[1]
Trotignon JP, Verdu J, Dobraczynski A. Piperau. Précis
de matières plastiques, structures, proprieties, et
mise en oeuvre. Afnor/Nathan, ISNB: 2-09-176572-4,
1998. pp. 132.
[2]
Déplanche Y. Mémo formulaire. Casteilla, ISBN 2-
7135-1190-9, 1991. pp. 187.
[3]
Trotignon JP, Verdu J, Dobraczynski A, Piperau M. Précis de matières plastiques, structures, proprieties,
et mise en oeuvre. Afnor/Nathan, ISNB: 2-09-
176572-4, 1998. pp. 232.
[4]
Déplanche Y. Mémo formulaire, Casteilla, ISBN 2-
7135-1190-9, 1991. pp. 237.
[5]
Trotignon JP, Verdu J, Dobraczynski A, Piperaud M. précis de matières plastiques, Afnor/Nathan, ISBN 2-
12-425021-2, 1993, pp. 121.
[6]
Kumar KP, Krishna MG, Rao JB, Bhargava N. Fabrication and characterization of 2024 aluminium - High entropy alloy composites. J Alloys Compd 2015; 640: 421-7.
[7]
Trotignon JP, Verdu J, Dobraczynski A, Piperaud M. précis de matières plastiques, Afnor/Nathan, ISBN 2-
12-425021-2, 1993. pp. 47.
[8]
Corbet C. Mémotech-matières plastiques, Paris,
Casteilla, ISBN 2-7135-1470-3, 1995. pp. 8.
[9]
Oliva JP. L'isolation écologique — Conception, matériaux,
mise en oeuvre, Mens, Terre vivante, ISBN
978-2-904082-90-0, 2008. pp. 47-92.
[10]
Fanchon JL. Guide des sciences et technologies industrielles,
Afnor, Nathan, ISBN 2-09-178761-2,
2001. pp. 416.
[11]
Chevalier A. Guide du dessinateur industriel,
Hachette, ISBN 2-01-16-7583-9, 1998, pp. 214.
[14]
Bledzki AK, Gassan J. Composite reinforced with cellulose based fibers. Prog Polym Sci 1999; 24: 221-74.
[15]
El Hadji Babacar Ly. Nouveaux matériaux composites
thermoformables à base de fibres de cellulose.
Matériaux. Institut National Polytechnique de Grenoble
- INPG, Français, Éditeur inconnu, 2008.
[16]
Saheb DN, Jog JP. Natural fiber polymer composites: A review. Adv Polym Technol 1991; 18(4): 351-63.
[17]
Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng 2000; 1: 276-7.
[18]
Collinet P, Belot F, Debodinance P, Ha DE, Lucot JP, Cosson M. Transvaginal mesh technique for pelvic organ prolapse repair: Mesh exposure management and risk factors. Int Urogynecol J Pelvic Floor Dysfunct 2006; 17(4): 315-20.
[19]
Baley C, Grohens Y, Pillin I. State of the art regarding biodegradable composites. Revue des Composites et des. Matériaux Avances 2004; 14(2): 135-66.
[20]
Ohanty AK, Misra M, Hinrichsen G. Biofibers, biodegradable polymers and biocomposites an overview. Macromol Mater and Eng 2000; 276-277: 1-24.
[21]
Tadjedit S, Mokaddem A, Temimi L, Doumi B, Boutaous A, Beldjoudi N. Comparative study by a genetic algorithm on the mechanical properties of PLA and epoxy bio-composite materials reinforced with natural fiber. Mechan Mechan Engineer 2016; 20(3): 331-45.
[22]
Caillol S. Synthese et caracterisation de nouveaux
copolymeres potentiellement autoassociatifs, Material
chemistry, Universite Sciences et Technologies -
Bordeaux I, in French, 2002.
[23]
Maghchiche A. Characterisation of esparto grass fibers reinforced biodegradable polymer composites. Biosci Biotechnol Res Asia 2013; 10(2): 665-73.
[24]
Pras O. Utilisation de cellulose pour l’élaboration de matériaux photoluminescents ou conducteurs. Université de Grenoble, in French 2011.
[25]
Wertz JL. Les biocompositess et composites polym’ere-chanvre en particulier Unité de Chimie biologique industrielle. Université de Liège - Gembloux Agro BioTech 2014.
[26]
Mokaddem A, Alami M, Doumi B, Boutaous A. Prediction by a genetic algorithm of the fiber matrix interface damage for composite material. Part1: Study of shear damage to two composites T300/914 and Peek/APC2. Strength Mater 2014; 46(4): 543-7.
[27]
Bessadok A, Roudesli S, Marais S, Follain N, Lebrun L. Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties. Compos, Part A 2009; 40(2): 184-95.
[28]
Nadji H, Diouf PN, Benaboura A, Bedard Y, Riedl B, Stevanovic T. Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresour Technol 2009; 100(14): 3585-92.
[29]
Bouiri B, Amrani M. Production of dissolving grade pulp from Alfa. BioResources 2009; 5(1): 291-302.
[30]
Brahim SB, Cheikh RB. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 2007; 67: 140-7.
[31]
Weibull W. Theory of the strength of materials. Royal Swed Acad Eng Sci Proc 1939; 151: 1-45.
[32]
Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 1952; 12: 72-9.
[33]
Lebrun GA. Comportement thermomécanique et durée
de vie de composites à matrice céramique:
Théorie et expérience. Université de Bordeaux Thèse
de Doctorat n° 1606, 1996.
[34]
Apicella A, Egiziano L, Nicolais L, Tucci V. Environmental degradation of electrical and thermal properties of organic insulating materials. J Mater Sci 1988; 23: 729-35.
[35]
Lahouari HT, Mokaddem A, Belkaid N, Boutaous A, Bouamrane R. Study of the effect of water intake by the matrix on the optimization of the fiber matrix interface damage for a composite material by genetic algorithms. Strength of Mater 2013; 45(6): 739-47.
[36]
Alami M, Mokaddem A, Doumi B, Beldjoudi N, Boutaous A. Investigation by a genetic algorithm of the effect of moisture diffusion on the fiber matrix interface damage of graphite/epoxy nanocomposite. Recent Pat Mater Sci 2015; 8(999): 253-9.
[37]
Attmane A, Mokaddem A, Doumi B, Boutaleb M, Temimi L, Boutaous A. Study and localization by the nonlinear acoustic technique of the damage to the fiber-matrix interface of a Bio-composite. Mechan Mechan Engineer 2017; 21(3): 453-65.
[38]
Digou AL, Davies P, Baley C. Study of interfacial bonding of Flax fibre/Poly-L-lactide JNC 16. Toulouse, France. AMAC, pp10, 2009.
[39]
Vasconcelos P, Lino FJ, Neto RJ, Teixeira A. Composites
hybrides renforcés aux fibres de verre et de
carbone pour moulage à l’époxy, projet POCTI/
EME/41199/2001. Development of an Indirect Rapid
Tooling Process Based in Polymeric Matrix Composites,
approuvé par la Fundação para a Ciência e Tecnologia
(FCT) et POCTI, 2001.