Review Article

HMGB2与HMGB1在卵巢癌和前列腺癌中的差异及研究前景

卷 27, 期 20, 2020

页: [3271 - 3289] 页: 19

弟呕挨: 10.2174/0929867326666190123120338

价格: $65

摘要

我们总结了HMGB1和HMGB2蛋白的共同和差异功能,并结合病理过程,特别关注癌症。目前,有几种“基因组学”方法帮助我们比较这两种蛋白在健康和癌变人类标本中的相对表达,以及在广泛的癌源性细胞系中的相对表达,或者在胎儿和成人细胞中的相对表达。近年来,干扰HMGB1功能的分子作为治疗药物在动物模型上进行了广泛的实验,并对其作用进行了总结。本文最后对HMGB分子作为前列腺癌和卵巢癌靶点的前景进行了讨论。

关键词: 前列腺癌,卵巢癌,差异表达,HMGB蛋白,药物靶点,基因组学方法。

[1]
Barreiro-Alonso, A.; Lamas-Maceiras, M.; Rodríguez-Belmonte, E.; Vizoso-Vázquez, Á.; Quindós, M.; Cerdán, M.E. High mobility group B Proteins, their partners, and other redox sensors in ovarian and prostate cancer. Oxid. Med. Cell. Longev., 2016, 20165845061
[http://dx.doi.org/10.1155/2016/5845061] [PMID: 26682011]
[2]
Cohen, J.; Negroni, R.; Gaggiolo, M. Apropos of a case of meningeal cryptococcosis cured with amphoterin B. Rev. Asoc. Med. Argent., 1964, 78, 547-552.
[PMID: 14231484]
[3]
Ugrinova, I.; Pasheva, E. HMGB1 Protein: A therapeutic target inside and outside the cell. Adv. Protein Chem. Struct. Biol., 2017, 107, 37-76.
[http://dx.doi.org/10.1016/bs.apcsb.2016.10.001] [PMID: 28215228]
[4]
Das, D.; Peterson, R.C.; Scovell, W.M. High mobility group B proteins facilitate strong estrogen receptor binding to classical and half-site estrogen response elements and relax binding selectivity. Mol. Endocrinol., 2004, 18(11), 2616-2632.
[http://dx.doi.org/10.1210/me.2004-0125] [PMID: 15256536]
[5]
Joshi, S.R.; Ghattamaneni, R.B.; Scovell, W.M. Expanding the paradigm for estrogen receptor binding and transcriptional activation. Mol. Endocrinol., 2011, 25(6), 980-994.
[http://dx.doi.org/10.1210/me.2010-0302] [PMID: 21527498]
[6]
Rowell, J.P.; Simpson, K.L.; Stott, K.; Watson, M.; Thomas, J.O. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure, 2012, 20(12), 2014-2024.
[http://dx.doi.org/10.1016/j.str.2012.09.004] [PMID: 23063560]
[7]
Zappavigna, V.; Falciola, L.; Helmer-Citterich, M.; Mavilio, F.; Bianchi, M.E. HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J., 1996, 15(18), 4981-4991.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00878.x] [PMID: 8890171]
[8]
Zwilling, S.; König, H.; Wirth, T. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J., 1995, 14(6), 1198-1208.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07103.x] [PMID: 7720710]
[9]
Aidinis, V.; Bonaldi, T.; Beltrame, M.; Santagata, S.; Bianchi, M.E.; Spanopoulou, E. The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2. Mol. Cell. Biol., 1999, 19(10), 6532-6542.
[http://dx.doi.org/10.1128/MCB.19.10.6532] [PMID: 10490593]
[10]
Agresti, A.; Lupo, R.; Bianchi, M.E.; Müller, S. HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem. Biophys. Res. Commun., 2003, 302(2), 421-426.
[http://dx.doi.org/10.1016/S0006-291X(03)00184-0] [PMID: 12604365]
[11]
Tang, D.; Kang, R.; Zeh, H.J., III; Lotze, M.T. High-mobility group box 1, oxidative stress, and disease. Antioxid. Redox Signal., 2011, 14(7), 1315-1335.
[http://dx.doi.org/10.1089/ars.2010.3356] [PMID: 20969478]
[12]
Ohmori, H.; Luo, Y.; Kuniyasu, H. Non-histone nuclear factor HMGB1 as a therapeutic target in colorectal cancer. Expert Opin. Ther. Targets, 2011, 15(2), 183-193.
[http://dx.doi.org/10.1517/14728222.2011.546785] [PMID: 21204727]
[13]
Kang, R.; Zhang, Q.; Zeh, H.J., III; Lotze, M.T.; Tang, D. HMGB1 in cancer: good, bad, or both? Clin. Cancer Res., 2013, 19(15), 4046-4057.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0495] [PMID: 23723299]
[14]
He, S.J.; Cheng, J.; Feng, X.; Yu, Y.; Tian, L.; Huang, Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget, 2017, 8(38), 64534-64550.
[http://dx.doi.org/10.18632/oncotarget.17885] [PMID: 28969092]
[15]
van Beijnum, J.R.; Nowak-Sliwinska, P.; van den Boezem, E.; Hautvast, P.; Buurman, W.A.; Griffioen, A.W. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene, 2013, 32(3), 363-374.
[http://dx.doi.org/10.1038/onc.2012.49] [PMID: 22391561]
[16]
Abraham, A. B.; Bronstein, R.; Chen, E. I.; Koller, A.; Ronfani, L.; Maletic-Savatic, M.; Tsirka, S. E. Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells, 2013, 11(1), 18.
[http://dx.doi.org/10.1186/1477-5956-11-18]
[17]
Li, M.; Sun, L.; Luo, Y.; Xie, C.; Pang, Y.; Li, Y. High-mobility group box 1 released from astrocytes promotes the proliferation of cultured neural stem/progenitor cells. Int. J. Mol. Med., 2014, 34(3), 705-714.
[http://dx.doi.org/10.3892/ijmm.2014.1820] [PMID: 24970310]
[18]
Zhao, Y.; Yang, Z.; Wu, J.; Wu, R.; Keshipeddy, S.K.; Wright, D.; Wang, L. High-mobility-group protein 2 regulated by microRNA-127 and small heterodimer partner modulates pluripotency of mouse embryonic stem cells and liver tumor initiating cells. Hepatol Commun, 2017, 1(8), 816-830.
[http://dx.doi.org/10.1002/hep4.1086] [PMID: 29218329]
[19]
Conti, L.; Lanzardo, S.; Arigoni, M.; Antonazzo, R.; Radaelli, E.; Cantarella, D.; Calogero, R.A.; Cavallo, F. The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J., 2013, 27(12), 4731-4744.
[http://dx.doi.org/10.1096/fj.13-230201] [PMID: 23970797]
[20]
Muhammad, S.; Barakat, W.; Stoyanov, S.; Murikinati, S.; Yang, H.; Tracey, K.J.; Bendszus, M.; Rossetti, G.; Nawroth, P.P.; Bierhaus, A.; Schwaninger, M. The HMGB1 receptor RAGE mediates ischemic brain damage. J. Neurosci., 2008, 28(46), 12023-12031.
[http://dx.doi.org/10.1523/JNEUROSCI.2435-08.2008] [PMID: 19005067]
[21]
Venegas, C.; Heneka, M.T. Danger-associated molecular patterns in Alzheimer’s disease. J. Leukoc. Biol., 2017, 101(1), 87-98.
[http://dx.doi.org/10.1189/jlb.3MR0416-204R] [PMID: 28049142]
[22]
Zhang, J.; Zhang, L.; Zhang, S.; Yu, Q.; Xiong, F.; Huang, K.; Wang, C.Y.; Yang, P. HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol. Cell. Endocrinol., 2017, 454, 103-111.
[http://dx.doi.org/10.1016/j.mce.2017.06.012] [PMID: 28619625]
[23]
Wang, Y.; Zhong, J.; Zhang, X.; Liu, Z.; Yang, Y.; Gong, Q.; Ren, B. The Role of HMGB1 in the Pathogenesis of Type 2 Diabetes. J. Diabetes Res., 2016, 20162543268
[http://dx.doi.org/10.1155/2016/2543268] [PMID: 28101517]
[24]
Harris, H.E.; Andersson, U.; Pisetsky, D.S. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat. Rev. Rheumatol., 2012, 8(4), 195-202.
[http://dx.doi.org/10.1038/nrrheum.2011.222] [PMID: 22293756]
[25]
Yanai, H.; Taniguchi, T. Nucleic acid sensing and beyond: virtues and vices of high-mobility group box 1. J. Intern. Med., 2014, 276(5), 444-453.
[http://dx.doi.org/10.1111/joim.12285] [PMID: 25041239]
[26]
Thomas, J.O. HMG1 and 2: architectural DNA-binding proteins. Biochem. Soc. Trans., 2001, 29(Pt 4), 395-401.
[http://dx.doi.org/10.1042/bst0290395] [PMID: 11497996]
[27]
Paull, T.T.; Haykinson, M.J.; Johnson, R.C. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev., 1993, 7(8), 1521-1534.
[http://dx.doi.org/10.1101/gad.7.8.1521] [PMID: 8339930]
[28]
Ugrinova, I.; Pashev, I.G.; Pasheva, E.A. Nucleosome binding properties and Co-remodeling activities of native and in vivo acetylated HMGB-1 and HMGB-2 proteins. Biochemistry, 2009, 48(27), 6502-6507.
[http://dx.doi.org/10.1021/bi9004304] [PMID: 19522541]
[29]
Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., III; Lotze, M.T. Endogenous HMGB1 regulates autophagy. J. Cell Biol., 2010, 190(5), 881-892.
[http://dx.doi.org/10.1083/jcb.200911078] [PMID: 20819940]
[30]
Tang, L.M.; Lu, Z.Q.; Yao, Y.M. [The extracellular role of high mobility group box-1 protein in regulation of immune response]. Sheng Li Ke Xue Jin Zhan, 2011, 42(3), 188-194.
[PMID: 21932516]
[31]
Küchler, R.; Schroeder, B.O.; Jaeger, S.U.; Stange, E.F.; Wehkamp, J. Antimicrobial activity of high-mobility-group box 2: a new function to a well-known protein. Antimicrob. Agents Chemother., 2013, 57(10), 4782-4793.
[http://dx.doi.org/10.1128/AAC.00805-13] [PMID: 23877675]
[32]
Xu, J.; Jiang, Y.; Wang, J.; Shi, X.; Liu, Q.; Liu, Z.; Li, Y.; Scott, M.J.; Xiao, G.; Li, S.; Fan, L.; Billiar, T.R.; Wilson, M.A.; Fan, J. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ., 2014, 21(8), 1229-1239.
[http://dx.doi.org/10.1038/cdd.2014.40] [PMID: 24769733]
[33]
Tohme, S.; Yazdani, H.O.; Liu, Y.; Loughran, P.; van der Windt, D.J.; Huang, H.; Simmons, R.L.; Shiva, S.; Tai, S.; Tsung, A. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology, 2017, 66(1), 182-197.
[http://dx.doi.org/10.1002/hep.29184] [PMID: 28370295]
[34]
Gu, J.; Xu, R.; Li, Y.; Zhang, J.; Wang, S. MicroRNA-218 modulates activities of glioma cells by targeting HMGB1. Am. J. Transl. Res., 2016, 8(9), 3780-3790.
[PMID: 27725858]
[35]
Wang, Z.; Wang, X.; Li, J.; Yang, C.; Xing, Z.; Chen, R.; Xu, F. HMGB1 knockdown effectively inhibits the progression of rectal cancer by suppressing HMGB1 expression and promoting apoptosis of rectal cancer cells. Mol. Med. Rep., 2016, 14(1), 1026-1032.
[http://dx.doi.org/10.3892/mmr.2016.5340] [PMID: 27220399]
[36]
Li, Z.; Wang, H.; Song, B.; Sun, Y.; Xu, Z.; Han, J. [Silencing HMGB1 expression by lentivirus-mediated small interfering RNA (siRNA) inhibits the proliferation and invasion of colorectal cancer LoVo cells in vitro and in vivo]. Zhonghua Zhong Liu Za Zhi, 2015, 37(9), 664-670.
[PMID: 26813430]
[37]
Liu, X.; Wu, J. [Mechanism of inhibitory effects of silencing high mobility group box-1 on invasion and migration of endometrial carcinoma of uterus]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2016, 41(3), 251-257.
[PMID: 27033788]
[38]
Gnanasekar, M.; Thirugnanam, S.; Ramaswamy, K. Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int. J. Oncol., 2009, 34(2), 425-431.
[PMID: 19148477]
[39]
Cai, X.; Ding, H.; Liu, Y.; Pan, G.; Li, Q.; Yang, Z.; Liu, W. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(2), 119-127.
[http://dx.doi.org/10.1093/abbs/gmw124] [PMID: 28069585]
[40]
Wu, Z.B.; Cai, L.; Lin, S.J.; Xiong, Z.K.; Lu, J.L.; Mao, Y.; Yao, Y.; Zhou, L.F. High-mobility group box 2 is associated with prognosis of glioblastoma by promoting cell viability, invasion, and chemotherapeutic resistance. Neuro-oncol., 2013, 15(9), 1264-1275.
[http://dx.doi.org/10.1093/neuonc/not078] [PMID: 23828241]
[41]
Zhang, W.; Zhang, Y.; Ding, K.; Zhang, H.; Zhao, Q.; Liu, Z.; Xu, Y. Involvement of JNK1/2-NF-κBp65 in the regulation of HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human AC16 cardiomyocytes. Biomed. Pharmacother., 2018, 106, 1063-1071.
[http://dx.doi.org/10.1016/j.biopha.2018.07.015] [PMID: 30119172]
[42]
Yusein-Myashkova, S.; Stoykov, I.; Gospodinov, A.; Ugrinova, I.; Pasheva, E. The repair capacity of lung cancer cell lines A549 and H1299 depends on HMGB1 expression level and the p53 status. J. Biochem., 2016, 160(1), 37-47.
[http://dx.doi.org/10.1093/jb/mvw012] [PMID: 26896489]
[43]
Syed, N.; Chavan, S.; Sahasrabuddhe, N.A.; Renuse, S.; Sathe, G.; Nanjappa, V.; Radhakrishnan, A.; Raja, R.; Pinto, S.M.; Srinivasan, A.; Prasad, T.S.; Srikumar, K.; Gowda, H.; Santosh, V.; Sidransky, D.; Califano, J.A.; Pandey, A.; Chatterjee, A. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma. Proteomics, 2015, 15(2-3), 383-393.
[http://dx.doi.org/10.1002/pmic.201400338] [PMID: 25327479]
[44]
Li, Y.; Wang, P.; Zhao, J.; Li, H.; Liu, D.; Zhu, W. HMGB1 attenuates TGF-β-induced epithelial-mesenchymal transition of FaDu hypopharyngeal carcinoma cells through regulation of RAGE expression. Mol. Cell. Biochem., 2017, 431(1-2), 1-10.
[http://dx.doi.org/10.1007/s11010-017-2968-2] [PMID: 28285361]
[45]
Xu, Y.F.; Ge, F.J.; Han, B.; Yang, X.Q.; Su, H.; Zhao, A.C.; Zhao, M.H.; Yang, Y.B.; Yang, J. High-mobility group box 1 expression and lymph node metastasis in intrahepatic cholangiocarcinoma. World J. Gastroenterol., 2015, 21(11), 3256-3265.
[http://dx.doi.org/10.3748/wjg.v21.i11.3256] [PMID: 25805932]
[46]
Song, B.; Song, W.G.; Li, Z.J.; Xu, Z.F.; Wang, X.W.; Wang, C.X.; Liu, J. Effect of HMGB1 silencing on cell proliferation, invasion and apoptosis of MGC-803 gastric cancer cells. Cell Biochem. Funct., 2012, 30(1), 11-17.
[http://dx.doi.org/10.1002/cbf.1811] [PMID: 21953494]
[47]
Liu, P.L.; Tsai, J.R.; Hwang, J.J.; Chou, S.H.; Cheng, Y.J.; Lin, F.Y.; Chen, Y.L.; Hung, C.Y.; Chen, W.C.; Chen, Y.H.; Chong, I.W. High-mobility group box 1-mediated matrix metalloproteinase-9 expression in non-small cell lung cancer contributes to tumor cell invasiveness. Am. J. Respir. Cell Mol. Biol., 2010, 43(5), 530-538.
[http://dx.doi.org/10.1165/rcmb.2009-0269OC] [PMID: 19933377]
[48]
Cui, G.; Cai, F.; Ding, Z.; Gao, L. HMGB2 promotes the malignancy of human gastric cancer and indicates poor survival outcome. Hum. Pathol., 2019, 84(1), 133-141.
[PMID: 30296520]
[49]
Chen, R.; Zhu, S.; Fan, X.G.; Wang, H.; Lotze, M.T.; Zeh, H.J., III; Billiar, T.R.; Kang, R.; Tang, D. High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology, 2018, 67(5), 1823-1841.
[http://dx.doi.org/10.1002/hep.29663] [PMID: 29149457]
[50]
Wu, Q.; Meng, W.Y.; Jie, Y.; Zhao, H. LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J. Cell. Physiol., 2018, 233(9), 6750-6757.
[http://dx.doi.org/10.1002/jcp.26383] [PMID: 29226325]
[51]
Li, J.; Gao, J.; Tian, W.; Li, Y.; Zhang, J. Long non-coding RNA MALAT1 drives gastric cancer progression by regulating HMGB2 modulating the miR-1297. Cancer Cell Int., 2017, 17(1), 44.
[http://dx.doi.org/10.1186/s12935-017-0408-8]
[52]
Elangovan, I.; Thirugnanam, S.; Chen, A.; Zheng, G.; Bosland, M.C.; Kajdacsy-Balla, A.; Gnanasekar, M. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth. Biochem. Biophys. Res. Commun., 2012, 417(4), 1133-1138.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.060] [PMID: 22206663]
[53]
Arumugam, T.; Ramachandran, V.; Gomez, S.B.; Schmidt, A.M.; Logsdon, C.D. S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin. Cancer Res., 2012, 18(16), 4356-4364.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0221] [PMID: 22718861]
[54]
Zhang, Y.; Liu, Z.; Hao, X.; Li, A.; Zhang, J.; Carey, C.D.; Falo, L.D.; You, Z. Tumor-derived high-mobility group box 1 and thymic stromal lymphopoietin are involved in modulating dendritic cells to activate T regulatory cells in a mouse model. Cancer Immunol. Immunother., 2018, 67(3), 353-366.
[http://dx.doi.org/10.1007/s00262-017-2087-7] [PMID: 29116372]
[55]
Ronfani, L.; Ferraguti, M.; Croci, L.; Ovitt, C.E.; Schöler, H.R.; Consalez, G.G.; Bianchi, M.E. Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development, 2001, 128(8), 1265-1273.
[PMID: 11262228]
[56]
Calogero, S.; Grassi, F.; Aguzzi, A.; Voigtländer, T.; Ferrier, P.; Ferrari, S.; Bianchi, M.E. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet., 1999, 22(3), 276-280.
[http://dx.doi.org/10.1038/10338] [PMID: 10391216]
[57]
Pasheva, E.; Sarov, M.; Bidjekov, K.; Ugrinova, I.; Sarg, B.; Lindner, H.; Pashev, I.G. In vitro acetylation of HMGB-1 and -2 proteins by CBP: the role of the acidic tail. Biochemistry, 2004, 43(10), 2935-2940.
[http://dx.doi.org/10.1021/bi035615y] [PMID: 15005629]
[58]
Bonaldi, T.; Talamo, F.; Scaffidi, P.; Ferrera, D.; Porto, A.; Bachi, A.; Rubartelli, A.; Agresti, A.; Bianchi, M.E. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J., 2003, 22(20), 5551-5560.
[http://dx.doi.org/10.1093/emboj/cdg516] [PMID: 14532127]
[59]
Fan, Z.; Beresford, P.J.; Zhang, D.; Lieberman, J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol. Cell. Biol., 2002, 22(8), 2810-2820.
[http://dx.doi.org/10.1128/MCB.22.8.2810-2820.2002] [PMID: 11909973]
[60]
Müller, S.; Ronfani, L.; Bianchi, M.E. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J. Intern. Med., 2004, 255(3), 332-343.
[http://dx.doi.org/10.1111/j.1365-2796.2003.01296.x] [PMID: 14871457]
[61]
Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; Foster, B. The genotype-tissue expression (GTEx) project. Nat. Genet. 2013, 29; 45(6), 580-585.
[62]
Lindskog, C. The Human Protein Atlas - an important resource for basic and clinical research. Expert Rev. Proteomics, 2016, 13(7), 627-629.
[http://dx.doi.org/10.1080/14789450.2016.1199280] [PMID: 27276068]
[63]
Kawaji, H.; Kasukawa, T.; Forrest, A.; Carninci, P.; Hayashizaki, Y. The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types. Sci. Data, 2017, 4170113
[http://dx.doi.org/10.1038/sdata.2017.113] [PMID: 28850107]
[64]
Wang, B.; Li, F.; Zhang, C.; Wei, G.; Liao, P.; Dong, N. High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells. J. Thorac. Cardiovasc. Surg., 2016, 151(1), 255-262.
[http://dx.doi.org/10.1016/j.jtcvs.2015.09.077] [PMID: 26515875]
[65]
Laurent, B.; Randrianarison-Huetz, V.; Maréchal, V.; Mayeux, P.; Dusanter-Fourt, I.; Duménil, D. High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription. Blood, 2010, 115(3), 687-695.
[http://dx.doi.org/10.1182/blood-2009-06-230094] [PMID: 19965638]
[66]
Taniguchi, N.; Caramés, B.; Hsu, E.; Cherqui, S.; Kawakami, Y.; Lotz, M. Expression patterns and function of chromatin protein HMGB2 during mesenchymal stem cell differentiation. J. Biol. Chem., 2011, 286(48), 41489-41498.
[http://dx.doi.org/10.1074/jbc.M111.236984] [PMID: 21890638]
[67]
Zhou, X.; Li, M.; Huang, H.; Chen, K.; Yuan, Z.; Zhang, Y.; Nie, Y.; Chen, H.; Zhang, X.; Chen, L.; Chen, Y.; Mo, D. HMGB2 regulates satellite-cell-mediated skeletal muscle regeneration through IGF2BP2. J. Cell Sci., 2016, 129(22), 4305-4316.
[http://dx.doi.org/10.1242/jcs.189944] [PMID: 27672022]
[68]
Bronstein, R.; Kyle, J.; Abraham, A.B.; Tsirka, S.E. Neurogenic to gliogenic fate transition perturbed by loss of HMGB2. Front. Mol. Neurosci., 2017, 10, 153.
[http://dx.doi.org/10.3389/fnmol.2017.00153] [PMID: 28588451]
[69]
Aird, K.M.; Iwasaki, O.; Kossenkov, A.V.; Tanizawa, H.; Fatkhutdinov, N.; Bitler, B.G.; Le, L.; Alicea, G.; Yang, T.L.; Johnson, F.B.; Noma, K.I.; Zhang, R. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol., 2016, 215(3), 325-334.
[http://dx.doi.org/10.1083/jcb.201608026] [PMID: 27799366]
[70]
Taniguchi, N.; Caramés, B.; Kawakami, Y.; Amendt, B.A.; Komiya, S.; Lotz, M. Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc. Natl. Acad. Sci. USA, 2009, 106(39), 16817-16822.
[http://dx.doi.org/10.1073/pnas.0904414106] [PMID: 19805379]
[71]
Kimura, A.; Matsuda, T.; Sakai, A.; Murao, N.; Nakashima, K. HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells. Dev. Dyn., 2018, 247(1), 229-238.
[http://dx.doi.org/10.1002/dvdy.24559] [PMID: 28771884]
[72]
Bukowska, B.; Rogalska, A.; Marczak, A. New potential chemotherapy for ovarian cancer - Combined therapy with WP 631 and epothilone B. Life Sci., 2016, 151, 86-92.
[http://dx.doi.org/10.1016/j.lfs.2016.02.095] [PMID: 26944437]
[73]
Paek, J.; Lee, M.; Nam, E.J.; Kim, S.W.; Kim, Y.T. Clinical impact of high mobility group box 1 protein in epithelial ovarian cancer. Arch. Gynecol. Obstet., 2016, 293(3), 645-650.
[http://dx.doi.org/10.1007/s00404-015-3864-1] [PMID: 26305032]
[74]
Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. USA, 2004, 101(25), 9309-9314.
[http://dx.doi.org/10.1073/pnas.0401994101] [PMID: 15184677]
[75]
Ouellet, V.; Le Page, C.; Guyot, M.C.; Lussier, C.; Tonin, P.N.; Provencher, D.M.; Mes-Masson, A.M. SET complex in serous epithelial ovarian cancer. Int. J. Cancer, 2006, 119(9), 2119-2126.
[http://dx.doi.org/10.1002/ijc.22054] [PMID: 16823850]
[76]
Bernardini, M.; Lee, C.H.; Beheshti, B.; Prasad, M.; Albert, M.; Marrano, P.; Begley, H.; Shaw, P.; Covens, A.; Murphy, J.; Rosen, B.; Minkin, S.; Squire, J.A.; Macgregor, P.F. High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia, 2005, 7(6), 603-613.
[http://dx.doi.org/10.1593/neo.04760] [PMID: 16036111]
[77]
Varma, R.R.; Hector, S.M.; Clark, K.; Greco, W.R.; Hawthorn, L.; Pendyala, L. Gene expression profiling of a clonal isolate of oxaliplatin-resistant ovarian carcinoma cell line A2780/C10. Oncol. Rep., 2005, 14(4), 925-932.
[http://dx.doi.org/10.3892/or.14.4.925] [PMID: 16142353]
[78]
Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet., 2013, 45(10), 1113-1120.
[http://dx.doi.org/10.1038/ng.2764] [PMID: 24071849]
[79]
Ko, Y.B.; Kim, B.R.; Nam, S.L.; Yang, J.B.; Park, S.Y.; Rho, S.B. High-mobility group box 1 (HMGB1) protein regulates tumor-associated cell migration through the interaction with BTB domain. Cell. Signal., 2014, 26(4), 777-783.
[http://dx.doi.org/10.1016/j.cellsig.2013.12.018] [PMID: 24412753]
[80]
Zhang, J.; Shao, S.; Han, D.; Xu, Y.; Jiao, D.; Wu, J.; Yang, F.; Ge, Y.; Shi, S.; Li, Y.; Wen, W.; Qin, W. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-κB signaling pathway. Int. J. Oncol., 2018, 53(2), 659-671.
[http://dx.doi.org/10.3892/ijo.2018.4420] [PMID: 29845254]
[81]
Brusa, D.; Migliore, E.; Garetto, S.; Simone, M.; Matera, L. Immunogenicity of 56 degrees C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells. Prostate, 2009, 69(12), 1343-1352.
[http://dx.doi.org/10.1002/pros.20981] [PMID: 19496055]
[82]
De Sanctis, F.; Sandri, S.; Martini, M.; Mazzocco, M.; Fiore, A.; Trovato, R.; Garetto, S.; Brusa, D.; Ugel, S.; Sartoris, S. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens. Vaccine, 2018, 36(25), 3708-3716.
[http://dx.doi.org/10.1016/j.vaccine.2018.05.010] [PMID: 29752021]
[83]
Gao, T.; Chen, Z.; Chen, H.; Yuan, H.; Wang, Y.; Peng, X.; Wei, C.; Yang, J.; Xu, C. Inhibition of HMGB1 mediates neuroprotection of traumatic brain injury by modulating the microglia/macrophage polarization. Biochem. Biophys. Res. Commun., 2018, 497(1), 430-436.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.102] [PMID: 29448108]
[84]
Shi, Y.; Guo, X.; Zhang, J.; Zhou, H.; Sun, B.; Feng, J. DNA binding protein HMGB1 secreted by activated microglia promotes the apoptosis of hippocampal neurons in diabetes complicated with OSA. Brain Behav. Immun., 2018, 73, 482-492.
[http://dx.doi.org/10.1016/j.bbi.2018.06.012] [PMID: 29920330]
[85]
Bianchi, M.E.; Crippa, M.P.; Manfredi, A.A.; Mezzapelle, R.; Rovere Querini, P.; Venereau, E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol. Rev., 2017, 280(1), 74-82.
[http://dx.doi.org/10.1111/imr.12601] [PMID: 29027228]
[86]
Cottone, L.; Capobianco, A.; Gualteroni, C.; Perrotta, C.; Bianchi, M.E.; Rovere-Querini, P.; Manfredi, A.A. 5-Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMGB1 release in colon carcinoma cells. Int. J. Cancer, 2015, 136(6), 1381-1389.
[http://dx.doi.org/10.1002/ijc.29125] [PMID: 25098891]
[87]
Wan, W.; Cao, L.; Khanabdali, R.; Kalionis, B.; Tai, X.; Xia, S. The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation. J. Immunol. Res., 2016, 20166430423
[http://dx.doi.org/10.1155/2016/6430423] [PMID: 27294160]
[88]
Schiraldi, M.; Raucci, A.; Muñoz, L.M.; Livoti, E.; Celona, B.; Venereau, E.; Apuzzo, T.; De Marchis, F.; Pedotti, M.; Bachi, A.; Thelen, M.; Varani, L.; Mellado, M.; Proudfoot, A.; Bianchi, M.E.; Uguccioni, M. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med., 2012, 209(3), 551-563.
[http://dx.doi.org/10.1084/jem.20111739] [PMID: 22370717]
[89]
Foglio, E.; Puddighinu, G.; Germani, A.; Russo, M.A.; Limana, F. HMGB1 Inhibits Apoptosis Following MI and Induces Autophagy via mTORC1 Inhibition. J. Cell. Physiol., 2017, 232(5), 1135-1143.
[http://dx.doi.org/10.1002/jcp.25576] [PMID: 27580416]
[90]
Chen, S.; Dong, Z.; Yang, P.; Wang, X.; Jin, G.; Yu, H.; Chen, L.; Li, L.; Tang, L.; Bai, S.; Yan, H.; Shen, F.; Cong, W.; Wen, W.; Wang, H. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett., 2017, 394, 22-32.
[http://dx.doi.org/10.1016/j.canlet.2017.02.011] [PMID: 28216372]
[91]
Uzawa, A.; Mori, M.; Taniguchi, J.; Masuda, S.; Muto, M.; Kuwabara, S. Anti-high mobility group box 1 monoclonal antibody ameliorates experimental autoimmune encephalomyelitis. Clin. Exp. Immunol., 2013, 172(1), 37-43.
[http://dx.doi.org/10.1111/cei.12036] [PMID: 23480183]
[92]
Liu, K.; Mori, S.; Takahashi, H.K.; Tomono, Y.; Wake, H.; Kanke, T.; Sato, Y.; Hiraga, N.; Adachi, N.; Yoshino, T.; Nishibori, M. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J., 2007, 21(14), 3904-3916.
[http://dx.doi.org/10.1096/fj.07-8770com] [PMID: 17628015]
[93]
Nishibori, M. [HMGB1 as a representative DAMP and anti-HMGB1 antibody therapy]. Nippon Yakurigaku Zasshi, 2018, 151(1), 4-8.
[http://dx.doi.org/10.1254/fpj.151.4] [PMID: 29321395]
[94]
Fujita, K.; Motoki, K.; Tagawa, K.; Chen, X.; Hama, H.; Nakajima, K.; Homma, H.; Tamura, T.; Watanabe, H.; Katsuno, M.; Matsumi, C.; Kajikawa, M.; Saito, T.; Saido, T.; Sobue, G.; Miyawaki, A.; Okazawa, H. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep., 2016, 6, 31895.
[http://dx.doi.org/10.1038/srep31895] [PMID: 27557632]
[95]
Xiong, X.; Gu, L.; Wang, Y.; Luo, Y.; Zhang, H.; Lee, J.; Krams, S.; Zhu, S.; Zhao, H. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms. J. Neuroinflammation, 2016, 13(1), 241.
[http://dx.doi.org/10.1186/s12974-016-0705-5] [PMID: 27609334]
[96]
Santoro, M.; Maetzler, W.; Stathakos, P.; Martin, H.L.; Hobert, M.A.; Rattay, T.W.; Gasser, T.; Forrester, J.V.; Berg, D.; Tracey, K.J.; Riedel, G.; Teismann, P. In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson’s disease which can be attenuated by glycyrrhizin. Neurobiol. Dis., 2016, 91, 59-68.
[http://dx.doi.org/10.1016/j.nbd.2016.02.018] [PMID: 26921471]
[97]
Zhao, F.; Fang, Y.; Deng, S.; Li, X.; Zhou, Y.; Gong, Y.; Zhu, H.; Wang, W. Glycyrrhizin Protects Rats from Sepsis by Blocking HMGB1 Signaling. BioMed Res. Int., 2017, 20179719647
[http://dx.doi.org/10.1155/2017/9719647] [PMID: 28484719]
[98]
Kuroiwa, Y.; Takakusagi, Y.; Kusayanagi, T.; Kuramochi, K.; Imai, T.; Hirayama, T.; Ito, I.; Yoshida, M.; Sakaguchi, K.; Sugawara, F. Identification and characterization of the direct interaction between methotrexate (MTX) and high-mobility group box 1 (HMGB1) protein. PLoS One, 2013, 8(5)e63073
[http://dx.doi.org/10.1371/journal.pone.0063073] [PMID: 23658798]
[99]
Song, J.H.; Kim, J.Y.; Piao, C.; Lee, S.; Kim, B.; Song, S.J.; Choi, J.S.; Lee, M. Delivery of the high-mobility group box 1 box A peptide using heparin in the acute lung injury animal models. J. Control. Release, 2016, 234, 33-40.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.039] [PMID: 27196743]
[100]
Choi, H.W.; Tian, M.; Song, F.; Venereau, E.; Preti, A.; Park, S.W.; Hamilton, K.; Swapna, G.V.; Manohar, M.; Moreau, M.; Agresti, A.; Gorzanelli, A.; De Marchis, F.; Wang, H.; Antonyak, M.; Micikas, R.J.; Gentile, D.R.; Cerione, R.A.; Schroeder, F.C.; Montelione, G.T.; Bianchi, M.E.; Klessig, D.F. Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Mol. Med., 2015, 21, 526-535.
[http://dx.doi.org/10.2119/molmed.2015.00148] [PMID: 26101955]
[101]
Lee, S.; Nam, Y.; Koo, J.Y.; Lim, D.; Park, J.; Ock, J.; Kim, J.; Suk, K.; Park, S.B. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation. Nat. Chem. Biol., 2014, 10(12), 1055-1060.
[http://dx.doi.org/10.1038/nchembio.1669] [PMID: 25306442]
[102]
Horiuchi, T.; Sakata, N.; Narumi, Y.; Kimura, T.; Hayashi, T.; Nagano, K.; Liu, K.; Nishibori, M.; Tsukita, S.; Yamada, T.; Katagiri, H.; Shirakawa, R.; Horiuchi, H. Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. J. Biol. Chem., 2017, 292(20), 8436-8446.
[http://dx.doi.org/10.1074/jbc.M116.769380] [PMID: 28373282]
[103]
Yang, M.; Cao, L.; Xie, M.; Yu, Y.; Kang, R.; Yang, L.; Zhao, M.; Tang, D. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem. Pharmacol., 2013, 86(3), 410-418.
[http://dx.doi.org/10.1016/j.bcp.2013.05.013] [PMID: 23707973]
[104]
Chang, K.C.; Ko, Y.S.; Kim, H.J.; Nam, D.Y.; Lee, D.U. 13-Methylberberine reduces HMGB1 release in LPS-activated RAW264.7 cells and increases the survival of septic mice through AMPK/P38 MAPK activation. Int. Immunopharmacol., 2016, 40, 269-276.
[http://dx.doi.org/10.1016/j.intimp.2016.08.022] [PMID: 27632705]
[105]
Chang, K.C. Cilostazol inhibits HMGB1 release in LPS-activated RAW 264.7 cells and increases the survival of septic mice. Thromb. Res., 2015, 136(2), 456-464.
[http://dx.doi.org/10.1016/j.thromres.2015.06.017] [PMID: 26116490]
[106]
Kim, Y.M.; Park, E.J.; Kim, J.H.; Park, S.W.; Kim, H.J.; Chang, K.C. Ethyl pyruvate inhibits the acetylation and release of HMGB1 via effects on SIRT1/STAT signaling in LPS-activated RAW264.7 cells and peritoneal macrophages. Int. Immunopharmacol., 2016, 41, 98-105.
[http://dx.doi.org/10.1016/j.intimp.2016.11.002] [PMID: 27865166]
[107]
Tuan, N.Q.; Lee, W.; Oh, J.; Kulkarni, R.R.; Gény, C.; Jung, B.; Kang, H.; Bae, J.S.; Na, M. Flavanones and Chromones from Salicornia herbacea Mitigate Septic Lethality via Restoration of Vascular Barrier Integrity. J. Agric. Food Chem., 2015, 63(46), 10121-10130.
[http://dx.doi.org/10.1021/acs.jafc.5b04069] [PMID: 26522440]
[108]
Kim, H.S.; Park, E.J.; Park, S.W.; Kim, H.J.; Chang, K.C. A tetrahydroisoquinoline alkaloid THI-28 reduces LPS-induced HMGB1 and diminishes organ injury in septic mice through p38 and PI3K/Nrf2/HO-1 signals. Int. Immunopharmacol., 2013, 17(3), 684-692.
[http://dx.doi.org/10.1016/j.intimp.2013.08.016] [PMID: 24029593]
[109]
Chorny, A.; Delgado, M. Neuropeptides rescue mice from lethal sepsis by down-regulating secretion of the late-acting inflammatory mediator high mobility group box 1. Am. J. Pathol., 2008, 172(5), 1297-1307.
[http://dx.doi.org/10.2353/ajpath.2008.070969] [PMID: 18385521]
[110]
Chen, S.; Wang, Y.; Gong, G.; Chen, J.; Niu, Y.; Kong, W. Ethyl pyruvate attenuates murine allergic rhinitis partly by decreasing high mobility group box 1 release. Exp. Biol. Med. (Maywood), 2015, 240(11), 1490-1499.
[http://dx.doi.org/10.1177/1535370214566563] [PMID: 25681468]
[111]
Yu, W.G.; He, H.; Qian, J.; Lu, Y.H. Dual role of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone in inhibiting high-mobility group box 1 secretion and blocking its pro-inflammatory activity in hepatic inflammation. J. Agric. Food Chem., 2014, 62(49), 11949-11956.
[http://dx.doi.org/10.1021/jf504527r] [PMID: 25400111]
[112]
Zeng, W.; Shan, W.; Gao, L.; Gao, D.; Hu, Y.; Wang, G.; Zhang, N.; Li, Z.; Tian, X.; Xu, W.; Peng, J.; Ma, X.; Yao, J. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Sci. Rep., 2015, 5, 16013.
[http://dx.doi.org/10.1038/srep16013] [PMID: 26525891]
[113]
Lu, B.; Antoine, D.J.; Kwan, K.; Lundbäck, P.; Wähämaa, H.; Schierbeck, H.; Robinson, M.; Van Zoelen, M.A.; Yang, H.; Li, J.; Erlandsson-Harris, H.; Chavan, S.S.; Wang, H.; Andersson, U.; Tracey, K.J. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc. Natl. Acad. Sci. USA, 2014, 111(8), 3068-3073.
[http://dx.doi.org/10.1073/pnas.1316925111] [PMID: 24469805]
[114]
Xu, W.; Lu, Y.; Yao, J.; Li, Z.; Chen, Z.; Wang, G.; Jing, H.; Zhang, X.; Li, M.; Peng, J.; Tian, X. Novel role of resveratrol: suppression of high-mobility group protein box 1 nucleocytoplasmic translocation by the upregulation of sirtuin 1 in sepsis-induced liver injury. Shock, 2014, 42(5), 440-447.
[http://dx.doi.org/10.1097/SHK.0000000000000225] [PMID: 25004063]
[115]
Lei, H.; Wen, Q.; Li, H.; Du, S.; Wu, J.J.; Chen, J.; Huang, H.; Chen, D.; Li, Y.; Zhang, S.; Zhou, J.; Deng, R.; Yang, Q. Paeonol inhibits lipopolysaccharide-induced HMGB1 translocation from the nucleus to the cytoplasm in RAW264.7 cells. Inflammation, 2016, 39(3), 1177-1187.
[http://dx.doi.org/10.1007/s10753-016-0353-z] [PMID: 27106477]
[116]
Chi, J.H.; Seo, G.S.; Cheon, J.H.; Lee, S.H. Isoliquiritigenin inhibits TNF-α-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells. Eur. J. Pharmacol., 2017, 796, 101-109.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.026] [PMID: 28012970]
[117]
Wen, S.; Ling, Y.; Yang, W.; Shen, J.; Li, C.; Deng, W.; Liu, W.; Liu, K. Necroptosis is a key mediator of enterocytes loss in intestinal ischaemia/reperfusion injury. J. Cell. Mol. Med., 2017, 21(3), 432-443.
[http://dx.doi.org/10.1111/jcmm.12987] [PMID: 27677535]
[118]
Ostberg, T.; Wähämaa, H.; Palmblad, K.; Ito, N.; Stridh, P.; Shoshan, M.; Lotze, M.T.; Harris, H.E.; Andersson, U. Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis. Arthritis Res. Ther., 2008, 10(1), R1.
[http://dx.doi.org/10.1186/ar2347] [PMID: 18179697]
[119]
Lohani, N.; Singh, H.N.; Moganty, R.R. Structural aspects of the interaction of anticancer drug Actinomycin-D to the GC rich region of hmgb1 gene. Int. J. Biol. Macromol., 2016, 87, 433-442.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.060] [PMID: 26923673]
[120]
Lohani, N.; Narayan Singh, H.; Agarwal, S.; Mehrotra, R.; Rajeswari, M.R. Interaction of adriamycin with a regulatory element of hmgb1: spectroscopic and calorimetric approach. J. Biomol. Struct. Dyn., 2015, 33(8), 1612-1623.
[http://dx.doi.org/10.1080/07391102.2014.967301] [PMID: 25311659]
[121]
Qin, M.Z.; Gu, Q.H.; Tao, J.; Song, X.Y.; Gan, G.S.; Luo, Z.B.; Li, B.X. Ketamine effect on HMGB1 and TLR4 expression in rats with acute lung injury. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12943-12948.
[PMID: 26722488]
[122]
Zhao, X.; Shen, L.; Xu, L.; Wang, Z.; Ma, C.; Huang, Y. Inhibition of CaMKIV relieves streptozotocin-induced diabetic neuropathic pain through regulation of HMGB1. BMC Anesthesiol., 2016, 16(1), 27.
[http://dx.doi.org/10.1186/s12871-016-0191-4] [PMID: 27216039]
[123]
Grootaert, M.O.J.; Schrijvers, D.M.; Van Spaendonk, H.; Breynaert, A.; Hermans, N.; Van Hoof, V.O.; Takahashi, N.; Vandenabeele, P.; Kim, S.H.; De Meyer, G.R.Y.; Martinet, W. NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice. Atherosclerosis, 2016, 252, 166-174.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.06.045] [PMID: 27425215]
[124]
Wang, Y.S.; Li, Y.Y.; Wang, L.H.; Kang, Y.; Zhang, J.; Liu, Z.Q.; Wang, K.; Kaye, A.D.; Chen, L. Tanshinone IIA attenuates chronic pancreatitis-induced pain in rats via downregulation of HMGB1 and TRL4 expression in the spinal cord. Pain Physician, 2015, 18(4), E615-E628.
[PMID: 26218952]
[125]
Gao, M.; Hu, Z.; Zheng, Y.; Zeng, Y.; Shen, X.; Zhong, D.; He, F. Peroxisome proliferator-activated receptor γ agonist troglitazone inhibits high mobility group box 1 expression in endothelial cells via suppressing transcriptional activity of nuclear factor κB and activator protein 1. Shock, 2011, 36(3), 228-234.
[http://dx.doi.org/10.1097/SHK.0b013e318225b29a] [PMID: 21617575]
[126]
Yuan, Z.; Luo, G.; Li, X.; Chen, J.; Wu, J.; Peng, Y. PPARγ inhibits HMGB1 expression through upregulation of miR-142-3p in vitro and in vivo. Cell. Signal., 2016, 28(3), 158-164.
[http://dx.doi.org/10.1016/j.cellsig.2015.12.013] [PMID: 26721185]
[127]
Feng, L.; Zhu, M.; Zhang, M.; Jia, X.; Cheng, X.; Ding, S.; Zhu, Q. Amelioration of compound 4,4′-diphenylmethane-bis(methyl)carbamate on high mobility group box1-mediated inflammation and oxidant stress responses in human umbilical vein endothelial cells via RAGE/ERK1/2/NF-κB pathway. Int. Immunopharmacol., 2013, 15(2), 206-216.
[http://dx.doi.org/10.1016/j.intimp.2012.11.015] [PMID: 23219582]
[128]
Yang, J.; Huang, C.; Yang, J.; Jiang, H.; Ding, J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation : a key role for TLR4/NF-κB signaling pathway. Mol. Cell. Biochem., 2010, 345(1-2), 189-195.
[http://dx.doi.org/10.1007/s11010-010-0572-9] [PMID: 20714791]
[129]
Zhou, W.; Oh, J.; Wonhwa, L.; Kwak, S.; Li, W.; Chittiboyina, A.G.; Ferreira, D.; Hamann, M.T.; Lee, S.H.; Bae, J.S.; Na, M. The first cyclomegastigmane rhododendroside A from Rhododendron brachycarpum alleviates HMGB1-induced sepsis. Biochim. Biophys. Acta, 2014, 1840(6), 2042-2049.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.016] [PMID: 24576671]
[130]
Kim, J.M.; Han, H.J.; Hur, Y.H.; Quan, H.; Kwak, S.H.; Choi, J.I.; Bae, H.B. Stearoyl lysophosphatidylcholine prevents lipopolysaccharide-induced extracellular release of high mobility group box-1 through AMP-activated protein kinase activation. Int. Immunopharmacol., 2015, 28(1), 540-545.
[http://dx.doi.org/10.1016/j.intimp.2015.07.010] [PMID: 26218280]
[131]
Patnaik, A.; Swanson, K.D.; Csizmadia, E.; Solanki, A.; Landon-Brace, N.; Gehring, M.P.; Helenius, K.; Olson, B.M.; Pyzer, A.R.; Wang, L.C.; Elemento, O.; Novak, J.; Thornley, T.B.; Asara, J.M.; Montaser, L.; Timmons, J.J.; Morgan, T.M.; Wang, Y.; Levantini, E.; Clohessy, J.G.; Kelly, K.; Pandolfi, P.P.; Rosenblatt, J.M.; Avigan, D.E.; Ye, H.; Karp, J.M.; Signoretti, S.; Balk, S.P.; Cantley, L.C. Cabozantinib Eradicates Advanced murine prostate cancer by activating antitumor innate immunity. Cancer Discov., 2017, 7(7), 750-765.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0778] [PMID: 28274958]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy