[2]
Virchow, R. Ueber eine im gehirn und ruckenmark des menschen aufgefunde substanz mit der chemishen reaction der cellulose. Virchows Arch. Path. Anat, 1854, 6, 135-138.
[3]
Astbury, W.T.; Dickinson, S.; Bailey, K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J., 1935, 29, 2351-2360.
[4]
Eanes, E.D.; Glenner, G.G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. Off. J. Histochem. Soc., 1968, 16, 673-677.
[5]
Cohen, A.S.; Calkins, E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature, 1959, 183, 1202-1203.
[6]
Benditt, E.P.; Eriksen, N. Amyloid. 3. A protein related to the subunit structure of human amyloid fibrils. Proc. Natl. Acad. Sci. USA, 1966, 55, 308-316.
[7]
Shirahama, T.; Cohen, A.S. High-resolution electron microscopic analysis of the amyloid fibril. J. Cell Biol., 1967, 33, 679-708.
[8]
Glenner, G.G.; Terry, W.; Harada, M.; Isersky, C.; Page, D. Amyloid fibril proteins: Proof of homology with immunoglobulin light chains by sequence analyses. Science, 1971, 172, 1150-1151.
[9]
Benditt, E.P.; Eriksen, N.; Hermodson, M.A.; Ericsson, L.H. The major proteins of human and monkey amyloid substance: Common properties including unusual N-terminal amino acid sequences. FEBS Lett., 1971, 19, 169-173.
[10]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120, 885-890.
[11]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[12]
Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300, 486-489.
[13]
Kayed, R.; Lasagna-Reeves, C.A. Molecular mechanisms of amyloid oligomers toxicity. J. Alzheimers Dis., 2013, 33(Suppl. 1), S67-S78.
[14]
Fu, L.; Sun, Y.; Guo, Y.; Chen, Y.; Yu, B.; Zhang, H.; Wu, J.; Yu, X.; Kong, W.; Wu, H. Comparison of neurotoxicity of different aggregated forms of Aβ40, Aβ42 and Aβ43 in cell cultures. J. Pept. Sci. Off. Publ. Eur. Pept. Soc., 2017, 23, 245-251.
[15]
Garbuzynskiy, S.O.; Lobanov, M.Y.; Galzitskaya, O.V. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics, 2010, 26, 326-332.
[16]
Selivanova, O.M.; Surin, A.K.; Ryzhykau, Y.L.; Glyakina, A.V.; Suvorina, M.Y.; Kuklin, A.I.; Rogachevsky, V.V.; Galzitskaya, O.V. To be fibrils or to be nanofilms? oligomers are building blocks for fibril and nanofilm formation of fragments of Aβ peptide. Langmuir ACS J. Surf. Colloids, 2018, 34, 2332-2343.
[17]
Selivanova, O.M.; Surin, A.K.; Marchenkov, V.V.; Dzhus, U.F.; Grigorashvili, E.I.; Suvorina, M.Y.; Glyakina, A.V.; Dovidchenko, N.V.; Galzitskaya, O.V. The mechanism underlying amyloid polymorphism is opened for Alzheimer’s disease amyloid-β peptide. J. Alzheimers Dis., 2016, 54, 821-830.
[18]
Markham, R.; Frey, S.; Hills, G.J. Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology, 1963, 20, 88-102.
[19]
Inouye, H.; Fraser, P.E.; Kirschner, D.A. Structure of beta-crystallite assemblies formed by alzheimer beta-amyloid protein analogues: Analysis by X-ray diffraction. Biophys. J., 1993, 64, 502-519.
[20]
Malinchik, S.B.; Inouye, H.; Szumowski, K.E.; Kirschner, D.A. Structural analysis of Alzheimer’s beta(1-40) amyloid: Protofilament assembly of tubular fibrils. Biophys. J., 1998, 74, 537-545.
[21]
Surin, A.K.; Grigorashvili, E.I.; Suvorina, M.Y.; Selivanova, O.M.; Galzitskaya, O.V. Determination of regions involved in amyloid fibril formation for Aβ(1-40) peptide. Biochemistry (Mosc.), 2016, 81, 762-769.
[22]
Lashuel, H.A.; Hartley, D.M.; Petre, B.M.; Wall, J.S.; Simon, M.N.; Walz, T.; Lansbury, P.T. Mixtures of wild-type and a pathogenic (E22g) form of abeta40 in vitro accumulate protofibrils, including amyloid pores. J. Mol. Biol., 2003, 332, 795-808.
[23]
Bhak, G.; Lee, J-H.; Hahn, J-S.; Paik, S.R. Granular assembly of alpha-synuclein leading to the accelerated amyloid fibril formation with shear stress. PLoS One, 2009, 4, e4177.
[24]
Selivanova, O.M.; Glyakina, A.V.; Gorbunova, E.Y.; Mustaeva, L.G.; Suvorina, M.Y.; Grigorashvili, E.I.; Nikulin, A.D.; Dovidchenko, N.V.; Rekstina, V.V.; Kalebina, T.S.; Surin, A.K.; Galzitskaya, O.V. Structural model of amyloid fibrils for amyloidogenic peptide from bgl2p–glucantransferase of S. cerevisiae cell wall and its modifying analog. new morphology of amyloid fibrils. Biochim. Biophys. Acta, 2016, 1864, 1489-1499.
[25]
Selivanova, O.M.; Suvorina, M.Y.; Surin, A.K.; Dovidchenko, N.V.; Galzitskaya, O.V. Insulin and lispro insulin: What is common and different in their behavior? Curr. Protein Pept. Sci., 2017, 18, 57-64.
[26]
Goldsbury, C.; Frey, P.; Olivieri, V.; Aebi, U.; Müller, S.A. Multiple assembly pathways underlie amyloid-beta fibril polymorphisms. J. Mol. Biol., 2005, 352, 282-298.
[27]
Goldsbury, C.S.; Wirtz, S.; Müller, S.A.; Sunderji, S.; Wicki, P.; Aebi, U.; Frey, P. Studies on the in vitro assembly of A beta 1-40: implications for the search for a beta fibril formation inhibitors. J. Struct. Biol., 2000, 130, 217-231.
[28]
Perutz, M.F.; Finch, J.T.; Berriman, J.; Lesk, A. Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA, 2002, 99, 5591-5595.
[29]
Quist, A.; Doudevski, I.; Lin, H.; Azimova, R.; Ng, D.; Frangione, B.; Kagan, B.; Ghiso, J.; Lal, R. Amyloid ion channels: A common structural link for protein-misfolding disease. Proc. Natl. Acad. Sci. USA, 2005, 102, 10427-10432.
[30]
Makin, O.S.; Serpell, L.C. X-ray diffraction studies of amyloid structure. Methods Mol. Biol.Clifton NJ, 2005, 299, 67-80.
[31]
Sunde, M.; Serpell, L.C.; Bartlam, M.; Fraser, P.E.; Pepys, M.B.; Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol., 1997, 273, 729-739.
[32]
Galzitskaya, O.V.; Surin, A.K.; Glyakina, A.V.; Rogachevsky, V.V.; Selivanova, O.M. Should the treatment of amyloidosis be personified? Molecular mechanism of amyloid formation by Aβ peptide and its fragments. J. Alzheimers Dis. Rep., 2018, 2(1), 181-199.
[33]
Galzitskaya, O.V.; Selivanova, O.M. Rosetta stone for amyloid fibrils: The key role of ring-like oligomers in amyloidogenesis. J. Alzheimers Dis., 2017, 59, 785-795.
[34]
Lu, J-X.; Qiang, W.; Yau, W-M.; Schwieters, C.D.; Meredith, S.C.; Tycko, R. Molecular structure of β-amyloid fibrils in alzheimer’s disease brain tissue. Cell, 2013, 154, 1257-1268.
[35]
Dovidchenko, N.V.; Finkelstein, A.V.; Galzitskaya, O.V. How to Determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. modeling the amyloid protofibril formation. J. Phys. Chem. B, 2014, 118, 1189-1197.
[36]
Dovidchenko, N.V.; Galzitskaya, O.V. Computational approaches to identification of aggregation sites and the mechanism of amyloid growth. Adv. Exp. Med. Biol., 2015, 855, 213-239.
[37]
Dovidchenko, N.V.; Glyakina, A.V.; Selivanova, O.M.; Grigorashvili, E.I.; Suvorina, M.Y.; Dzhus, U.F.; Mikhailina, A.O.; Shiliaev, N.G.; Marchenkov, V.V.; Surin, A.K.; Galzitskaya, O.V. One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42. J. Struct. Biol., 2016, 194, 404-414.
[38]
Cohen, S.I.A.; Linse, S.; Luheshi, L.M.; Hellstrand, E.; White, D.A.; Rajah, L.; Otzen, D.E.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Proliferation of amyloid-B42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA, 2013, 110, 9758-9763.
[39]
Meisl, G.; Yang, X.; Hellstrand, E.; Frohm, B.; Kirkegaard, J.B.; Cohen, S.I.A.; Dobson, C.M.; Linse, S.; Knowles, T.P.J. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl. Acad. Sci. USA, 2014, 111, 9384-9389.
[40]
Janssen, J.C.; Beck, J.A.; Campbell, T.A.; Dickinson, A.; Fox, N.C.; Harvey, R.J.; Houlden, H.; Rossor, M.N.; Collinge, J. Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology, 2003, 60, 235-239.
[41]
Ono, K.; Condron, M.M.; Teplow, D.B. Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid beta-protein assembly and toxicity. J. Biol. Chem., 2010, 285, 23186-23197.
[42]
Rossi, G.; Macchi, G.; Porro, M.; Giaccone, G.; Bugiani, M.; Scarpini, E.; Scarlato, G.; Molini, G.E.; Sasanelli, F.; Bugiani, O.; Tagliavini, F. Fatal familial insomnia: Genetic, neuropathologic, and biochemical study of a patient from a new Italian kindred. Neurology, 1998, 50, 688-692.
[43]
Miravalle, L.; Tokuda, T.; Chiarle, R.; Giaccone, G.; Bugiani, O.; Tagliavini, F.; Frangione, B.; Ghiso, J. Substitutions at codon 22 of Alzheimer’s Abeta peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J. Biol. Chem., 2000, 275, 27110-27116.
[44]
Wakutani, Y.; Watanabe, K.; Adachi, Y.; Wada-Isoe, K.; Urakami, K.; Ninomiya, H.; Saido, T.C.; Hashimoto, T.; Iwatsubo, T.; Nakashima, K. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2004, 75, 1039-1042.
[45]
Tomiyama, T.; Nagata, T.; Shimada, H.; Teraoka, R.; Fukushima, A.; Kanemitsu, H.; Takuma, H.; Kuwano, R.; Imagawa, M.; Ataka, S.; Wada, Y.; Yoshioka, E.; Nishizaki, T.; Watanabe, Y.; Mori, H. A new amyloid beta variant favoring oligomerization in Alzheimer’s-type dementia. Ann. Neurol., 2008, 63, 377-387.
[46]
Schütz, A.K.; Vagt, T.; Huber, M.; Ovchinnikova, O.Y.; Cadalbert, R.; Wall, J.; Güntert, P.; Böckmann, A.; Glockshuber, R.; Meier, B.H. Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation. Angew. Chem. Int. Ed. Engl., 2015, 54, 331-335.
[47]
Chen, W-T.; Hong, C-J.; Lin, Y-T.; Chang, W-H.; Huang, H-T.; Liao, J-Y.; Chang, Y-J.; Hsieh, Y-F.; Cheng, C-Y.; Liu, H-C.; Chen, Y-R.; Cheng, I.H. Amyloid-beta (Aβ) D7H mutation increases oligomeric Aβ42 and alters properties of Aβ-Zinc/Copper assemblies. PLoS One, 2012, 7, e35807.
[48]
Grabowski, T.J.; Cho, H.S.; Vonsattel, J.P.; Rebeck, G.W.; Greenberg, S.M. Novel amyloid precursor protein mutation in an iowa family with dementia and severe cerebral amyloid angiopathy. Ann. Neurol., 2001, 49, 697-705.
[49]
Qiang, W.; Yau, W-M.; Luo, Y.; Mattson, M.P.; Tycko, R. Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2012, 109, 4443-4448.
[50]
Sgourakis, N.G.; Yau, W-M.; Qiang, W. Modeling an in-register, parallel “Iowa” Aβ fibril structure using solid-state NMR data from labeled samples with Rosetta. Structure Lond. Engl, 1993, 2015(23), 216-227.
[51]
Hendriks, L.; van Duijn, C.M.; Cras, P.; Cruts, M.; Van Hul, W.; van Harskamp, F.; Warren, A.; McInnis, M.G.; Antonarakis, S.E.; Martin, J.J. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat. Genet., 1992, 1, 218-221.
[52]
Huet, A.; Derreumaux, P. Impact of the mutation A21G (Flemish Variant) on Alzheimer’s beta-amyloid dimers by molecular dynamics simulations. Biophys. J., 2006, 91, 3829-3840.
[53]
Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.; Maloney, J.; Hoyte, K.; Gustafson, A.; Liu, Y.; Lu, Y.; Bhangale, T.; Graham, R.R.; Huttenlocher, J.; Bjornsdottir, G.; Andreassen, O.A. Jönsson, E.G.; Palotie, A.; Behrens, T.W.; Magnusson, O.T.; Kong, A.; Thorsteinsdottir, U.; Watts, R.J.; Stefansson, K. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 2012, 488, 96-99.
[54]
Lin, T-W.; Chang, C-F.; Chang, Y-J.; Liao, Y-H.; Yu, H-M.; Chen, Y-R. Alzheimer’s amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity. PLoS One, 2017, 12, e0174561.
[55]
Nilsberth, C.; Westlind-Danielsson, A.; Eckman, C.B.; Condron, M.M.; Axelman, K.; Forsell, C.; Stenh, C.; Luthman, J.; Teplow, D.B.; Younkin, S.G.; Näslund, J.; Lannfelt, L. The “Arctic” APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat. Neurosci., 2001, 4, 887-893.
[56]
Di Fede, G.; Catania, M.; Morbin, M.; Rossi, G.; Suardi, S.; Mazzoleni, G.; Merlin, M.; Giovagnoli, A.R.; Prioni, S.; Erbetta, A.; Falcone, C.; Gobbi, M.; Colombo, L.; Bastone, A.; Beeg, M.; Manzoni, C.; Francescucci, B.; Spagnoli, A.; Cantù, L.; Del Favero, E.; Levy, E.; Salmona, M.; Tagliavini, F. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science, 2009, 323, 1473-1477.
[57]
Messa, M.; Colombo, L.; del Favero, E.; Cantù, L.; Stoilova, T.; Cagnotto, A.; Rossi, A.; Morbin, M.; Di Fede, G.; Tagliavini, F.; Salmona, M. The peculiar role of the A2V mutation in amyloid-β (Aβ) 1-42 molecular assembly. J. Biol. Chem., 2014, 289, 24143-24152.
[58]
Levy, E.; Carman, M.D.; Fernandez-Madrid, I.J.; Power, M.D.; Lieberburg, I.; van Duinen, S.G.; Bots, G.T.; Luyendijk, W.; Frangione, B. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, dutch type. Science, 1990, 248, 1124-1126.
[59]
Bird, T.D. Alzheimer Disease Overview.In GeneReviews®;; M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.; Stephens,
K.; Amemiya, A.; Eds.; University of Washington, Seattle:
Seattle (WA),. , 1993.
[60]
Beel, A.J.; Mobley, C.K.; Kim, H.J.; Tian, F.; Hadziselimovic, A.; Jap, B.; Prestegard, J.H.; Sanders, C.R. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): Does APP function as a cholesterol sensor? Biochemistry, 2008, 47, 9428-9446.
[61]
Duce, J.A.; Tsatsanis, A.; Cater, M.A.; James, S.A.; Robb, E.; Wikhe, K.; Leong, S.L.; Perez, K.; Johanssen, T.; Greenough, M.A.; Cho, H-H.; Galatis, D.; Moir, R.D.; Masters, C.L.; McLean, C.; Tanzi, R.E.; Cappai, R.; Barnham, K.J.; Ciccotosto, G.D.; Rogers, J.T.; Bush, A.I. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell, 2010, 142, 857-867.
[62]
Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.; Duong, S.; Tanzi, R.E.; Moir, R.D. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One, 2010, 5, e9505.
[63]
Chen, W.; Gamache, E.; Rosenman, D.J.; Xie, J.; Lopez, M.M.; Li, Y-M.; Wang, C. Familial Alzheimer’s mutations within APPTM increase Aβ42 production by enhancing accessibility of ε-cleavage site. Nat. Commun., 2014, 5, 3037.
[64]
Ghidoni, R.; Albertini, V.; Squitti, R.; Paterlini, A.; Bruno, A.; Bernardini, S.; Cassetta, E.; Rossini, P.M.; Squitieri, F.; Benussi, L.; Binetti, G. Novel T719P AbetaPP mutation unbalances the relative proportion of amyloid-beta peptides. J. Alzheimers Dis., 2009, 18, 295-303.
[65]
Muratore, C.R.; Rice, H.C.; Srikanth, P.; Callahan, D.G.; Shin, T.; Benjamin, L.N.P.; Walsh, D.M.; Selkoe, D.J.; Young-Pearse, T.L. The familial Alzheimer’s disease APPV717I mutation alters APP processing and tau expression in IPSC-derived neurons. Hum. Mol. Genet., 2014, 23, 3523-3536.
[66]
Eckman, C.B.; Mehta, N.D.; Crook, R.; Perez-tur, J.; Prihar, G.; Pfeiffer, E.; Graff-Radford, N.; Hinder, P.; Yager, D.; Zenk, B.; Refolo, L.M.; Prada, C.M.; Younkin, S.G.; Hutton, M.; Hardy, J. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A Beta 42(43). Hum. Mol. Genet., 1997, 6, 2087-2089.
[67]
De Jonghe, C.; Esselens, C.; Kumar-Singh, S.; Craessaerts, K.; Serneels, S.; Checler, F.; Annaert, W.; Van Broeckhoven, C.; De Strooper, B. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect abeta secretion and APP C-terminal fragment stability. Hum. Mol. Genet., 2001, 10, 1665-1671.
[68]
Guardia-Laguarta, C.; Pera, M.; Clarimón, J.; Molinuevo, J.L.; Sánchez-Valle, R.; Lladó, A.; Coma, M.; Gómez-Isla, T.; Blesa, R.; Ferrer, I.; Lleó, A. Clinical, neuropathologic, and biochemical profile of the amyloid precursor protein I716F mutation. J. Neuropathol. Exp. Neurol., 2010, 69, 53-59.