[1]
Hara, M.; Nakajima, K.; Kamata, K. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Sci. Technol. Adv. Mater., 2015, 16, 1-22.
[2]
Esposito, D.; Antonietti, M. Redefining biorefinery: The search for unconventional building blocks for materials. Chem. Soc. Rev., 2015, 44, 5821-5835.
[3]
Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. PNAS, 2018, 115, 6506-6511.
[4]
Hughes, S.R.; Qureshi, N. Chapter 2 - Biomass for biorefining: Resources, Allocation, Utilization, and Policies. In Biorefineries,
Qureshi, N.; Hodge, D. B.; Vertès, A. A., Eds. Elsevier: Amsterdam,; , 2014, pp. 37-58.
[5]
Wang, Y-Y.; Cai, C.M.; Ragauskas, A.J. Recent advances in lignin-based polyurethanes. Tappi J., 2017, 16, 203-207.
[6]
Hicks, J.C. Advances in C–O Bond Transformations in lignin-derived compounds for biofuels production. J. Phys. Chem. Lett., 2011, 2, 2280-2287.
[7]
Sudarsanam, P.; Zhong, R.; Van den Bosch, S.; Coman, S.M.; Parvulescu, V.I.; Sels, B.F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev., 2018, 47, 8349-8402.
[8]
Guo, T.; Li, X.; Liu, X.; Guo, Y.; Wang, Y. Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5-Hydroxymethylfurfural, and Furfural. ChemSusChem, 2018, 11, 2758-2765.
[9]
Den, W.; Sharma, V.K.; Lee, M.; Nadadur, G.; Varma, R.S. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value-added chemicals. Front Chem., 2018, 6, 1-23.
[10]
Gargulak, J.D.; Lebo, S.E. Commercial Use of Lignin-Based Materials. In: Lignin: Historical, Biological, and Materials Perspectives; American Chemical Society, 1999; Vol. 742, pp. 304-320.
[11]
Insights, G. M. Global Lignin Market worth, Selbyville, Delaware
19975 USA. 2018.
[12]
Lu, F.; Ralph, J. Chapter 6 - Lignin. In: Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels; Sun, R-C., Ed.; Elsevier: Amsterdam, 2010; pp. 169-207.
[13]
Saha, K.; Dwibedi, P.; Ghosh, A.; Sikder, J.; Chakraborty, S.; Curcio, S. Extraction of lignin, structural characterization and bioconversion
of sugarcane bagasse after ionic liquid assisted pretreatment.
3 Biotech 2018. 8, 374
[14]
Gellerstedt, G.; Li, J.; Eide, I.; Kleinert, M.; Barth, T. Chemical structures present in biofuel obtained from lignin. Energy Fuels, 2008, 22, 4240-4244.
[15]
Gellerstedt, G.; Henriksson, G. Lignins: Major sources, structure and properties. In: Monomers, Polymers and Composites from Renewable Resources; Naceur Belgacem, M.; Gandini, A., Eds.; Elsevier B.V.: Amsterdam, 2008; pp. 201-224.
[16]
Davin, L.; Lewis, N. Lignin primary structures as dirigents sites. Curr. Opin. Biotechnol., 2005, 16, 407-415.
[17]
Fernández-Rodríguez, J.; Erdocia, X.; Sánchez, C.; González Alriols, M.; Labidi, J. Lignin depolymerization for phenolic monomers production by sustainable processes. J. Energ. Chem., 2017, 26, 622-631.
[18]
Ahuja, D.; Kaushik, A.; Singh, M. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment. Int. J. Biol. Macromol., 2018, 107, 1294-1301.
[19]
Strassberger, Z.; Prinsen, P.; Klis, F.V.D.; Es, D.S.V.; Tanase, S.; Rothenberg, G. Lignin solubilisation and gentle fractionation in liquid ammonia. Green Chem., 2015, 17, 325-334.
[20]
Bi, Z.; Lai, B.; Zhao, Y.; Yan, L. Fast disassembly of lignocellulosic biomass to lignin and sugars by molten salt hydrate at low temperature for overall biorefinery. ACS Omega, 2018, 3, 2984-2993.
[21]
Obst, J.; Kirk, K. Isolation of lignin. In: Methods in enzymology,
Willis A., W.; Scott T., K., Eds. Academic Press, Inc.: San Diego
CA, ; , 1988; Vol. 161, pp. 3-12.
[22]
Han, T.; Sophonrat, N.; Evangelopoulos, P.; Persson, H.; Yang, W.; Jönsson, P. Evolution of sulfur during fast pyrolysis of sulfonated Kraft lignin. J. Anal. Appl. Pyr., 2018, 133, 162-168.
[23]
Beňo, E.; Góra, R.; Hutta, M. Characterization of Klason lignin samples isolated from beech and aspen using microbore column size-exclusion chromatography. J. Sep. Sci., 2018, 41, 3195-3203.
[24]
Bunzel, M.; Schüßler, A.; Tchetseubu Saha, G. Chemical characterization of klason lignin preparations from plant-based foods. J. Agric. Food Chem., 2011, 59, 12506-12513.
[25]
El Mansouri, N-E.; Yuan, Q.; Huang, F. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioRes., 2011, 6, 2647-2662.
[26]
Hita, I.; Deuss, P.J.; Bonura, G.; Frusteri, F.; Heeres, H.J. Biobased chemicals from the catalytic depolymerization of Kraft lignin using supported noble metal-based catalysts. Fuel Proc. Tech., 2018, 179, 143-153.
[27]
Chakar, F.S.; Ragauskas, A.J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Ind. Crops Prod., 2004, 20, 131-141.
[28]
Moutsoglou, A.; Lawburgh, B.; Lawburgh, J. Fractional condensation and aging of pyrolysis oil from softwood and organosolv lignin. J. Anal. Appl. Pyr., 2018, 135, 350-360.
[29]
Dou, J.; Kim, H.; Li, Y.; Padmakshan, D.; Yue, F.; Ralph, J.; Vuorinen, T. Structural characterization of lignins from willow bark and wood. J. Agric. Food Chem., 2018, 66, 7294-7300.
[30]
Guerra, A.; Filpponen, I.; Lucia, L.A.; Argyropoulos, D.S. Comparative evaluation of three lignin isolation protocols for various wood species. J. Agric. Food Chem., 2006, 54, 9696-9705.
[31]
You, T.; Wang, R.; Zhang, X.; Ramaswamy, S.; Xu, F. Reconstruction of lignin and hemicelluloses by aqueous ethanol anti-solvents to improve the ionic liquid-acid pretreatment performance of Arundo donax Linn. Biotechnol. Bioeng., 2017, 115, 82-91.
[32]
Hart, W.E.S.; Aldous, L.; Harper, J.B. Nucleophilic cleavage of lignin model compounds under acidic conditions in an ionic liquid: A mechanistic study. ChemPlusChem, 2018, 83, 348-353.
[33]
Hu, J.; Zhang, Q.; Lee, D-J. Kraft lignin biorefinery: A perspective. Bioresour. Technol., 2018, 247, 1181-1183.
[34]
Lora, J. Industrial comercial lingins: Sources, properties and applications. In: Monomers, Polymers and Composites from Renewable Resources; Naceur Belgacem, M.; Gandini, A., Eds.; Elsevier B.V.: Amsterdam, 2008; pp. 225-241.
[35]
Vishtal, A.; Kraslawski, A. Challenges in industrial applications of technical lignins. BioResources, 2011, 6, 3547-3568.
[36]
Ghorbani, M.; Konnerth, J.; van Herwijnen, H.W.G.; Zinovyev, G.; Budjav, E.; Requejo Silva, A.; Liebner, F. Commercial lignosulfonates from different sulfite processes as partial phenol replacement in PF resole resins. J. Appl. Polym. Sci., 2018, 135, 45893.
[37]
Huang, S.; Mahmood, N.; Zhang, Y.; Tymchyshyn, M.; Yuan, Z.; Xu, C. Reductive depolymerization of kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts. Fuel, 2017, 209, 579-586.
[38]
Fang, H.; Li, C.; Qian, C.; Cui, P.; Yang, Y.; Liu, T. Separation
process of mild acid-catalyzed lignin depolymerization product and
extracted product thereof. CN Patent 106366134A, August 8 2017.
[39]
Aro, T.; Fatehi, P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem, 2017, 10, 1861-1877.
[40]
Gupta, A.; Gupta, R. Treatment and Recycling of Wastewater from Pulp and Paper Mill. In: Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future; Singh, R.L.; Singh, R.P., Eds.; Springer Singapore: Singapore, 2019; pp. 13-49.
[41]
Wang, G.; Chen, H. Fractionation of alkali-extracted lignin from steam-exploded stalk by gradient acid precipitation. Separ. Purif. Tech., 2013, 105, 98-105.
[42]
Liu, G.; Liu, Y.; Ni, J.; Shi, H.; Qian, Y. Treatability of kraft spent liquor by microfiltration and ultrafiltration. Desalination, 2004, 160, 131-141.
[43]
Ooi, Z-Y.; Harruddin, N.; Othman, N. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process. Biotechnol. Prog., 2015, 31, 1305-1314.
[44]
Ferrer, A.; Byers, F.M.; Sulbarán-de-Ferrer, B.; Dale, B.E.; Aiello, C. Optimizing Ammonia Pressurization/Depressurization Processing Conditions to Enhance Enzymatic Susceptibility of Dwarf Elephant Grass. In: Twenty-First Symposium on Biotechnology for Fuels and Chemicals: Proceedings of the Twenty-First Symposium on Biotechnology for Fuels and Chemicals Held; May 2–6, 1999, in
Fort Collins, Colorado, Finkelstein, M.; Davison, B. H., Eds. Humana
Press: Totowa, NJ,. , 2000; pp. 163-179.
[45]
Yoo, C.G.; Nghiem, N.P.; Hicks, K.B.; Kim, T.H. Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresour. Technol., 2011, 102, 10028-10034.
[46]
Serrano, L.; Spigno, G.; García, A.; Amendola, D.; Labidi, J. Properties of Soda and Organosolv Lignins from Apple Tree Pruning. J. Biobased Mater. Bioenergy, 2012, 6, 329-335.
[47]
Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol., 2016, 199, 42-48.
[48]
Wu, L.; Arakane, M.; Ike, M.; Wada, M.; Takai, T.; Gau, M.; Tokuyasu, K. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour. Technol., 2011, 102, 4793-4799.
[49]
Kim, T.H.; Kim, J.S.; Sunwoo, C.; Lee, Y.Y. Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol., 2003, 90, 39-47.
[50]
Kim, T.H.; Gupta, R.; Lee, Y.Y. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production. In: Biofuels: Methods and Protocols; Mielenz, J.R., Ed.; Humana Press: Totowa, NJ, 2009; pp. 79-91.
[51]
Rodríguez, A.; Moral, A.; Sánchez, R.; Jiménez, L. Use of diethanolamine to obain cellulosics pulps from solid fraction of hydrothermal treatment of rice straw. Afinidad, 2009, 65, 20-26.
[52]
Lu, F.; John, R. Lignin. In: Cereal Straw as a Resource for Sustainable Biochemicals and Biofuels; Elsevier B.V.: Amsterdam, 2010; pp. 169-207.
[53]
de la Torre, M.J.; Moral, A.; Hernández, M.D.; Cabeza, E.; Tijero, A. Organosolv lignin for biofuel. Ind. Crops Prod., 2013, 45, 58-63.
[54]
Vishtal, A.; Kraslawski, A. Challenges in industrial applications of technical lignins. BioRes., 2011, 6, 3547-3568.
[55]
Mohamad Ibrahim, M.N.; Sripransathi, R.B.; Shamsudeen, S.; Adam, F.; Bhawani, S. A concise review of the natural existance synthesis, properties and applications of syringaldehyde. BioRes., 2012, 7, 1-23.
[56]
García Calvo-Flores, F.; Dobado, J.A. Lignin as renewable raw material. Chem. Sust. Ener. Mat., 2010, 3, 1227-1235.
[57]
Lora, J.H.; Glasser, W.G. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. J. Polym. Environ., 2002, 10, 39-48.
[58]
Gandini, A.; Naceur Belgacem, M. Lignins as components of macromolecular materials. In: Monomers, Polymers and Composites from Renewable Resources; Naceur Belgacen, M.; Gandini, A., Eds.; Elsevier B.V.: Amsterdam, 2008; pp. 243-270.
[59]
Holladay, J.E.; Bozell, J.J.; White, J.F.; Johnson, D.J. Top Value-Added Chemicals from Biomass-Volumen II: Results of screening for potential candidates from biorefinery lignin; U.S. Department of Energy: United States of America, 2007.
[60]
Ma, R.; Xu, Y.; Zhang, X. Catalytic Oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem, 2015, 8(1), 24-51.
[61]
Sedai, B.; Díaz-Urrutia, C.; Baker, R.T.; Wu, R.; Silks, L.A.P.; Hanson, S.K. Comparison of copper and vanadium homogeneous catalysts for aerobic oxidation of lignin models. ACS Catal., 2011, 1(7), 794-804.
[62]
Li, J.; Henriksson, G.; Gellerstedt, G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol., 2007, 98(16), 3061-3068.
[63]
Deng, H.; Lin, L.; Sun, Y.; Pang, C.; Zhuang, J.; Ouyang, P.; Li, J.; Liu, S. Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process. Energy Fuels, 2009, 23(1), 19-24.
[64]
Deng, H.; Lin, L.; Liu, S. Catalysis of Cu-doped co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes. Energy Fuels, 2010, 24, 4797-4802.
[65]
Gu, X.; Kanghua, C.; Ming, H.; Shi, Y.; Li, Z. La-modified SBA-15/H2O2 systems for the microwave assisted oxidation of organosolv beech wood lignin. Maderas Cienc. Tecnol., 2012, 14, 31-41.
[66]
Tavares, A.P.M.; Gamelas, J.A.F.; Gaspar, A.R.; Evtuguin, D.V.; Xavier, A.M.R.B. A novel approach for the oxidative catalysis employing polyoxometalate–laccase system: application to the oxygen bleaching of kraft pulp. Catal. Commun., 2004, 5, 485-489.
[67]
Gamelas, J.A.F.; Gaspar, A.R.; Evtuguin, D.V.; Pascoal Neto, C. Transition metal substituted polyoxotungstates for the oxygen delignification of kraft pulp. Appl. Catal. A Gen., 2005, 295, 134-141.
[68]
Hdidou, L.; Khallouk, K.; Solhy, A.; Manoun, B.; Oukarroum, A.; Barakat, A. Synthesis of CoFeO mixed oxides via an alginate gelation process as efficient heterogeneous catalysts for lignin depolymerization in water. Catal. Sci. Technol., 2018, 8, 5445-5453.
[69]
Mottweiler, J.; Puche, M.; Räuber, C.; Schmidt, T.; Concepción, P.; Corma, A.; Bolm, C. Copper- and vanadium-catalyzed oxidative cleavage of lignin using dioxygen. ChemSusChem, 2015, 8, 2106-2113.
[70]
Kruger, J.S.; Cleveland, N.S.; Zhang, S.; Katahira, R.; Black, B.A.; Chupka, G.M.; Lammens, T.; Hamilton, P.G.; Biddy, M.J.; Beckham, G.T. Lignin depolymerization with nitrate-intercalated hydrotalcite catalysts. ACS Catal., 2016, 6, 1316-1328.
[71]
Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev., 2015, 115, 11559-11624.
[72]
Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev., 2010, 110, 3552-3599.
[73]
Yan, N.; Zhao, C.; Dyson, P.J.; Wang, C.; Liu, L-T.; Kou, Y. Selective degradation of wood lignin over noble-metal catalysis in a two-step process. ChemSusChem, 2008, 1, 626-629.
[74]
Yu, J.; Savage, P.E. Decomposition of formic acid under hydrothermal conditions. Ind. Eng. Chem. Res., 1998, 37, 2-10.
[75]
Macala, G.S.; Matson, T.D.; Johnson, C.L.; Lewis, R.S.; Iretskii, A.V.; Ford, P.C. Hydrogen transfer from supercritical methanol over a solid base catalyst: A model for lignin depolymerization. ChemSusChem, 2009, 2, 215-217.
[76]
Gosselink, R.J.A.; Teunissen, W.; van Dam, J.E.G.; de Jong, E.; Gellerstedt, G.; Scott, E.L.; Sanders, J.P.M. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresour. Technol., 2012, 106, 173-177.
[77]
Barta, K.; Matson, T.D.; Fettig, M.L.; Scott, S.L.; Iretskii, A.V.; Ford, P.C. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem., 2010, 12, 1640-1647.
[78]
Shabtai, J.S.; Zmierczak, W.W. Process for conversion of lignin
to reformulated hydrocarbon gasoline. US Patent 5,959,167 A, September
28 1999.
[79]
Shabtai, J.S.; Zmierczak, W.W. Process for conversion of lignin
to reformulated, partially oxygenated gasoline. US Patent
6,172,272 B1, January 1 2001.
[80]
Stone, M.L.; Anderson, E.M.; Meek, K.M.; Reed, M.; Katahira, R.; Chen, F.; Dixon, R.A.; Beckham, G.T.; Román-Leshkov, Y. Reductive Catalytic Fractionation of C-Lignin. ACS Sustain. Chem.& Eng., 2018, 6, 11211-11218.
[81]
Chen, J.Z.; Lu, F.; Si, X.Q.; Nie, X.; Chen, J.S.; Lu, R.; Xu, J. High yield production of natural phenolic alcohols from woody biomass using a nickel-based catalyst. ChemSusChem, 2016, 9, 3353-3360.
[82]
Domine, M.E.; Chávez-Sifontes, M.; Gutierrez, A.; Vilonen, K.; Strengell, T.; Jokela, P.; Eilos, I. Simple Process for Converting
Lignocellulosic Materials. WO Patent 2018/015610 A1, January
25, 2018.
[83]
Domine, M.E.; Chávez-Sifontes, M.; Gutierrez, A.; Vilonen, K.; Strengell, T.; Jokela, P.; Eilos, I. Process for Converting Lignocellulosic
Materials. WO Patent 2018/015608 A1, January 25, 2018.
[84]
Domine, M.E.; Chávez-Sifontes, M.; Gutierrez, A. Catalyst composition.
WO Patent 2018/015609 A1, January 25 2018.
[85]
Renders, T.; Cooreman, E.; Van den Bosch, S.; Schutyser, W.; Koelewijn, S.F.; Vangeel, T.; Deneyer, A.; Van den Bossche, G.; Courtin, C.M.; Sels, B.F. Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chem., 2018, 20, 4607-4619.
[86]
Tekin, K.; Hao, N.; Karagoz, S.; Ragauskas, A.J. Ethanol: A promising green solvent for the deconstruction of lignocellulose. ChemSusChem, 2018, 11, 3559-3575.
[87]
Limarta, S.O.; Ha, J-M.; Park, Y-K.; Lee, H.; Suh, D.J.; Jae, J. Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J. Ind. Eng. Chem., 2018, 57, 45-54.
[88]
Kuznetsov, B.N.; Sharypov, V.I.; Chesnokov, N.V.; Beregovtsova, N.G.; Baryshnikov, S.V.; Lavrenov, A.V.; Vosmerikov, A.V.; Agabekov, V.E. Lignin conversion in supercritical ethanol in the presence of solid acid catalysts. Kinet. Catal., 2015, 56, 434-441.
[89]
Cao, L.; Zhang, C.; Chen, H.; Tsang, D.C.W.; Luo, G.; Zhang, S.; Chen, J. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol., 2017, 245, 1184-1193.
[90]
Chandrasekaran, S.R.; Murali, D.; Marley, K.A.; Larson, R.A.; Doll, K.M.; Moser, B.R.; Scott, J.; Sharma, B.K. Antioxidants from Slow Pyrolysis Bio-Oil of Birch Wood: Application for Biodiesel and Biobased Lubricants. ACS Sustain. Chem.& Eng., 2016, 4, 1414-1421.
[91]
Kang, S.; Li, X.; Fan, J.; Chang, J. Hydrothermal conversion of lignin: A review. Renew. Sustain. Energy Rev., 2013, 27, 546-558.
[92]
Joffres, B.; Lorentz, C.; Vidalie, M.; Laurenti, D.; Quoineaud, A.A.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C. Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Appl. Catal. B: Environ., 2014, 145, 167-176.
[93]
Zhang, B.; Huang, H-J.; Ramaswamy, S. Reaction Kinetics of the Hydrothermal Treatment of Lignin. Appl. Biochem. Biotechnol., 2008, 147, 119-131.
[94]
Tymchyshyn, M.; Xu, C. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresour. Technol., 2010, 101, 2483-2490.
[95]
Schuler, J.; Hornung, U.; Kruse, A.; Dahmen, N.; Sauer, J. Hydrothermal Liquefaction of Lignin. J. Biomater. Nanobiotechnol., 2017, 8(1), 13.
[96]
Yoshida, K.; Kusaki, J.; Ehara, K.; Saka, S. Characterization of Low Molecular Weight Organic Acids from Beech Wood Treated in Supercritical Water. In: Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals; Davison, B. H.; Evans, B. R.; Finkelstein,
M.; McMillan, J. D., Eds. Humana Press: Totowa, NJ. , 2005; pp. 795-806.
[97]
Rahimi, A.; Ulbrich, A.; Coon, J.J.; Stahl, S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 2014, 515, 249.
[98]
Shuai, L.; Amiri, M.T.; Questell-Santiago, Y.M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J.S. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354, 329-333.
[99]
Cao, L.; Zhang, C.; Chen, H.; Tsang, D.C.W.; Luo, G.; Zhang, S.; Chen, J. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol., 2017, 245, 1184-1193.
[100]
Drage, T.C.; Vane, C.H.; Abbott, G.D. The closed system pyrolysis of β-O-4 lignin substructure model compounds. Org. Geochem., 2002, 33, 1523-1531.
[101]
Tudorache, M.; Opris, C.; Cojocaru, B.; Apostol, N.G.; Tirsoaga, A.; Coman, S.M.; Parvulescu, V.I.; Duraki, B.; Krumeich, F.; van Bokhoven, J.A. Highly efficient, easily recoverable, and recyclable Re–SiO2–Fe3O4 catalyst for the fragmentation of lignin. ACS Sustain. Chem.& Eng., 2018, 6, 9606-9618.
[102]
Ma, Z.; Ghosh, A.; Asthana, N.; van Bokhoven, J. Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques. ChemCatChem, 2018, 10, 4431-4437.
[103]
Thring, R.W.; Katikaneni, S.P.R.; Bakhshi, N.N. The production of gasoline range hydrocarbons from Alcell lignin using HZSM-5 catalyst. Fuel Process. Technol., 2000, 62, 17-30.
[104]
Amen-Chen, C.; Pakdel, H.; Roy, C. Production of monomeric phenols by thermochemical conversion of biomass: A review. Bioresour. Technol., 2001, 79, 277-299.
[105]
Collard, F-X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev., 2014, 38, 594-608.
[106]
Bu, Q.; Lei, H.; Zacher, A.H.; Wang, L.; Ren, S.; Liang, J.; Wei, Y.; Liu, Y.; Tang, J.; Zhang, Q.; Ruan, R. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour. Technol., 2012, 124, 470-477.
[107]
Liguori, L.; Barth, T. Palladium-Nafion SAC 13 catalyses depolymerisation of lignin to phenols in formic acid and water. J. Anal. Appl. Pyr., 2011, 92, 477-484.
[108]
Hepditch, M.M.; Thring, R. Degradation of solvolysis lignin using Lewis acid catalysts. Can. J. Chem. Eng., 2000, 78, 226-231.
[109]
Binder, J.B.; Gray, M.J.; White, J.F.; Conrad Zhang, Z.; Holladay, J.E. Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy, 2009, 33, 1122-1130.
[110]
Prado, R.; Erdocia, X.; Labidi, J. Lignin extraction and purification with ionic liquids. J. Chem. Technol. Biotechnol., 2013, 88, 1248-1257.
[111]
Dier, T.K.F.; Rauber, D.; Durneata, D.; Hempelmann, R.; Volmer, D.A. Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Sci. Rep., 2017, 7, 5041.
[112]
Wang, H.; Tucker, M.; Ji, Y. Recent development in chemical depolymerization of lignin: A review. J. Appl. Chem., 2013, 2013, 1-9.
[113]
Mora-Pale, M.; Meli, L.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol. Bioeng., 2011, 108, 1229-1245.
[114]
Lavoie, J-M.; Baré, W.; Bilodeau, M. Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour. Technol., 2011, 102, 4917-4920.
[115]
Dabral, S.; Engel, J.; Mottweiler, J.; Spoehrle, S.S.M.; Lahive, C.W.; Bolm, C. Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate. Green Chem., 2018, 20, 170-182.
[116]
Roberts, V.M.; Stein, V.; Reiner, T.; Lemonidou, A.; Li, X.; Lercher, J.A. Towards quantitative catalytic lignin depolymerization. Chemistry Eur. J., 2011, 17, 5939-5948.
[117]
Toledano, A.; Serrano, L.; Labidi, J. Organosolv lignin depolymerization with different base catalysis. J. Chem. Technol. Biotechnol., 2012, 87, 1593-1599.
[118]
Nenkova, S.; Vasileva, T.; Stanulov, K. Production of phenol compounds by alkaline treatment of technical hydrolysis lignin and wood biomass. Chem. Nat. Compd., 2008, 44, 182-185.
[119]
Roberts, V.M.; Stein, V.; Reiner, T.; Lemonidou, A.; Li, X.; Lercher, J.A. Towards quantitative catalytic lignin depolymerization. Chemistry Eur. J., 2011, 17, 5939-5948.
[120]
Beauchet, R.; Monteil-Rivera, F.; Lavoie, J.M. Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour. Technol., 2012, 121, 328-334.
[121]
Bugg, T.D.H.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep., 2011, 28, 1883-1896.
[122]
Higuhi, T. Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase and laccase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2004, 80, 204-214.
[123]
Bugg, T.; Ahmad, M.M.; Hardiman, E.; Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol., 2011, 22, 394-400.
[124]
Bugg, T.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep., 2011, 28, 1883-1896.
[125]
Janusz, G.; Pawlik, A.; Sulej, J.; Swiderska-Burek, U.; Jarosz-Wilkolazka, A.; Paszczynski, A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev., 2017, 41, 941-962.
[126]
Goodwin, D.C.; Aust, S.D.; Grover, T.A. Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry, 1995, 34, 5060-5065.
[127]
Hatakka, A. Biodegradation of lignin. In: Biopolymers-Lignin, Humic Substances and Coal; Hofrichter, M.; Steinbüchel, A., Eds.; Wiley-VCH, 2004; Vol. 1, pp. 129-145.
[128]
Pollegioni, L.; Tonin, F.; Rosini, E. Lignin-degrading enzymes. The FEBS J., 2015, 282, 1190-1213.
[129]
Zhang, X.; Tang, W.; Zhang, Q.; Wang, T.; Ma, L. Hydrocarbons production from lignin-derived phenolic compounds over Ni/SiO2 catalyst. Energ. Proc., 2017, 105, 518-523.
[130]
Upton, B.M.; Kasko, A.M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev., 2016, 116, 2275-2306.
[131]
Rueping, M.; Nachtsheim, B.J. A review of new developments in the Friedel-Crafts alkylation - From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem., 2010, 6, 6-6.
[132]
Adam, W.; Casades, I.; Fornés, V.; García, H.; Weichold, O. UV−vis and IR spectral characterization of persistent carbenium ions, generated upon incorporation of cinnamyl alcohols in the acid zeolites HZSM-5 and HMor. J. Org. Chem., 2000, 65, 3947-3951.
[133]
Sad, M.E.; Padró, C.L.; Apesteguía, C.R. Synthesis of cresols by alkylation of phenol with methanol on solid acids. Catal. Today, 2008, 133-135, 720-728.
[135]
Liao, Y.; d’Halluin, M.; Makshina, E.; Verboekend, D.; Sels, B.F. Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: Impact of acid properties and pore constraint. Appl. Catal. B: Environ.,, 2018, 234, 117-129.
[136]
Vishwanathan, V.; Balakrishna, G.; Rajesh, B.; Jayasri, V.; Sikhwivhilu, L.M.; Coville, N.J. Alkylation of catechol with methanol to give guaiacol over sulphate-modified zirconia solid acid catalysts: The influence of structural modification of zirconia on catalytic performance. Catal. Commun., 2008, 9, 2422-2427.
[137]
Fache, M.; Boutevin, B.; Caillol, S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem.& Eng., 2016, 4(1), 35-46.
[138]
Franco, A.; De, S.; Balu, A.M.; Romero, A.A.; Luque, R. Selective oxidation of isoeugenol to vanillin over mechanochemically synthesized aluminosilicate supported transition metal catalysts. Chem. Select, 2017, 2, 9546-9551.
[139]
Nie, X.; Liu, X.; Gao, L.; Liu, M.; Song, C.; Guo, X. SO3H-Functionalized ionic liquid catalyzed alkylation of catechol with tert-butyl alcohol. Ind. Eng. Chem. Res., 2010, 49, 8157-8163.
[140]
Njiojob Ngnouomeuchi, C.; Bulino, C.; Bozell, J.J.; Long, B.K. In
Synthesis of enantiomerically pure lignin dimers for catalytic degradation
using organometallic catalysts, American Chemical Society: , 2014. pp ORGN-95.
[141]
Zhao, F.E.A. Method for preparing Vanillin. WO Patent
2003/064363 A1, October 29 2014.
[142]
Jacquot, R.; Corma, A.; Domine, M. Method of preparing an aromatic
aldehyde. FR Patent 2835251, August 1 2003.
[143]
Oregui-Bengoechea, M.; Gandarias, I.; Arias, P.L.; Barth, T. Solvent and catalyst effect in the formic acid aided lignin-to-liquids. Bioresour. Technol., 2018, 270, 529-536.
[144]
Pérez, Y.; del Hierro, I.; Fajardo, M. Synthesis of titanium alkoxide complexes with alkyl lactate ligands. Asymmetric epoxidation of cinnamyl alcohol. J. Organomet. Chem., 2012, 717, 172-179.
[145]
Pérez, Y.; Morante-Zarcero, S.; del Hierro, I.; Sierra, I.; Fajardo, M.; Otero, A. Asymmetric epoxidation of cinnamyl alcohol with optically active titanium complexes. Chirality, 2006, 18, 44-48.
[146]
Zhang, X.; Han, B.; Hua, Y-N.; Huang, M-Y.; Jiang, Y-Y. Asymmetric epoxidation of cinnamyl alcohol catalyzed by silica-supported casein–Co complex. Polym. Adv. Technol., 2002, 13, 216-219.
[147]
Ballesteros, R.; Fajardo, M.; Sierra, I.; del Hierro, I. Synthesis of titanium–triazine based MCM-41 hybrid materials as catalyst for the asymmetric epoxidation of cinammyl alcohol. J. Mol. Catal.A. Chem., 2009, 310, 83-92.