, Shen L, Liu JS. Predicting gene expression from sequence: a reexamination. PLOS Comput Biol 2007; 3(11)e243
[14]
Liew AWC, Law NF, Yan H. Missing value imputation for gene expression data: computational techniques to recover missing data from available information. Brief Bioinform 2011; 12(5): 498-513.
[15]
Armina R, Zain AM, Ali NA, Sallehuddin R. A Review On Missing Value Estimation Using Imputation Algorithm
[16]
Wu WS, Jhou MJ. MVIAeval: A web tool for comprehensively evaluating the performance of a new missing value imputation algorithm. BMC Bioinformatics 2017; 18(1): 31.
[17]
De Silva HM, Perera AS. Evolutionary k-nearest neighbor imputation algorithm for gene expression data 2017 10: 1-8.
[19]
Shahzad W, Rehman Q, Ahmed E. Missing data imputation using genetic algorithm for supervised learning. Int J Advanced Com Sci App 2017; 8(3): 438-45.
[20]
Wang A, Chen Y, An N, Yang J, Li L, Jiang L. Microarray missing
value imputation: A regularized local learning method. IEEE/ACM
Trans Comput Biol Bioinform 2019; 16: 980-93.
[21]
Xie R, Quitadamo A, Cheng J, Shi X. A predictive model of gene expression using a deep learning framework. IEEE International Conference on Bioinformatics and Biomedicine. 2016 Dec 15-18; Shenzhen, China. 676-81.
[22]
Yu Z, Li T, Horng SJ, Pan Y, Wang H, Jing Y. An iterative locally auto-weighted least squares method for microarray missing value estimation. IEEE Trans Nanobioscience 2017; 16(1): 21-33.
[23]
Tsai CF, Li ML, Lin WC. A class center based approach for missing value imputation. Knowl Base Syst 2018; 151: 124-35.
[24]
Ogul H, Tuncer ME. MicroRNA expression prediction: Regression from regulatory elements. Biocybern Biomed Eng 2016; 36(1): 89-94.
[25]
Bayrak T, Ogul H. Microarray missing data imputation using regression. 13th IASTED International Conference. Vienna, Austria. 2017; pp. 2017; 68-73.
[26]
Ogul H, Ekmekciler E. Two-way collaborative filtering on semantically enhanced movie ratings Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces, Cavtat, Croatia, IEEE Xplore, 2012.
[27]
Gröne J, Lenze D, Jurinovic V, et al. Molecular profiles and clinical outcome of stage UICC II colon cancer patients. Int J Colorectal Dis 2011; 26(7): 847-58.
[28]
Satake H, Tamura K, Furihata M, et al. The ubiquitin-like molecule interferon-stimulated gene 15 is overexpressed in human prostate cancer. Oncol Rep 2010; 23(1): 11-6.
[29]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 2013; 4: D991-5.
[30]
Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4(1): 44-57.
[31]
Yates A, Akanni W, Amode MR, et al. Ensembl 2016. Nucleic Acids Res 2016; 44(D1): D710-6.
[32]
Tipping ME. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 2001; 1: 211-44.
[33]
Dong X, Greven MC, Kundaje A, et al. Modeling gene expression using chromatin features in various cellular contexts. Genome Biol 2012; 13(9): R53.
[34]
Murphy KP. Machine Learning: A Probabilistic Perspective. London: MIT Press 2012.
[35]
Tipping ME, Faul AC. Fast marginal likelihood maximisation for sparse Bayesian models. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. 2003 Jan 3-6; Key West, FL. 2003.
[36]
Moffett HF, Coon ME, Radtke S, et al. Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat Commun 2017; 8(1): 389.
[37]
Le HS, Bar-Joseph Z. Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation. Bioinformatics 2013; 29(13): i89-97.
[38]
Sumazin P, Chen Y, Treviño LR, et al. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology 2017; 65(1): 104-21.
[39]
Luo Z, Azencott R, Zhao Y. Modeling miRNA-mRNA interactions: fitting chemical kinetics equations to microarray data. BMC Syst Biol 2014; 8(1): 19.
[40]
Patra BK, Launonen R, Ollikainen V, Nandi S. A new similarity measure using the Bhattacharyya coefficient for collaborative filtering in sparse data. Knowl-based Syst 2015; 82: 163-77.