[1]
Mohanty, B.; Naik, K.K.; Sahoo, S.; Jena, B.; Chakraborty, B.; Rout, C.; Jena, B.K. Efficient photoelectrocatalytic activity of CuWO4 nanoplates towards the oxidation of NADH driven in visible light. Chem. Select, 2018, 3, 9008-9012.
[2]
Samantara, A.K.; Kamila, S.; Ghosh, A.; Jena, B.K. Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochim. Acta, 2018, 263, 147-157.
[3]
Zhao, Y.; Li, X.; Liu, J.; Wang, C.; Zhao, Y.; Yue, G. MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces, 2016, 8, 6472-6480.
[4]
Zhao, X.D.; Li, Y.Q.; Xiang, H.Y.; Zhang, Y.B.; Chen, J.D.; Xu, L.H.; Tang, J.X. Efficient color-stable inverted white organic light emitting diodes with outcoupling-enhanced ZnO layer. ACS Appl. Mater. Interfaces, 2017, 9, 2767-277.
[5]
Chung, W.; Nan, H.; Hao, Z.; Xin, J. Enhanced performance of nanocrystalline ZnO DNA biosensor via introducing electrochemical covalent biolinkers. ACS Appl. Mater. Interfaces, 2015, 7, 7605-7612.
[6]
Gupta, K.; Singh, R.P.; Pandey, A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. Coli. Beilstein J. Nanotechnol., 2013, 4, 345-351.
[7]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95, 69-96.
[8]
Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles. Revisited Appl. Catal. A, 2006, 304, 55-61.
[9]
Cao, H.; Xu, J.Y.; Zhang, D.Z.; Chang, S-H.; Ho, S.T.; Seelig, E.W.; Liu, X.; Chang, R.P.H. Spatial confinement of laser light in active random media. Phys. Rev. Lett., 2008, 84, 5584.
[10]
Sun, X.W.; Huang, J.Z.; Wang, J.X.; Xu, Z. A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. Nano Lett., 2008, 8, 1219-1223.
[11]
Bae, S.Y.; Seo, H.W.; Park, J. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B, 2004, 108, 5206-5210.
[12]
Zhang, Z.; Liu, S.; Chow, S.; Han, Y.M. Modulation of the morphology of ZnO nanostructures via aminolytic reaction: from nanorods to nanosquamas. Langmuir, 2006, 22, 6335-6340.
[13]
Wang, L.; Chen, K.; Dong, K. Synthesis of exotic zigzag ZnO nanoribbons and their optical, electrical properties. J. Phys. Chem. C, 2010, 114, 17358-17361.
[14]
Ma, X.; Zhang, H.; Ji, Y.; Xu, J.; Yang, D. Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution. Mater. Lett., 2005, 59, 3393-3397.
[15]
Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter, 2004, 16, 829-858.
[16]
Li, L.; Pan, S.; Dou, X.; Zhu, Y.; Huang, Y.; Yang, G.; Li, G.; Zhang, L. Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes. J. Phys. Chem. C, 2007, 111, 7288-7291.
[17]
Bekermann, D.; Gasparotto, A.; Barreca, D.; Bovo, L.; Devi, A.; Fischer, R.A.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Tendeloo, G.V. Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. Cryst. Growth Des., 2010, 10, 2011-2018.
[18]
Niu, M.; Huang, F.; Cui, P.; Huang, P.; Yu, Y.; Wang, Y. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano, 2010, 4, 681-688.
[19]
Liu, X.; Hu, Q.; Zhang, X.; Fang, Z.; Wang, Q. Generalized and facile synthesis of Fe3O4/MS (M = Zn, Cd, Hg, Pb, Co, and Ni) nanocomposites. J. Phys. Chem. C, 2008, 112, 12728-12735.
[20]
Ahmad, M.; Yingying, S.; Nisar, A.; Sun, H.; Shen, W.; Weie, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem., 2011, 21, 7723-7729.
[21]
Ong, W.L.; Natarajan, S.; Kloostrab, B.; Ho, G.W. Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance. Nanoscale, 2013, 5, 5568-5575.
[22]
Wu, M.; Chen, W.J.; Shen, Y.H.; Huang, F.Z.; Li, C.H.; Li, S.K. In Situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces, 2014, 6, 15052-15060.
[23]
Kamat, P.V.; Barazzouk, S.; Hotchandani, S. Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angew. Chem. Int. Ed., 2002, 114, 2764-2767.
[24]
Kamat, P.V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C, 2007, 111, 2834-2860.
[25]
Samantara, A.K.; Sahu, S.C.; Bag, B.; Jena, B.; Jena, B.K. Photoelectrocatalytic oxidation of NADH by visible light driven plasmonic nanocomposites. J. Mater. Chem. A, 2014, 2, 12677-12680.