[1]
Daniyal M, Siddiqui ZA, Akram M, Asif H, Sultana S, Khan A. Epidemiology, etiology, diagnosis and treatment of prostate cancer. Asian Pac J Cancer Prev 2014; 15(22): 9575-8.
[2]
Mohsenzadegan M, Seif F, Farajollahi M, Khoshmirsafa M. Anti-oxidants as chemopreventive agents in prostate cancer: A gap between preclinical and clinical studies. Recent Patents Anticancer Drug Discov 2018; 13(2): 224-9.
[3]
Kalra R, Bhagyaraj E, Tiwari D, et al. AIRE promotes androgen-independent prostate cancer by directly regulating IL-6 and modulating tumor microenvironment. Oncogenesis 2018; 7(5): 43.
[4]
Benidir T, Hersey K, Finelli A, et al. editors. Understanding how prostate cancer patients value the current treatment options for metastatic castration resistant prostate cancer. Urol Oncol 2018; 36(5): 240.
[5]
Mohsenzadegan M, Shekarabi M, Madjd Z, et al. Study of NGEP expression pattern in cancerous tissues provides novel insights into prognostic marker in prostate cancer. Biomarkers Med 2015; 9(4): 391-401.
[6]
Mohsenzadegan M, Tajik N, Madjd Z, Shekarabi M, Farajollahi MM. Study of NGEP expression in androgen sensitive prostate cancer cells: A potential target for immunotherapy. Med J Islam Repub Iran 2015; 29: 159.
[7]
Mohsenzadegan M, Madjd Z, Asgari M, et al. Reduced expression of NGEP is associated with high-grade prostate cancers: a tissue microarray analysis. Cancer Immunol Immunother 2013; 62(10): 1609-18.
[8]
Mohsenzadegan M, Saebi F, Yazdani M, et al. Autoantibody against new gene expressed in prostate protein is traceable in prostate cancer patients. Biomarkers Med 2018; 12(10): 1125-38.
[9]
Lundholm M, Hägglöf C, Wikberg ML, et al. Secreted factors from colorectal and prostate cancer cells skew the immune response in opposite directions. Sci Rep 2015; 5: 15651.
[10]
Fujita K, Ewing CM, Sokoll LJ, et al. Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate 2008; 68(8): 872-82.
[11]
González-Reyes S, Fernández JM, González LO, et al. Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol Immunother 2011; 60(2): 217-26.
[12]
Comen EA, Bowman RL, Kleppe M. Underlying causes and therapeutic targeting of the inflammatory tumor microenvironment. Front Cell Dev Biol 2018; 6: 56.
[13]
Fujii T, Shimada K, Asai O, et al. Immunohistochemical analysis of inflammatory cells in benign and precancerous lesions and carcinoma of the prostate. Pathobiol 2013; 80(3): 119-26.
[14]
Solinas G, Germano G, Mantovani A, Allavena P. Tumor‐associated macrophages (TAM) as major players of the cancer‐related inflammation. J Leukoc Biol 2009; 86(5): 1065-73.
[15]
Whiteside T. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904.
[16]
Liu J, Li Z, Cui J, Xu G, Cui G. Cellular changes in the tumor microenvironment of human esophageal squamous cell carcinomas. Tumour Biol 2012; 33(2): 495-505.
[17]
Ohtaki Y, Ishii G, Nagai K, et al. Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol 2010; 5(10): 1507-15.
[18]
Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008; 8(8): nrc2444.
[19]
Roca H, Varsos ZS, Sud S, et al. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 2009; 284(49): 34342-54.
[20]
Ogle ME, Segar CE, Sridhar S, Botchwey EA. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp Biol Med 2016; 241(10): 1084-97.
[21]
Sharifi L, Tavakolinia N, Kiaee F, et al. A review on defects of
dendritic cells in common variable immunodeficiency. Endocrine,
Metabolic & Immune Disorders-Drug Targets (Formerly Current
Drug Targets-Immune, Endocrine & Metabolic Disorders). 2017; 17(2): 100-13.
[22]
Seif F, Khoshmirsafa M, Aazami H, et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 2017; 15(1): 23.
[23]
Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010; 22(2): 231-7.
[24]
Ovchinnikov DA. Macrophages in the embryo and beyond: much more than just giant phagocytes. Genesis 2008; 46(9): 447-62.
[25]
Miron RJ, Bosshardt DD. OsteoMacs: Key players around bone biomaterials. Biomaterials 2016; 82: 1-19.
[26]
Raggatt LJ, Wullschleger ME, Alexander KA, et al. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol 2014; 184(12): 3192-204.
[27]
Cho SW, Soki FN, Koh AJ, et al. Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc Natil Acad Sci 2014; 111(4): 1545-50.
[28]
Miron RJ, Zohdi H, Fujioka-Kobayashi M, Bosshardt DD. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells? Acta Biomater 2016; 46: 15-28.
[29]
Jamalpoor Z, Asgari A, Lashkari MH, Mirshafiey A, Mohsenzadegan M. Modulation of macrophage polarization for bone tissue engineering applications. Iran J Allergy Asthma Immunol 2018; 17(5): 398-408.
[30]
Chang MK, Raggatt L-J, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 2008; 181(2): 1232-44.
[31]
Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116(23): 4815-28.
[32]
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23(11): 549-55.
[33]
Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 2015; 15(1): 577.
[34]
Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3(1): 23-35.
[35]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69.
[36]
Guihard P, Danger Y, Brounais B, et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 2012; 30(4): 762-72.
[37]
Sharifi L, Mohsenzadegan M, Aghamohammadi A, et al. Immunomodulatory effect of G2013 (aL-Guluronic acid) on theTLR2 and TLR4 in human mononuclear cells. Curr Drug Discov Technol 2018; 15(2): 123-31.
[38]
Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009; 27: 451-83.
[39]
Champagne C, Takebe J, Offenbacher S, Cooper L. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 2002; 30(1): 26-31.
[40]
Assoian RK, Fleurdelys BE, Stevenson HC, et al. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Aca Sci 1987; 84(17): 6020-4.
[41]
Takahashi F, Takahashi K, Shimizu K, et al. Osteopontin is strongly expressed by alveolar macrophages in the lungs of acute respiratory distress syndrome. Lung 2004; 182(3): 173-85.
[42]
Kreutz M, Andreesen R, Krause SW, et al. 1, 25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 1993; 82(4): 1300-7.
[43]
Poh AR, Ernst M. Targeting macrophages in cancer: From bench to bedside. Front Concol 2018; 8: 49.
[44]
Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015; 2015: 816460.
[45]
Knipper JA, Willenborg S, Brinckmann J, et al. Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 2015; 43(4): 803-16.
[46]
Jetten N, Verbruggen S, Gijbels MJ, et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 2014; 17(1): 109-18.
[47]
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41(1): 14-20.
[48]
Wang Q, Ni H, Lan L, et al. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res 2010; 20(6): 701-12.
[49]
Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation 2013; 36(4): 921-31.
[50]
Zarif JC, Taichman RS, Pienta KJ. TAM macrophages promote growth and metastasis within the cancer ecosystem. Oncoimmunol 2014; 3(7): e941734.
[51]
Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008; 66(1): 1-9.
[52]
Rogers TL, Holen I. Tumour macrophages as potential targets of bisphosphonates. J Transl Med 2011; 9(1): 177.
[53]
Saqib U, Sarkar S, Suk K, et al. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 2018; 9(25): 17937.
[54]
Coffelt SB, Hughes R, Lewis CE. Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochimica et Biophysica Acta (BBA)-. Rev Can 2009; 1796(1): 11-8.
[55]
Redente EF, Dwyer-Nield LD, Merrick DT, et al. Tumor progression stage and anatomical site regulate tumor-associated macrophage and bone marrow-derived monocyte polarization. Am J Pathol 2010; 176(6): 2972-85.
[56]
Riabov V, Kim D, Chhina S, Alexander RB, Klyushnenkova EN. Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer. Cancer Immunol Immunother 2015; 64(7): 873-83.
[57]
Yang L, Wang F, Wang L, et al. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 2015; 6(12): 10592.
[58]
Fan H-h, Li L, Zhang Y-m, et al. PKCζ in prostate cancer cells represses the recruitment and M2 polarization of macrophages in the prostate cancer microenvironment. Tumour Biol 2017; 39(6): 1010428317701442.
[59]
Dun EC, Hanley K, Wieser F, et al. Infiltration of tumor-associated macrophages is increased in the epithelial and stromal compartments of endometrial carcinomas. Int J Gynecol Pathol 2013; 32(6): 576-84.
[60]
Soki FN, Cho SW, Kim YW, et al. Bone marrow macrophages support prostate cancer growth in bone. Oncotarget 2015; 6(34): 35782.
[61]
Kim SW, Kim JS, Papadopoulos J, et al. Consistent interactions between tumor cell IL-6 and macrophage TNF-α enhance the growth of human prostate cancer cells in the bone of nude mouse. Int Immunopharmacol 2011; 11(7): 862-72.
[62]
Xu E-R, Blythe EE, Fischer G, Hyvönen M. Structural analyses of von Willebrand factor C domains of collagen 2A and CCN3 reveal an alternative mode of binding to bone morphogenetic protein-2. J Biol Chem 2017; 292(30): 12516-27.
[63]
Maillard M, Cadot B, Ball R, et al. Differential expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Mol Pathol 2001; 54(4): 275.
[64]
Chen P-C, Cheng H-C, Wang J, et al. Prostate cancer-derived CCN3 induces M2 macrophage infiltration and contributes to angiogenesis in prostate cancer microenvironment. Oncotarget 2014; 5(6): 1595.
[65]
Heilborn JD, Nilsson MF, Jimenez CIC, et al. Antimicrobial protein hCAP18/LL‐37 is highly expressed in breast cancer and is a putative growth factor for epithelial cells. Int J Cancer 2005; 114(5): 713-9.
[66]
Cha HR, Lee JH, Hensel JA, et al. Prostate cancer‐derived cathelicidin‐related antimicrobial peptide facilitates macrophage differentiation and polarization of immature myeloid progenitors to protumorigenic macrophages. Prostate 2016; 76(7): 624-36.
[67]
Yoshimura T, Howard OZ, Ito T, et al. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells. PLoS One 2013; 8(3): e58791.
[68]
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29(6): 313-26.
[69]
Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 2008; 283(36): 25057-73.
[70]
Kawabe K, Takano K, Moriyama M, Nakamura Y. Microglia endocytose amyloid β through the binding of transglutaminase 2 and milk fat globule EGF factor 8 protein. Neurochem Res 2018; 43(1): 32-40.
[71]
Sugano G, Bernard-Pierrot I, Lae M, et al. Milk fat globule—epidermal growth factor—factor VIII (MFGE8)/lactadherin promotes bladder tumor development. Oncogene 2011; 30(6): 642.
[72]
Hanayama R, Tanaka M, Miwa K, et al. Identification of a factor that links apoptotic cells to phagocytes. Nat 2002; 417(6885): 182.
[73]
Soki FN, Koh AJ, Jones JD, et al. Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J Biol Chem 2014; 289(35): 24560-72.
[74]
Chu EP, Elso CM, Pollock AH, et al. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Mol Immunol 2017; 82: 19-33.
[75]
Taylor DD, Gercel-Taylor C. editors. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 2011; 33(5): 441-54.
[76]
Ran S, He J, Huang X, et al. Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 2005; 11(4): 1551-62.
[77]
Yin Y, Huang X, Lynn KD, Thorpe PE. Phosphatidylserine-targeting antibody induces M1 macrophage polarization and promotes myeloid-derived suppressor cell differentiation. Cancer Immunol Res 2013; 1(4): 256-68.
[78]
Yang YJ, Lee SH, Hong SJ, Chung BC. Comparison of fatty acid profiles in the serum of patients with prostate cancer and benign prostatic hyperplasia. Clin Biochem 1999; 32(6): 405-9.
[79]
Torfadottir JE, Valdimarsdottir UA, Mucci LA, et al. Consumption of fish products across the lifespan and prostate cancer risk. PLoS One 2013; 8(4): e59799.
[80]
Liang P, Henning SM, Schokrpur S, et al. Effect of Dietary Omega‐3 Fatty Acids on Tumor‐Associated Macrophages and Prostate Cancer Progression. Prostate 2016; 76(14): 1293-302.
[81]
Li C-C, Hou Y-C, Yeh C-L, Yeh S-L. Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages. PLoS One 2014; 9(6): e99630.
[82]
Rimessi A, Patergnani S, Ioannidi E, Pinton P. Chemoresistance and cancer-related inflammation: two hallmarks of cancer connected by an atypical link, PKCζ. Front Oncol 2013; 3: 232.
[83]
Kim JY, Valencia T, Abu-Baker S, et al. c-Myc phosphorylation by PKCζ represses prostate tumorigenesis. Proc Natil Acad Scie 2013; 110(16): 6418-23.
[84]
Yang S, Zhang JJ, Huang X-Y. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 2009; 15(2): 124-34.
[85]
Tse A, Lee AK, Frederick WT. Ca2+ signaling and exocytosis in pituitary corticotropes. Cell Calcium 2012; 51(3-4): 253-9.
[86]
Vig M, Peinelt C, Beck A, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Sci 2006; 312(5777): 1220-3.
[87]
Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nat 2006; 441(7090): 179.
[88]
Peinelt C, Vig M, Koomoa DL, et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 2006; 8(7): 771.
[89]
Xu Y, Zhang S, Niu H, et al. STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer. Sci Rep 2015; 5: 11754.
[90]
Armstrong A, Häggman M, Stadler W, et al. Long-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancer. Clin Cancer Res 2013; 19(24): 6891-901.
[91]
Shen L, Sundstedt A, Ciesielski M, et al. Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models. Cancer Immunol Res 2015; 3(2): 136-48.
[92]
Valdespino V, Tsagozis P, Pisa P. Current perspectives in the treatment of advanced prostate cancer. Med Oncol 2007; 24(3): 273-86.
[93]
Kuroda J, Kimura S, Segawa H, et al. The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph+ leukemia activity of imatinib mesylate. Blood 2003; 102(6): 2229-35.
[94]
Comito G, Segura CP, Taddei ML, et al. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget 2017; 8(1): 118.
[95]
Vasiliadou I, Holen I. The role of macrophages in bone metastasis. J Bone Oncol 2013; 2(4): 158-66.
[96]
Germano G, Frapolli R, Belgiovine C, et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013; 23(2): 249-62.
[97]
McCool R, Fleetwood K, Glanville J, et al. Systematic review and network meta-analysis of treatments for chemotherapy-naive patients with asymptomatic/mildly symptomatic metastatic castration-resistant prostate cancer. Value Health 2018; 21(10): 1259-68.
[98]
Ullah K, Addai Peprah F, Yu F, Shi H. The application of prostate specific membrane antigen in CART-cell therapy for treatment of prostate carcinoma. Oncology Reports 2018; 40(6): 3136-43.