[1]
Arnedos, M.; Vicier, C.; Loi, S.; Lefebvre, C.; Michiels, S.; Bonnefoi, H.; Andre, F. Precision medicine for metastatic breast cancer--limitations and solutions. Nat. Rev. Clin. Oncol., 2015, 12(12), 693-704. [http://dx.doi.org/10.1038/nrclinonc.2015.123]. [PMID: 26196250].
[2]
Darshan, M.S.; Loftus, M.S.; Thadani-Mulero, M.; Levy, B.P.; Escuin, D.; Zhou, X.K.; Gjyrezi, A.; Chanel-Vos, C.; Shen, R.; Tagawa, S.T.; Bander, N.H.; Nanus, D.M.; Giannakakou, P. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res., 2011, 71(18), 6019-6029. [http://dx.doi.org/10.1158/0008-5472.CAN-11-1417]. [PMID: 21799031].
[3]
Peng, Z.; Zhou, W.; Zhang, C.; Liu, H.; Zhang, Y. Curcumol controls choriocarcinoma stem-like cells self-renewal via repression of DNA methyltransferase (DNMT)- and histone deacetylase (HDAC)-mediated epigenetic regulation. Med. Sci. Monit., 2018, 24, 461-472. [http://dx.doi.org/10.12659/MSM.908430]. [PMID: 29363667].
[4]
Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92. [http://dx.doi.org/10.3389/fonc.2018.00092]. [PMID: 29651407].
[5]
Heimburg, T.; Kolbinger, F.R.; Zeyen, P.; Ghazy, E.; Herp, D.; Schmidtkunz, K.; Melesina, J.; Shaik, T.B.; Erdmann, F.; Schmidt, M.; Romier, C.; Robaa, D.; Witt, O.; Oehme, I.; Jung, M.; Sippl, W. Structure-based design and biological characterization of selective histone deacetylase 8 (HDAC8) inhibitors with anti-neuroblastoma activity. J. Med. Chem., 2017, 60(24), 10188-10204. [http://dx.doi.org/10.1021/acs.jmedchem.7b01447]. [PMID: 29190092].
[6]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Kalampokas, E.; Kalampokas, T.; Spartalis, E.; Daskalopoulou, A.; Valsami, S.; Kontos, M.; Nonni, A.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone Deacetylases as new therapeutic targets in triple-negative breast cancer: progress and promises. Cancer Genomics Proteomics, 2017, 14(5), 299-313. [PMID: 28870998].
[7]
Guarasci, F.; D’Aquila, P.; Mandalà, M.; Garasto, S.; Lattanzio, F.; Corsonello, A.; Passarino, G.; Bellizzi, D. Aging and nutrition induce tissue-specific changes on global DNA methylation status in rats. Mech. Ageing Dev., 2018, 174, 47-54. [http://dx.doi.org/10.1016/j.mad.2018.02.001]. [PMID: 29427568].
[8]
Duca, R.C.; Grova, N.; Ghosh, M.; Do, J.M.; Hoet, P.H.M.; Vanoirbeek, J.A.J.; Appenzeller, B.M.R.; Godderis, L. Exposure to polycyclic aromatic hydrocarbons leads to non-monotonic modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Sci. Rep., 2018, 8(1), 10577. [http://dx.doi.org/10.1038/s41598-018-28911-y]. [PMID: 30002487].
[9]
Rifaï, K.; Judes, G.; Idrissou, M.; Daures, M.; Bignon, Y.J.; Penault-Llorca, F.; Bernard-Gallon, D. SIRT1-dependent epigenetic regulation of H3 and H4 histone acetylation in human breast cancer. Oncotarget, 2018, 9(55), 30661-30678. [http://dx.doi.org/10.18632/oncotarget.25771]. [PMID: 30093977].
[10]
Bove, R.M.; Patrick, E.; Aubin, C.M.; Srivastava, G.; Schneider, J.A.; Bennett, D.A.; De Jager, P.L.; Chibnik, L.B. Reproductive period and epigenetic modifications of the oxidative phosphorylation pathway in the human prefrontal cortex. PLoS One, 2018, 13(7)e0199073 [http://dx.doi.org/10.1371/journal.pone.0199073]. [PMID: 30052629].
[11]
Nucifora, F.C., Jr; Nucifora, L.G.; Ng, C.H.; Arbez, N.; Guo, Y.; Roby, E.; Shani, V.; Engelender, S.; Wei, D.; Wang, X.F.; Li, T.; Moore, D.J.; Pletnikova, O.; Troncoso, J.C.; Sawa, A.; Dawson, T.M.; Smith, W.; Lim, K.L.; Ross, C.A. Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nat. Commun., 2016, 7, 11792. [http://dx.doi.org/10.1038/ncomms11792]. [PMID: 27273569].
[12]
Zhou, L.; Zhang, W.; Sun, Y.; Jia, L. Protein neddylation and its alterations in human cancers for targeted therapy. Cell. Signal., 2018, 44, 92-102. [http://dx.doi.org/10.1016/j.cellsig.2018.01.009]. [PMID: 29331584].
[13]
Pérez-Garrastachu, M.; Arluzea, J.; Andrade, R.; Díez-Torre, A.; Urtizberea, M.; Silió, M.; Aréchaga, J. Nucleoporins redistribute inside the nucleus after cell cycle arrest induced by histone deacetylases inhibition. Nucleus, 2017, 8(5), 515-533. [http://dx.doi.org/10.1080/19491034.2017.1320001]. [PMID: 28696859].
[14]
Gaisina, I.N.; Tueckmantel, W.; Ugolkov, A.; Shen, S.; Hoffen, J.; Dubrovskyi, O.; Mazar, A.; Schoon, R.A.; Billadeau, D.; Kozikowski, A.P. Identification of HDAC6-selective inhibitors of low cancer cell cytotoxicity. ChemMedChem, 2016, 11(1), 81-92. [http://dx.doi.org/10.1002/cmdc.201500456]. [PMID: 26592932].
[15]
Hayashi, A.; Horiuchi, A.; Kikuchi, N.; Hayashi, T.; Fuseya, C.; Suzuki, A.; Konishi, I.; Shiozawa, T. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int. J. Cancer, 2010, 127(6), 1332-1346. [http://dx.doi.org/10.1002/ijc.25151]. [PMID: 20049841].
[16]
Chen, Y.; Sprung, R.; Tang, Y.; Ball, H.; Sangras, B.; Kim, S.C.; Falck, J.R.; Peng, J.; Gu, W.; Zhao, Y. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics, 2007, 6(5), 812-819. [http://dx.doi.org/10.1074/mcp.M700021-MCP200]. [PMID: 17267393].
[17]
McClure, J.J.; Inks, E.S.; Zhang, C.; Peterson, Y.K.; Li, J.; Chundru, K.; Lee, B.; Buchanan, A.; Miao, S.; Chou, C.J. Comparison of the deacylase and deacetylase activity of zinc-dependent HDACs. ACS Chem. Biol., 2017, 12(6), 1644-1655. [http://dx.doi.org/10.1021/acschembio.7b00321]. [PMID: 28459537].
[18]
Wei, W.; Liu, X.; Chen, J.; Gao, S.; Lu, L.; Zhang, H.; Ding, G.; Wang, Z.; Chen, Z.; Shi, T.; Li, J.; Yu, J.; Wong, J. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res., 2017, 27(7), 898-915. [http://dx.doi.org/10.1038/cr.2017.68]. [PMID: 28497810].
[19]
Tang, F.; Choy, E.; Tu, C.; Hornicek, F.; Duan, Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat. Rev., 2017, 59(59), 33-45. [http://dx.doi.org/10.1016/j.ctrv.2017.06.006]. [PMID: 28732326].
[20]
Zhu, Q.; Yu, X.; Shen, Q.; Zhang, Q.; Su, M.; Zhou, Y.; Li, J.; Chen, Y.; Lu, W. A series of camptothecin prodrugs exhibit HDAC inhibition activity. Bioorg. Med. Chem., 2018, 26(16), 4706-4715. [http://dx.doi.org/10.1016/j.bmc.2018.08.008]. [PMID: 30115492].
[21]
Brindisi, M.; Senger, J.; Cavella, C.; Grillo, A.; Chemi, G.; Gemma, S.; Cucinella, D.M.; Lamponi, S.; Sarno, F.; Iside, C.; Nebbioso, A.; Novellino, E.; Shaik, T.B.; Romier, C.; Herp, D.; Jung, M.; Butini, S.; Campiani, G.; Altucci, L.; Brogi, S. Novel spiroindoline HDAC inhibitors: Synthesis, molecular modelling and biological studies. Eur. J. Med. Chem., 2018, 157, 127-138. [http://dx.doi.org/10.1016/j.ejmech.2018.07.069]. [PMID: 30092367].
[22]
Gatla, H.R.; Zou, Y.; Uddin, M.M.; Singha, B.; Bu, P.; Vancura, A.; Vancurova, I. Histone deacetylase (HDAC) inhibition induces IκB kinase (IKK)-dependent Interleukin-8/CXCL8 expression in ovarian cancer cells. J. Biol. Chem., 2017, 292(12), 5043-5054. [http://dx.doi.org/10.1074/jbc.M116.771014]. [PMID: 28167529].
[23]
Patel, M.M.; Patel, B.M. Repurposing of sodium valproate in colon cancer associated with diabetes mellitus: Role of HDAC inhibition. Eur. J. Pharm. Sci., 2018, 121, 188-199. [http://dx.doi.org/10.1016/j.ejps.2018.05.026]. [PMID: 29852291].
[24]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39. [http://dx.doi.org/10.1172/JCI69738]. [PMID: 24382387].
[25]
De Souza, C.; Chatterji, B.P. HDAC inhibitors as novel anti-cancer therapeutics. Recent Patents Anticancer Drug Discov., 2015, 10(2), 145-162. [http://dx.doi.org/10.2174/1574892810666150317144511]. [PMID: 25782916].
[26]
Schmauss, C. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci. Rep., 2015, 5, 8171.
[27]
Rauzan, M.; Chuah, C.T.; Ko, T.K.; Ong, S.T. The HDAC inhibitor SB939 overcomes resistance to BCR-ABL kinase Inhibitors conferred by the BIM deletion polymorphism in chronic myeloid leukemia. PLoS One, 2017, 12(3)e0174107 [http://dx.doi.org/10.1371/journal.pone.0174107]. [PMID: 28301600].
[28]
Waibel, M.; Christiansen, A.J.; Hibbs, M.L.; Shortt, J.; Jones, S.A.; Simpson, I.; Light, A.; O’Donnell, K.; Morand, E.F.; Tarlinton, D.M.; Johnstone, R.W.; Hawkins, E.D. Manipulation of B-cell responses with histone deacetylase inhibitors. Nat. Commun., 2015, 6, 6838. [http://dx.doi.org/10.1038/ncomms7838]. [PMID: 25913720].
[29]
Wang, J.; Yang, D.; Luo, Q.; Qiu, M.; Zhang, L.; Li, B.; Chen, H.; Yi, H.; Yan, X.; Li, S.; Sun, J. APG-1252-12A induces mitochondria-dependent apoptosis through inhibiting the antiapoptotic proteins Bcl-2/Bcl-xl in HL-60 cells. Int. J. Oncol., 2017, 51(2), 563-572. [http://dx.doi.org/10.3892/ijo.2017.4028]. [PMID: 28586007].
[30]
He, L.; Torres-Lockhart, K.; Forster, N.; Ramakrishnan, S.; Greninger, P.; Garnett, M.J.; McDermott, U.; Rothenberg, S.M.; Benes, C.H.; Ellisen, L.W. Mcl-1 and FBW7 control a dominant survival pathway underlying HDAC and Bcl-2 inhibitor synergy in squamous cell carcinoma. Cancer Discov., 2013, 3(3), 324-337. [http://dx.doi.org/10.1158/2159-8290.CD-12-0417]. [PMID: 23274910].
[31]
Lemke, J.; von Karstedt, S.; Zinngrebe, J.; Walczak, H. Getting TRAIL back on track for cancer therapy. Cell Death Differ., 2014, 21(9), 1350-1364. [http://dx.doi.org/10.1038/cdd.2014.81]. [PMID: 24948009].
[32]
Zhou, W.; Feng, X.; Han, Han. Guo, S.; Wang, G. Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells. Sci. Rep., 2016, 6, 28004. [http://dx.doi.org/10.1038/srep28004]. [PMID: 27292433].
[33]
Chen, S.; Ye, J.; Chen, X.; Shi, J.; Wu, W.; Lin, W.; Lin, W.; Li, Y.; Fu, H.; Li, S. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J. Neuroinflammation, 2018, 15(1), 150. [http://dx.doi.org/10.1186/s12974-018-1193-6]. [PMID: 29776446].
[34]
Rajashekar Reddy, C.B.; Rajasekhara Reddy, S.; Suthindhiran, K.; Sivakumar, A. HDAC and NF-κB mediated cytotoxicity induced by novel N-Chloro β-lactams and benzisoxazole derivatives. Chem. Biol. Interact., 2016, 246, 69-76. [http://dx.doi.org/10.1016/j.cbi.2016.01.010]. [PMID: 26776669].
[35]
Cheng, M.H.; Wong, Y.H.; Chang, C.M.; Yang, C.C.; Chen, S.H.; Yuan, C.L.; Kuo, H.M.; Yang, C.Y.; Chiu, H.F. B1, a novel HDAC inhibitor, induces apoptosis through the regulation of STAT3 and NF-κB. Int. J. Mol. Med., 2017, 39(5), 1137-1148. [http://dx.doi.org/10.3892/ijmm.2017.2946]. [PMID: 28393178].
[36]
Zhou, W.; Zhu, W.; Ma, L.; Xiao, F.; Qian, W. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein. Oncol. Lett., 2015, 10(5), 2899-2904. [http://dx.doi.org/10.3892/ol.2015.3665]. [PMID: 26722260].
[37]
Chiao, M.T.; Cheng, W.Y.; Yang, Y.C.; Shen, C.C.; Ko, J.L. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy, 2013, 9(10), 1509-1526. [http://dx.doi.org/10.4161/auto.25664]. [PMID: 23962875].
[38]
Booth, L.; Roberts, J.L.; Poklepovic, A.; Dent, P. [pemetrexed + sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol. Ther., 2017, 18(9), 705-714. [http://dx.doi.org/10.1080/15384047.2017.1362511]. [PMID: 28812434].
[39]
Mahalingam, D.; Mita, M.; Sarantopoulos, J.; Wood, L.; Amaravadi, R.K.; Davis, L.E.; Mita, A.C.; Curiel, T.J.; Espitia, C.M.; Nawrocki, S.T.; Giles, F.J.; Carew, J.S. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy, 2014, 10(8), 1403-1414. [http://dx.doi.org/10.4161/auto.29231]. [PMID: 24991835].
[40]
Koeneke, E.; Witt, O.; Oehme, I. HDAC family members intertwined in the regulation of autophagy: A druggable vulnerability in aggressive tumor entities. Cells, 2015, 4(2), 135-168. [http://dx.doi.org/10.3390/cells4020135]. [PMID: 25915736].
[41]
Liu, Y.L.; Yang, P.M.; Shun, C.T.; Wu, M.S.; Weng, J.R.; Chen, C.C. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy, 2010, 6(8), 1057-1065. [http://dx.doi.org/10.4161/auto.6.8.13365]. [PMID: 20962572].
[42]
Hanke, N.T.; Garland, L.L.; Baker, A.F. Carfilzomib combined with suberanilohydroxamic acid (SAHA) synergistically promotes endoplasmic reticulum stress in non-small cell lung cancer cell lines. J. Cancer Res. Clin. Oncol., 2016, 142(3), 549-560. [http://dx.doi.org/10.1007/s00432-015-2047-6]. [PMID: 26385374].
[43]
To, M.; Swallow, E.B.; Akashi, K.; Haruki, K.; Natanek, S.A.; Polkey, M.I.; Ito, K.; Barnes, P.J. Reduced HDAC2 in skeletal muscle of COPD patients. Respir. Res., 2017, 18(1), 99. [http://dx.doi.org/10.1186/s12931-017-0588-8]. [PMID: 28526090].
[44]
Lai, F1.; Guo, S.T.; Jin, L.; Jiang, C.C.; Wang, C.Y.; Croft, A.; Chi, M.N.; Tseng, H.Y.; Farrelly, M.; Atmadibrata, B.; Norman, J.; Liu, T.; Hersey, P.; Zhang, X.D. Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3. Cell Death Dis., 2013, 4e655
[45]
Hagiwara, K.; Kunishima, S.; Iida, H.; Miyata, Y.; Naoe, T.; Nagai, H. The synergistic effect of BCR signaling inhibitors combined with an HDAC inhibitor on cell death in a mantle cell lymphoma cell line. Apoptosis, 2015, 20(7), 975-985. [http://dx.doi.org/10.1007/s10495-015-1125-1]. [PMID: 25835755].
[46]
Kikuchi, S.; Suzuki, R.; Ohguchi, H.; Yoshida, Y.; Lu, D.; Cottini, F.; Jakubikova, J.; Bianchi, G.; Harada, T.; Gorgun, G.; Tai, Y.T.; Richardson, P.G.; Hideshima, T.; Anderson, K.C. Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma. Leukemia, 2015, 29(9), 1918-1927. [http://dx.doi.org/10.1038/leu.2015.83]. [PMID: 25801913].
[47]
Kolbinger, F.R.; Koeneke, E.; Ridinger, J.; Heimburg, T.; Müller, M.; Bayer, T.; Sippl, W.; Jung, M.; Gunkel, N.; Miller, A.K.; Westermann, F.; Witt, O.; Oehme, I. The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines. Arch. Toxicol., 2018, 92(8), 2649-2664. [http://dx.doi.org/10.1007/s00204-018-2234-8]. [PMID: 29947893].
[48]
Cedeno-Laurent, F.; Singer, E.M.; Wysocka, M.; Benoit, B.M.; Vittorio, C.C.; Kim, E.J.; Yosipovitch, G.; Rook, A.H. Improved pruritus correlates with lower levels of IL-31 in CTCL patients under different therapeutic modalities. Clin. Immunol., 2015, 158(1), 1-7. [http://dx.doi.org/10.1016/j.clim.2015.02.014]. [PMID: 25762519].
[49]
Bae, J.; Hideshima, T.; Tai, Y.T.; Song, Y.; Richardson, P.; Raje, N.; Munshi, N.C.; Anderson, K.C. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia, 2018, 32(9), 1932-1947. [http://dx.doi.org/10.1038/s41375-018-0062-8]. [PMID: 29487385].
[50]
Pickering, C.R.; Myers, J.N. Bcl-2 inhibition or FBXW7 mutation sensitizes solid tumor cells to HDAC inhibition in vitro but could prove difficult to validate in patients. Cancer Discov., 2013, 3(3), 258-259. [http://dx.doi.org/10.1158/2159-8290.CD-13-0019]. [PMID: 23475877].
[51]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941. [http://dx.doi.org/10.3390/molecules20033898]. [PMID: 25738536].
[52]
Deming, D.A.; Ninan, J.; Bailey, H.H.; Kolesar, J.M.; Eickhoff, J.; Reid, J.M.; Ames, M.M.; McGovern, R.M.; Alberti, D.; Marnocha, R.; Espinoza-Delgado, I.; Wright, J.; Wilding, G.; Schelman, W.R. A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors. Invest. New Drugs, 2014, 32(2), 323-329. [http://dx.doi.org/10.1007/s10637-013-0035-8]. [PMID: 24114123].
[53]
Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Morschhauser, F.; Wilhelm, M.; Pinter-Brown, L.; Padmanabhan Iyer, S.; Shustov, A.; Nielsen, T.; Nichols, J.; Wolfson, J.; Balser, B.; Horwitz, S. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J. Hematol. Oncol., 2014, 7, 11. [http://dx.doi.org/10.1186/1756-8722-7-11]. [PMID: 24456586].
[54]
Bailey, H.; McPherson, J.P.; Bailey, E.B.; Werner, T.L.; Gupta, S.; Batten, J.; Reddy, G.; Bhat, G.; Sharma, S.; Agarwal, N. A phase I study to determine the pharmacokinetics and urinary excretion of belinostat and metabolites in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2016, 78(5), 1059-1071. [http://dx.doi.org/10.1007/s00280-016-3167-7]. [PMID: 27744565].
[55]
Maly, J.J.; Christian, B.A.; Zhu, X.; Wei, L.; Sexton, J.L.; Jaglowski, S.M.; Devine, S.M.; Fehniger, T.A.; Wagner-Johnston, N.D.; Phelps, M.A.; Bartlett, N.L.; Blum, K.A. A Phase I/II trial of panobinostat in combination with lenalidomide in patients with relapsed or refractory hodgkin lymphoma. Clin. Lymphoma Myeloma Leuk., 2017, 17(6), 347-353. [http://dx.doi.org/10.1016/j.clml.2017.05.008]. [PMID: 28622959].
[56]
De Souza, C.; Chatterji, B.P. HDAC inhibitors as novel anti-cancer therapeutics. Recent Patents Anticancer Drug Discov., 2015, 10(2), 145-162. [http://dx.doi.org/10.2174/1574892810666150317144511]. [PMID: 25782916].
[57]
Fedele, P.; Orlando, L.; Cinieri, S. Targeting triple negative breast cancer with histone deacetylase inhibitors. Expert Opin. Investig. Drugs, 2017, 26(11), 1199-1206. [http://dx.doi.org/10.1080/13543784.2017.1386172]. [PMID: 28952409].
[58]
Amemiya, S.; Yamaguchi, T.; Hashimoto, Y.; Noguchi-Yachide, T. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg. Med. Chem., 2017, 25(14), 3677-3684. [DOI: 10.1016/j.bmc.2017.04.043]. [ PMID: 28549889].
[59]
Hosford, S.R.; Miller, T.W. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Pharm. Genomics Pers. Med., 2014, 7, 203-215. [PMID: 25206307].
[60]
Kularatne, R.N.; Washington, K.E.; Bulumulla, C.; Calubaquib, E.L.; Biewer, M.C.; Oupicky, D.; Stefan, M.C. Histone deacetylase inhibitor (HDACi) conjugated polycaprolactone for combination cancer therapy. Biomacromolecules, 2018, 19(3), 1082-1089. [http://dx.doi.org/10.1021/acs.biomac.8b00221]. [PMID: 29485283].
[61]
Lauschke, V.M.; Barragan, I.; Ingelman-Sundberg, M. Pharmacoepigenetics and toxicoepigenetics: Novel mechanistic insights and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2018, 58, 161-185. [http://dx.doi.org/10.1146/annurev-pharmtox-010617-053021]. [PMID: 29029592].
[62]
Mazzone, R.; Zwergel, C.; Mai, A.; Valente, S. Epi-drugs in combination with immunotherapy: A new avenue to improve anticancer efficacy. Clin. Epigenetics, 2017, 9, 59. [http://dx.doi.org/10.1186/s13148-017-0358-y]. [PMID: 28572863].
[63]
Lapinska, K.; Housman, G.; Byler, S.; Heerboth, S.; Willbanks, A.; Oza, A.; Sarkar, S. The effects of histone deacetylase inhibitor and calpain inhibitor combination therapies on ovarian cancer cells. Anticancer Res., 2016, 36(11), 5731-5742. [http://dx.doi.org/10.21873/anticanres.11156]. [PMID: 27793894].
[64]
Ganai, S.A. Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm. Biol., 2016, 54(9), 1926-1935. [http://dx.doi.org/10.3109/13880209.2015.1135966]. [PMID: 26853619].
[65]
Damaskos, C.; Garmpis, N.; Karatzas, T.; Nikolidakis, L.; Kostakis, I.D.; Garmpi, A.; Karamaroudis, S.; Boutsikos, G.; Damaskou, Z.; Kostakis, A.; Kouraklis, G. Histone deacetylase (HDAC) inhibitors: Current evidence for therapeutic activities in pancreatic cancer. Anticancer Res., 2015, 35(6), 3129-3135. [PMID: 26026072].
[66]
Feng, W.; Cai, D.; Zhang, B.; Lou, G.; Zou, X. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed. Pharmacother., 2015, 74, 257-264. [http://dx.doi.org/10.1016/j.biopha.2015.08.017]. [PMID: 26349994].
[67]
Karagiannis, T.C.; El-Osta, A. Clinical potential of histone deacetylase inhibitors as stand alone therapeutics and in combination with other chemotherapeutics or radiotherapy for cancer. Epigenetics, 2006, 1(3), 121-126. [http://dx.doi.org/10.4161/epi.1.3.3328]. [PMID: 17965606].
[68]
Valdez, B.C.; Li, Y.; Murray, D.; Brammer, J.E.; Liu, Y.; Hosing, C.; Nieto, Y.; Champlin, R.E.; Andersson, B.S. Differential effects of histone deacetylase inhibitors on cellular drug transporters and their implications for using epigenetic modifiers in combination chemotherapy. Oncotarget, 2016, 7(39), 63829-63838. [http://dx.doi.org/10.18632/oncotarget.11561]. [PMID: 27564097].
[69]
Willoughby, C.E.; Reeves, H.L. Combination PARP and HDAC inhibition as a therapeutic strategy targeting liver cancer stem cells? Linchuang Zhongliuxue Zazhi, 2016, 5(5), 60. [http://dx.doi.org/10.21037/cco.2016.03.21]. [PMID: 27164859].
[70]
Kala, R.; Tollefsbol, T.O. A novel combinatorial epigenetic therapy using resveratrol and pterostilbene for restoring estrogen receptor-α (ERα) expression in erα-negative breast cancer cells. PLoS One, 2016, 11(5)e0155057 [http://dx.doi.org/10.1371/journal.pone.0155057]. [PMID: 27159275].
[71]
Rundall, B.K.; Denlinger, C.E.; Jones, D.R. Suberoylanilide hydroxamic acid combined with gemcitabine enhances apoptosis in non-small cell lung cancer. Surgery, 2005, 138(2), 360-367. [http://dx.doi.org/10.1016/j.surg.2005.06.016]. [PMID: 16153448].
[72]
Kurz, E.U.; Wilson, S.E.; Leader, K.B.; Sampey, B.P.; Allan, W.P.; Yalowich, J.C.; Kroll, D.J. The histone deacetylase inhibitor sodium butyrate induces DNA topoisomerase II alpha expression and confers hypersensitivity to etoposide in human leukemic cell lines. Mol. Cancer Ther., 2001, 1(2), 121-131. [PMID: 12467229].
[73]
Maggio, S.C.; Rosato, R.R.; Kramer, L.B.; Dai, Y.; Rahmani, M.; Paik, D.S.; Czarnik, A.C.; Payne, S.G.; Spiegel, S.; Grant, S. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res., 2004, 64(7), 2590-2600. [http://dx.doi.org/10.1158/0008-5472.CAN-03-2631]. [PMID: 15059916].
[74]
Singh, P.; Tomar, R.S.; Rath, S.K. Anticancer potential of the histone deacetylase inhibitor-like effects of flavones, a subclass of polyphenolic compounds: A review. Mol. Biol. Rep., 2015, 42(11), 1515-1531. [http://dx.doi.org/10.1007/s11033-015-3881-y]. [PMID: 26033434].
[75]
Bruserud, Ø.; Stapnes, C.; Tronstad, K.J.; Ryningen, A.; Anensen, N.; Gjertsen, B.T. Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML. Expert Opin. Ther. Targets, 2006, 10(1), 51-68. [http://dx.doi.org/10.1517/14728222.10.1.51]. [PMID: 16441228].
[76]
Schwarz, K.; Romanski, A.; Puccetti, E.; Wietbrauk, S.; Vogel, A.; Keller, M.; Scott, J.W.; Serve, H.; Bug, G. The deacetylase inhibitor LAQ824 induces notch signalling in haematopoietic progenitor cells. Leuk. Res., 2011, 35(1), 119-125. [http://dx.doi.org/10.1016/j.leukres.2010.06.024]. [PMID: 20674020].
[77]
Androutsopoulos, V.P.; Spandidos, D.A. Antiproliferative effects of TSA, PXD 101 and MS 275 in A2780 and MCF7 cells: Acetylated histone H4 and acetylated tubulin as markers for HDACi potency and selectivity. Oncol. Rep., 2017, 38(6), 3412-3418. [http://dx.doi.org/10.3892/or.2017.6015]. [PMID: 29039546].
[78]
Wilson-Edell, K.A.; Yevtushenko, M.A.; Rothschild, D.E.; Rogers, A.N.; Benz, C.C. mTORC1/C2 and pan-HDAC inhibitors synergistically impair breast cancer growth by convergent AKT and polysome inhibiting mechanisms. Breast Cancer Res. Treat., 2014, 144(2), 287-298. [http://dx.doi.org/10.1007/s10549-014-2877-y]. [PMID: 24562770].
[79]
Hegde, A.N.; Upadhya, S.C. Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. Biochim. Biophys. Acta, 2011, 1809(2), 128-140. [http://dx.doi.org/10.1016/j.bbagrm.2010.07.006]. [PMID: 20674814].
[80]
Gandolfi, S.; Laubach, J.P.; Hideshima, T.; Chauhan, D.; Anderson, K.C.; Richardson, P.G. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev., 2017, 36(4), 561-584. [http://dx.doi.org/10.1007/s10555-017-9707-8]. [PMID: 29196868].
[81]
Zhu, L.; Wu, K.; Ma, S.; Zhang, S. HDAC inhibitors: A new radiosensitizer for non-small-cell lung cancer. Tumori, 2015, 101(3), 257-262. [http://dx.doi.org/10.5301/tj.5000347]. [PMID: 25953446].
[82]
Hesham, H.M.; Lasheen, D.S.; Abouzid, K.A.M. Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies developed to combat cancer. Med. Res. Rev., 2018, 38(6), 2058-2109. [http://dx.doi.org/10.1002/med.21505]. [PMID: 29733427].
[83]
Kunami, N.; Katsuya, H.; Nogami, R.; Ishitsuka, K.; Tamura, K. Promise of combining a Bcl-2 family inhibitor with bortezomib or SAHA for adult T-cell leukemia/lymphoma. Anticancer Res., 2014, 34(10), 5287-5294. [PMID: 25275021].
[84]
Liu, Y.; Qin, X.Q.; Weber, H.C.; Xiang, Y.; Liu, C.; Liu, H.J.; Yang, H.; Jiang, J.; Qu, X. Bombesin receptor-activated protein (BRAP) modulates NF-κB activation in bronchial epithelial cells by enhancing HDAC activity. J. Cell. Biochem., 2016, 117(5), 1069-1077. [http://dx.doi.org/10.1002/jcb.25406]. [PMID: 26460487].
[85]
Nakshatri, H.; Appaiah, H.N.; Anjanappa, M.; Gilley, D.; Tanaka, H.; Badve, S.; Crooks, P.A.; Mathews, W.; Sweeney, C.; Bhat-Nakshatri, P. NF-κB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell Death Dis., 2015, 6e1608 [http://dx.doi.org/10.1038/cddis.2014.569]. [PMID: 25611383].
[86]
Kim, M.; Lu, F.; Zhang, Y. Loss of HDAC-mediated repression and gain of NF-κB activation underlie cytokine induction in ARID1A- and PIK3CA-mutation-driven ovarian cancer. Cell Rep., 2016, 17(1), 275-288. [http://dx.doi.org/10.1016/j.celrep.2016.09.003]. [PMID: 27681437].
[87]
Rafii, S.; Roda, D.; Geuna, E.; Jimenez, B.; Rihawi, K.; Capelan, M.; Yap, T.A.; Molife, L.R.; Kaye, S.B.; de Bono, J.S.; Banerji, U. Higher Risk of Infections with PI3K-AKT-mTOR Pathway Inhibitors in Patients with Advanced Solid Tumors on Phase I Clinical Trials. Clin. Cancer Res., 2015, 21(8), 1869-1876. [http://dx.doi.org/10.1158/1078-0432.CCR-14-2424]. [PMID: 25649020].
[88]
Wang, H.; Zhou, W.; Zheng, Z.; Zhang, P.; Tu, B.; He, Q.; Zhu, W.G. The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst.), 2012, 11(2), 146-156. [http://dx.doi.org/10.1016/j.dnarep.2011.10.014]. [PMID: 22112863].
[89]
Sabnis, G.J.; Goloubeva, O.G.; Kazi, A.A.; Shah, P.; Brodie, A.H. HDAC inhibitor entinostat restores responsiveness of letrozole-resistant MCF-7Ca xenografts to aromatase inhibitors through modulation of Her-2. Mol. Cancer Ther., 2013, 12(12), 2804-2816. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0345]. [PMID: 24092810].
[90]
Giommarelli, C.; Zuco, V.; Favini, E.; Pisano, C.; Dal Piaz, F.; De Tommasi, N.; Zunino, F. The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell. Mol. Life Sci., 2010, 67(6), 995-1004. [http://dx.doi.org/10.1007/s00018-009-0233-x]. [PMID: 20039095].
[91]
Meng, Q.; Chen, X.; Sun, L.; Zhao, C.; Sui, G.; Cai, L. Carbamazepine promotes Her-2 protein degradation in breast cancer cells by modulating HDAC6 activity and acetylation of Hsp90. Mol. Cell. Biochem., 2011, 348(1-2), 165-171. [http://dx.doi.org/10.1007/s11010-010-0651-y]. [PMID: 21082217].
[92]
Ryhänen, T.; Viiri, J.; Hyttinen, J.M.; Uusitalo, H.; Salminen, A.; Kaarniranta, K. Influence of Hsp90 and HDAC inhibition and tubulin acetylation on perinuclear protein aggregation in human retinal pigment epithelial cells. J. Biomed. Biotechnol., 2011, 2011798052 [http://dx.doi.org/10.1155/2011/798052]. [PMID: 20981255].
[93]
Singh, T.R.; Shankar, S.; Srivastava, R.K. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene, 2005, 24(29), 4609-4623. [http://dx.doi.org/10.1038/sj.onc.1208585]. [PMID: 15897906].
[94]
Fröhlich, L.F.; Mrakovcic, M.; Smole, C.; Lahiri, P.; Zatloukal, K. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells. PLoS One, 2014, 9(3)e91558 [http://dx.doi.org/10.1371/journal.pone.0091558]. [PMID: 24618889].
[95]
Duong, V.; Bret, C.; Altucci, L.; Mai, A.; Duraffourd, C.; Loubersac, J.; Harmand, P.O.; Bonnet, S.; Valente, S.; Maudelonde, T.; Cavailles, V.; Boulle, N. Specific activity of class II histone deacetylases in human breast cancer cells. Mol. Cancer Res., 2008, 6(12), 1908-1919. [http://dx.doi.org/10.1158/1541-7786.MCR-08-0299]. [PMID: 19074835].
[96]
Facchetti, F.; Previdi, S.; Ballarini, M.; Minucci, S.; Perego, P.; La Porta, C.A. Modulation of pro- and anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis, 2004, 9(5), 573-582. [http://dx.doi.org/10.1023/B:APPT.0000038036.31271.50]. [PMID: 15314285].
[97]
Mohr, A.; Yu, R.; Zwacka, R.M. TRAIL-receptor preferences in pancreatic cancer cells revisited: Both TRAIL-R1 and TRAIL-R2 have a licence to kill. BMC Cancer, 2015, 15, 494. [http://dx.doi.org/10.1186/s12885-015-1508-2]. [PMID: 26138346].
[98]
Shi, X.Y.; Ding, W.; Li, T.Q.; Zhang, Y.X.; Zhao, S.C. Histone deacetylase (HDAC) inhibitor,suberoylanilide hydroxamic acid SAHA,inducesapoptosis in prostate cancer cell lines via the Akt/FOXO3a signaling pathway. Med. Sci. Monit., 2017, 23(12), 5793-5802. [http://dx.doi.org/10.12659/MSM.904597]. [PMID: 29211704].
[99]
Kong, L.R.; Tan, T.Z.; Ong, W.R.; Bi, C.; Huynh, H.; Lee, S.C.; Chng, W.J.; Eichhorn, P.J.A.; Goh, B.C. Belinostat exerts antitumor cytotoxicity through the ubiquitin-proteasome pathway in lung squamous cell carcinoma. Mol. Oncol., 2017, 11(8), 965-980. [http://dx.doi.org/10.1002/1878-0261.12064]. [PMID: 28397399].
[100]
Pathania, R.; Ramachandran, S.; Mariappan, G.; Thakur, P.; Shi, H.; Choi, J.H.; Manicassamy, S.; Kolhe, R.; Prasad, P.D.; Sharma, S.; Lokeshwar, B.L.; Ganapathy, V.; Thangaraju, M. Combined inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth. Cancer Res., 2016, 76(11), 3224-3235. [http://dx.doi.org/10.1158/0008-5472.CAN-15-2249]. [PMID: 27197203].
[101]
Lopez, G.; Braggio, D.; Zewdu, A.; Casadei, L.; Batte, K.; Bid, H.K.; Koller, D.; Yu, P.; Iwenofu, O.H.; Strohecker, A.; Choy, E.; Lev, D.; Pollock, R. Mocetinostat combined with gemcitabine for the treatment of leiomyosarcoma: Preclinical correlates. PLoS One, 2017, 12(11)e0188859 [http://dx.doi.org/10.1371/journal.pone.0188859]. [PMID: 29186204].
[102]
Ni, M.; Esposito, E.; Raj, V.P.; Muzi, L.; Zunino, F.; Zuco, V.; Cominetti, D.; Penco, S.; Dal Pozzo, A. New macrocyclic analogs of the natural histone deacetylase inhibitor FK228; design, synthesis and preliminary biological evaluation. Bioorg. Med. Chem., 2015, 23(21), 6785-6793. [http://dx.doi.org/10.1016/j.bmc.2015.10.004]. [PMID: 26481659].
[103]
Wang, S.H.; Lin, P.Y.; Chiu, Y.C.; Huang, J.S.; Kuo, Y.T.; Wu, J.C.; Chen, C.C. Curcumin-mediated HDAC inhibition suppresses the DNA damage response and contributes to increased DNA damage sensitivity. PLoS One, 2015, 10(7)e0134110 [http://dx.doi.org/10.1371/journal.pone.0134110]. [PMID: 26218133].