Review Article

综述:硫丙肽的代谢及其代谢物硫丙肽的活性

卷 27, 期 19, 2020

页: [3168 - 3186] 页: 19

弟呕挨: 10.2174/0929867326666190121143252

价格: $65

摘要

丙硫键蛋白是一种二苯乙烯糖苷类化合物,存在于大黄根茎中的药用植物中。pontigenin (RHAG)是rhaponticin的二苯乙烯苷元代谢物,具有抗癌活性、潜在的人细胞色素P450抑制剂、抗高血脂作用、抗过敏作用、抗氧化和抗菌作用等多种生物活性。此外,有报道称它能清除细胞内活性氧(ROS)、1,1-二苯基-2-辛基基drazyl (DPPH)自由基和过氧化氢(H2O2)。同时,RHAG具有抑制DNA、RNA和蛋白合成的活性,并具有诱导白念珠菌形态改变和凋亡的能力。本文广泛综述了弹珠蛋白及其代谢物RHAG的结构、药代动力学、药理作用以及潜在机制。本文的综述对丙硫蛋白或丙硫蛋白的研制具有一定的参考价值。

关键词: 新陈代谢、药代动力学、心血管疾病、癌症、丙硫蛋白、丙硫蛋白原。

[1]
Chen, D.Q.; Feng, Y.L.; Cao, G.; Zhao, Y.Y. Natural products as a source for antifibrosis therapy. Trends Pharmacol. Sci., 2018, 39(11), 937-952.
[http://dx.doi.org/10.1016/j.tips.2018.09.002] [PMID: 30268571]
[2]
Gong, X.; Sucher, N.J. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Trends Pharmacol. Sci., 1999, 20(5), 191-196.
[http://dx.doi.org/10.1016/S0165-6147(98)01276-0] [PMID: 10354613]
[3]
Hao, H.; Zheng, X.; Wang, G. Insights into drug discovery from natural medicines using reverse pharmacokinetics. Trends Pharmacol. Sci., 2014, 35(4), 168-177.
[http://dx.doi.org/10.1016/j.tips.2014.02.001] [PMID: 24582872]
[4]
Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact., 2018, 292, 76-83.
[http://dx.doi.org/10.1016/j.cbi.2018.07.008] [PMID: 30017632]
[5]
Jiang, W.Y. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol. Sci., 2005, 26(11), 558-563.
[http://dx.doi.org/10.1016/j.tips.2005.09.006] [PMID: 16185775]
[6]
Chen, D.Q.; Hu, H.H.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Zhao, Y.Y. Natural products for the prevention and treatment of kidney disease. Phytomedicine, 2018, 50, 50-60.
[http://dx.doi.org/10.1016/j.phymed.2018.09.182] [PMID: 30466992]
[7]
Liu, X.; Wu, W.Y.; Jiang, B.H.; Yang, M.; Guo, D.A. Pharmacological tools for the development of traditional Chinese medicine. Trends Pharmacol. Sci., 2013, 34(11), 620-628.
[http://dx.doi.org/10.1016/j.tips.2013.09.004] [PMID: 24139610]
[8]
Chen, L.; Yang, T.; Lu, D.W.; Zhao, H.; Feng, Y.L.; Chen, H.; Chen, D.Q.; Vaziri, N.D.; Zhao, Y.Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed. Pharmacother., 2018, 101, 670-681.
[http://dx.doi.org/10.1016/j.biopha.2018.02.090] [PMID: 29518614]
[9]
Moloney, M.G. Natural products as a source for novel antibiotics. Trends Pharmacol. Sci., 2016, 37(8), 689-701.
[http://dx.doi.org/10.1016/j.tips.2016.05.001] [PMID: 27267698]
[10]
Zhang, Z.H.; Vaziri, N.D.; Wei, F.; Cheng, X.L.; Bai, X.; Zhao, Y.Y. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure. Sci. Rep., 2016, 6, 22151.
[http://dx.doi.org/10.1038/srep22151] [PMID: 26903149]
[11]
Sun, W.J. Crystal and molecular structure of rhaponticin from Rheum hotaoense. J. Chem. Crystallogr., 2011, 41(3), 409-414.
[http://dx.doi.org/10.1007/s10870-010-9897-1]
[12]
Zhang, Z.H.; Wei, F.; Vaziri, N.D.; Cheng, X.L.; Bai, X.; Lin, R.C.; Zhao, Y.Y. Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci. Rep., 2015, 5(5), 14472.
[http://dx.doi.org/10.1038/srep14472] [PMID: 26412413]
[13]
Roupe, K.A.; Helms, G.L.; Halls, S.C.; Yáñez, J.A.; Davies, N.M. Preparative enzymatic synthesis and HPLC analysis of rhapontigenin: applications to metabolism, pharmacokinetics and anti-cancer studies. J. Pharm. Pharm. Sci., 2005, 8(3), 374-386.
[PMID: 16401387]
[14]
Sun, Y.; Ji, Z.; Liang, X.; Li, G.; Yang, S.; Wei, S.; Zhao, Y.; Hu, X.; Fan, J. Studies on the binding of rhaponticin with human serum albumin by molecular spectroscopy, modeling and equilibrium dialysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 87, 171-178.
[http://dx.doi.org/10.1016/j.saa.2011.11.033] [PMID: 22169567]
[15]
Liang, X.H.; Sun, Y.; Liu, L.S.; Zhao, Y.Y.; Hu, X.Y.; Fan, J. Regioselective synthesis and initial evaluation of a folate receptor targeted rhaponticin prodrug. Chin. Chem. Lett., 2012, 23(10), 1133-1136.
[http://dx.doi.org/10.1016/j.cclet.2012.08.006]
[16]
Liang, X.; Sun, Y.; Zeng, W.; Liu, L.; Ma, X.; Zhao, Y.; Fan, J. Synthesis and biological evaluation of a folate-targeted rhaponticin conjugate. Bioorg. Med. Chem., 2013, 21(1), 178-185.
[http://dx.doi.org/10.1016/j.bmc.2012.10.044] [PMID: 23177726]
[17]
Sun, Y.; Zhao, Y.Y. Enhanced pharmacokinetics and anti-tumor efficacy of PEGylated liposomal rhaponticin and plasma protein binding ability of rhaponticin. J. Control. Release, 2013, 172(1), E82-E83.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.168]
[18]
Chen, J.; Ma, M.; Lu, Y.; Wang, L.; Wu, C.; Duan, H. Rhaponticin from rhubarb rhizomes alleviates liver steatosis and improves blood glucose and lipid profiles in KK/Ay diabetic mice. Planta Med., 2009, 75(5), 472-477.
[http://dx.doi.org/10.1055/s-0029-1185304] [PMID: 19235684]
[19]
Wober, J.; Möller, F.; Richter, T.; Unger, C.; Weigt, C.; Jandausch, A.; Zierau, O.; Rettenberger, R.; Kaszkin-Bettag, M.; Vollmer, G. Activation of estrogen receptor-beta by a special extract of Rheum rhaponticum (ERr 731), its aglycones and structurally related compounds. J. Steroid Biochem. Mol. Biol., 2007, 107(3-5), 191-201.
[http://dx.doi.org/10.1016/j.jsbmb.2007.04.002] [PMID: 17692514]
[20]
Misiti, F.; Sampaolese, B.; Mezzogori, D.; Orsini, F.; Pezzotti, M.; Giardina, B.; Clementi, M.E. Protective effect of rhubarb derivatives on amyloid beta (1-42) peptide-induced apoptosis in IMR-32 cells: a case of nutrigenomic. Brain Res. Bull., 2006, 71(1-3), 29-36.
[http://dx.doi.org/10.1016/j.brainresbull.2006.07.012] [PMID: 17113925]
[21]
Aburjai, T.A. Anti-platelet stilbenes from aerial parts of Rheum palaestinum. Phytochemistry, 2000, 55(5), 407-410.
[http://dx.doi.org/10.1016/S0031-9422(00)00341-1] [PMID: 11140601]
[22]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.Y.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[23]
Chun, Y.J.; Ryu, S.Y.; Jeong, T.C.; Kim, M.Y. Mechanism-based inhibition of human cytochrome P450 1A1 by rhapontigenin. Drug Metab. Dispos., 2001, 29(4 Pt 1), 389-393.
[PMID: 11259321]
[24]
Guengerich, F.P.; Chun, Y.J.; Kim, D.; Gillam, E.M.J.; Shimada, T. Cytochrome P4501B1: a target for inhibition in anticarcinogenesis strategies. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2003, 523-524, 173-182.
[http://dx.doi.org/10.1016/s0027-5107(02)00333-0] [PMID: 12628515]
[25]
Cieniak, C.; Liu, R.; Fottinger, A.; Smiley, S.A.M.; Guerrero-Analco, J.A.; Bennett, S.A.L.; Haddad, P.S.; Cuerrier, A.; Saleem, A.; Arnason, J.T.; Foster, B.C. In vitro inhibition of metabolism but not transport of gliclazide and repaglinide by Cree medicinal plant extracts. J. Ethnopharmacol., 2013, 150(3), 1087-1095.
[http://dx.doi.org/10.1016/j.jep.2013.10.029] [PMID: 24184081]
[26]
Kim, J.S.; Kang, C.G.; Kim, S.H.; Lee, E.O. Rhapontigenin suppresses cell migration and invasion by inhibiting the PI3K-dependent Rac1 signaling pathway in MDA-MB-231 human breast cancer cells. J. Nat. Prod., 2014, 77(5), 1135-1139.
[http://dx.doi.org/10.1021/np401078g] [PMID: 24828286]
[27]
Yeh, Y.H.; Wang, S.W.; Yeh, Y.C.; Hsiao, H.F.; Li, T.K. Rhapontigenin inhibits TGF-β-mediated epithelial-mesenchymal transition via the PI3K/AKT/mTOR pathway and is not associated with HIF-1α degradation. Oncol. Rep., 2016, 35(5), 2887-2895.
[http://dx.doi.org/10.3892/or.2016.4664] [PMID: 26986649]
[28]
Jung, D.B.; Lee, H.J.; Jeong, S.J.; Lee, E.O.; Kim, Y.C.; Ahn, K.S.; Chen, C.Y.; Kim, S.H. Rhapontigenin inhibited hypoxia inducible factor 1 alpha accumulation and angiogenesis in hypoxic PC-3 prostate cancer cells. Biol. Pharm. Bull., 2011, 34(6), 850-855.
[http://dx.doi.org/10.1248/bpb.34.850] [PMID: 21628883]
[29]
Ngoc, T.M.; Minh, P.T.H.; Hung, T.M.; Thuong, P.T.; Lee, I.; Min, B.S.; Bae, K. Lipoxygenase inhibitory constituents from rhubarb. Arch. Pharm. Res., 2008, 31(5), 598-605.
[http://dx.doi.org/10.1007/s12272-001-1199-0] [PMID: 18481015]
[30]
Lee, H.S.; Kim, J.K.; Park, K.T.; Lim, Y.H. Rhapontigenin converted from rhapontin purified from Rheum undulatum enhances the inhibition of melanin synthesis. Biosci. Biotechnol. Biochem., 2012, 76(12), 2307-2309.
[http://dx.doi.org/10.1271/bbb.120229] [PMID: 23221688]
[31]
Kutil, Z.; Kvasnicova, M.; Temml, V.; Schuster, D.; Marsik, P.; Cusimamani, E.F.; Lou, J.D.; Vanek, T.; Landa, P. Effect of dietary stilbenes on 5-lipoxygenase and cyclooxygenases activities in vitro. Int. J. Food Prop., 2015, 18(7), 1471-1477.
[http://dx.doi.org/10.1080/10942912.2014.903416]
[32]
Zhang, R.; Kang, K.A.; Piao, M.J.; Lee, K.H.; Jang, H.S.; Park, M.J.; Kim, B.J.; Kim, J.S.; Kim, Y.S.; Ryu, S.Y.; Hyun, J.W. Rhapontigenin from Rheum undulatum protects against oxidative-stress-induced cell damage through antioxidant activity. J. Toxicol. Environ. Health A, 2007, 70(13-14), 1155-1166.
[http://dx.doi.org/10.1080/15287390701252766] [PMID: 17558811]
[33]
Kim, N.; Kim, J.K.; Hwang, D.; Lim, Y.H. The possible mechanism of rhapontigenin influencing antifungal activity on Candida albicans. Med. Mycol., 2013, 51(1), 45-52.
[http://dx.doi.org/10.3109/13693786.2012.689021] [PMID: 22662760]
[34]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[35]
Zhao, Y.Y.; Zhang, L.; Feng, Y.L.; Chen, D.Q.; Xi, Z.H.; Du, X.; Bai, X.; Lin, R.C. Pharmacokinetics of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in rat using ultra-performance LC-quadrupole TOF-MS. J. Sep. Sci., 2013, 36(5), 863-871.
[http://dx.doi.org/10.1002/jssc.201200668] [PMID: 23371758]
[36]
Campos-Toimil, M.; Elíes, J.; Alvarez, E.; Verde, I.; Orallo, F. Effects of trans- and cis-resveratrol on Ca2+ handling in A7r5 vascular myocytes. Eur. J. Pharmacol., 2007, 577(1-3), 91-99.
[http://dx.doi.org/10.1016/j.ejphar.2007.08.003] [PMID: 17822692]
[37]
Hui, Y.; Li, X.; Chen, X. Assessment for the light-induced cis-trans isomerization of rhapontigenin and its glucoside rhaponticin by capillary electrophoresis and spectrometric methods. J. Chromatogr. A, 2011, 1218(34), 5858-5866.
[http://dx.doi.org/10.1016/j.chroma.2011.06.100] [PMID: 21782194]
[38]
Panigrahi, S.K.; Desiraju, G.R. Strong and weak hydrogen bonds in the protein-ligand interface. Proteins, 2007, 67(1), 128-141.
[http://dx.doi.org/10.1002/prot.21253] [PMID: 17206656]
[39]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[40]
Likhitwitayawuid, K.; Sritularak, B. A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. J. Nat. Prod., 2001, 64(11), 1457-1459.
[http://dx.doi.org/10.1021/np0101806] [PMID: 11720533]
[41]
Rossi, M.; Caruso, F.; Opazo, C.; Salciccioli, J. Crystal and molecular structure of piceatannol; scavenging features of resveratrol and piceatannol on hydroxyl and peroxyl radicals and docking with transthyretin. J. Agric. Food Chem., 2008, 56(22), 10557-10566.
[http://dx.doi.org/10.1021/jf801923j] [PMID: 18959413]
[42]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 988-1004.
[http://dx.doi.org/10.1038/nrd1902] [PMID: 16341064]
[43]
Wen, H.; Fu, Z.; Wei, Y.; Zhang, X.; Ma, L.; Gu, L.; Li, J. Antioxidant activity and neuroprotective activity of stilbenoids in rat primary cortex neurons via the PI3K/Akt signalling pathway. Molecules, 2018, 23(9) E2328
[http://dx.doi.org/10.3390/molecules23092328] [PMID: 30213108]
[44]
Erasalo, H.; Hamalainen, M.; Leppanen, T.; Maki-Opas, I.; Eräsalo, H.; Hämäläinen, M.; Leppänen, T.; Mäki-Opas, I.; Laavola, M.; Haavikko, R.; Yli-Kauhaluoma, J.; Moilanen, E. Natural stilbenoids have anti-inflammatory properties in vivo and down-regulate the production of inflammatory mediators NO, IL6, and MCP1 possibly in a PI3K/Akt-dependent manner. J. Nat. Prod., 2018, 81(5), 1131-1142.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00384] [PMID: 29726680]
[45]
Zhao, Y.Y.; Su, Q.; Cheng, X.L.; Tan, X.J.; Bai, X.; Lin, R.C. Pharmacokinetics, bioavailability and metabolism of rhaponticin in rat plasma by UHPLC-Q-TOF/MS and UHPLC-DAD-MSn. Bioanalysis, 2012, 4(6), 713-723.
[http://dx.doi.org/10.4155/bio.12.24] [PMID: 22452262]
[46]
Dellinger, R.W.; Garcia, A.M.G.; Meyskens, F.L., Jr Differences in the glucuronidation of resveratrol and pterostilbene: altered enzyme specificity and potential gender differences. Drug Metab. Pharmacokinet., 2014, 29(2), 112-119.
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RG-012] [PMID: 23965644]
[47]
Setoguchi, Y.; Oritani, Y.; Ito, R.; Inagaki, H.; Maruki-Uchida, H.; Ichiyanagi, T.; Ito, T. Absorption and metabolism of piceatannol in rats. J. Agric. Food Chem., 2014, 62(12), 2541-2548.
[http://dx.doi.org/10.1021/jf404694y] [PMID: 24625210]
[48]
Marier, J.F.; Vachon, P.; Gritsas, A.; Zhang, J.; Moreau, J.P.; Ducharme, M.P. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther., 2002, 302(1), 369-373.
[http://dx.doi.org/10.1124/jpet.102.033340] [PMID: 12065739]
[49]
Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382.
[http://dx.doi.org/10.1124/dmd.104.000885] [PMID: 15333514]
[50]
Wang, D.; Hang, T.; Wu, C.; Liu, W. Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 829(1-2), 97-106.
[http://dx.doi.org/10.1016/j.jchromb.2005.09.040] [PMID: 16243591]
[51]
Urpi-Sarda, M.; Zamora-Ros, R.; Lamuela-Raventos, R.; Cherubini, A.; Jauregui, O.; de la Torre, R.; Covas, M.I.; Estruch, R.; Jaeger, W.; Andres-Lacueva, C. HPLC-tandem mass spectrometric method to characterize resveratrol metabolism in humans. Clin. Chem., 2007, 53(2), 292-299.
[http://dx.doi.org/10.1373/clinchem.2006.071936] [PMID: 17170057]
[52]
Roupe, K.A.; Yáñez, J.A.; Teng, X.W.; Davies, N.M. Pharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in rats. J. Pharm. Pharmacol., 2006, 58(11), 1443-1450.
[http://dx.doi.org/10.1211/jpp.58.11.0004] [PMID: 17132206]
[53]
Kim, D.H.; Park, E.K.; Bae, E.A.; Han, M.J. Metabolism of rhaponticin and chrysophanol 8-o-beta-D-glucopyranoside from the rhizome of Rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biol. Pharm. Bull., 2000, 23(7), 830-833.
[http://dx.doi.org/10.1248/bpb.23.830] [PMID: 10919361]
[54]
Grès, M.C.; Julian, B.; Bourrié, M.; Meunier, V.; Roques, C.; Berger, M.; Boulenc, X.; Berger, Y.; Fabre, G. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharm. Res., 1998, 15(5), 726-733.
[http://dx.doi.org/10.1023/A:1011919003030] [PMID: 9619781]
[55]
Kim, S.; Ahn, J.; Shon, D.W.; Kim, J.S.; Kim, M.H.; Ha, T.Y. Comparison of the permeability of stilbene analogues in caco-2 cells. Food Sci. Biotechnol., 2008, 17(3), 675-678.
[56]
Sale, S.; Verschoyle, R.D.; Boocock, D.; Jones, D.J.L.; Wilsher, N.; Ruparelia, K.C.; Potter, G.A.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4′-tetramethoxystilbene. Br. J. Cancer, 2004, 90(3), 736-744.
[http://dx.doi.org/10.1038/sj.bjc.6601568] [PMID: 14760392]
[57]
Roberti, M.; Pizzirani, D.; Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscemi, F.; Grimaudo, S.; Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem., 2003, 46(16), 3546-3554.
[http://dx.doi.org/10.1021/jm030785u] [PMID: 12877593]
[58]
Pettit, G.R.; Grealish, M.P.; Jung, M.K.; Hamel, E.; Pettit, R.K.; Chapuis, J.C.; Schmidt, J.M. Antineoplastic agents. 465. Structural modification of resveratrol: sodium resverastatin phosphate. J. Med. Chem., 2002, 45(12), 2534-2542.
[http://dx.doi.org/10.1021/jm010119y] [PMID: 12036362]
[59]
Liu, H.; Dong, A.; Gao, C.; Tan, C.; Liu, H.; Zu, X.; Jiang, Y. The design, synthesis, and anti-tumor mechanism study of N-phosphoryl amino acid modified resveratrol analogues. Bioorg. Med. Chem., 2008, 16(23), 10013-10021.
[http://dx.doi.org/10.1016/j.bmc.2008.10.022] [PMID: 18952444]
[60]
Zhang, W.; Oya, S.; Kung, M.P.; Hou, C.; Maier, D.L.; Kung, H.F. F-18 polyethyleneglycol stilbenes as PET imaging agents targeting Abeta aggregates in the brain. Nucl. Med. Biol., 2005, 32(8), 799-809.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.06.001] [PMID: 16253804]
[61]
Neves, A.R.; Martins, S.; Segundo, M.A.; Reis, S. Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals. Nutrients, 2016, 8(3), 131.
[http://dx.doi.org/10.3390/nu8030131] [PMID: 26950147]
[62]
Summerlin, N.; Soo, E.; Thakur, S.; Qu, Z.; Jambhrunkar, S.; Popat, A. Resveratrol nanoformulations: challenges and opportunities. Int. J. Pharm., 2015, 479(2), 282-290.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.003] [PMID: 25572692]
[63]
Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond.), 2016, 11(9), 1169-1185.
[http://dx.doi.org/10.2217/nnm.16.9] [PMID: 27074098]
[64]
Xu, L.; Bai, Q.; Zhang, X.; Yang, H. Folate-mediated chemotherapy and diagnostics: an updated review and outlook. J. Control. Release, 2017, 252, 73-82.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.023] [PMID: 28235591]
[65]
Liang, X.; Sun, Y.; Liu, L.; Ma, X.; Hu, X.; Fan, J. Folate functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery. J. Control. Release, 2013, 172(1), E80-E80.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.163]
[66]
Shimada, T.; Iwasaki, M.; Martin, M.V.; Guengerich, F.P. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002. Cancer Res., 1989, 49(12), 3218-3228.
[PMID: 2655891]
[67]
Shimada, T.; Yamazaki, H.; Foroozesh, M.; Hopkins, N.E.; Alworth, W.L.; Guengerich, F.P. Selectivity of polycyclic inhibitors for human cytochrome P450s 1A1, 1A2, and 1B1. Chem. Res. Toxicol., 1998, 11(9), 1048-1056.
[http://dx.doi.org/10.1021/tx980090+] [PMID: 9760279]
[68]
Chun, Y.J.; Kim, M.Y.; Guengerich, F.P. Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochem. Biophys. Res. Commun., 1999, 262(1), 20-24.
[http://dx.doi.org/10.1006/bbrc.1999.1152] [PMID: 10448061]
[69]
Casper, R.F.; Quesne, M.; Rogers, I.M.; Shirota, T.; Jolivet, A.; Milgrom, E.; Savouret, J.F. Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol. Pharmacol., 1999, 56(4), 784-790.
[PMID: 10496962]
[70]
Guengerich, F.P.; Shimada, T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol., 1991, 4(4), 391-407.
[http://dx.doi.org/10.1021/tx00022a001] [PMID: 1912325]
[71]
Detampel, P.; Beck, M.; Krähenbühl, S.; Huwyler, J. Drug interaction potential of resveratrol. Drug Metab. Rev., 2012, 44(3), 253-265.
[http://dx.doi.org/10.3109/03602532.2012.700715] [PMID: 22788578]
[72]
Matés, J.M.; Sánchez-Jiménez, F.M. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol., 2000, 32(2), 157-170.
[http://dx.doi.org/10.1016/S1357-2725(99)00088-6] [PMID: 10687951]
[73]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[74]
Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; Vannini, V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem., 2001, 276(25), 22586-22594.
[http://dx.doi.org/10.1074/jbc.M101846200] [PMID: 11316812]
[75]
De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem, 2017, 12(8), 558-570.
[http://dx.doi.org/10.1002/cmdc.201700045] [PMID: 28266812]
[76]
Tsan, M.F.; White, J.E.; Maheshwari, J.G.; Chikkappa, G. Anti-leukemia effect of resveratrol. Leuk. Lymphoma, 2002, 43(5), 983-987.
[http://dx.doi.org/10.1080/10428190290021669] [PMID: 12148909]
[77]
Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Roberti, M.; Pizzirani, D.; Meli, M.; Dusonchet, L.; Gebbia, N.; Abbadessa, V.; Crosta, L.; Barucchello, R.; Grisolia, G.; Invidiata, F.; Simoni, D. Pterostilbene and 3′-hydroxy-pterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int. J. Biochem. Cell Biol., 2005, 37(8), 1709-1726.
[http://dx.doi.org/10.1016/j.biocel.2005.03.004] [PMID: 15878840]
[78]
Siedlecka-Kroplewska, K.; Jozwik, A.; Boguslawski, W.; Wozniak, M.; Zauszkiewicz-Pawlak, A.; Spodnik, J.H.; Rychlowski, M.; Kmiec, Z. Pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 human leukemia cells. J. Physiol. Pharmacol., 2013, 64(5), 545-556.
[PMID: 24304568]
[79]
Pettit, G.R.; Singh, S.B.; Niven, M.L.; Hamel, E.; Schmidt, J.M. Isolation, structure, and synthesis of combretastatin A-1 and combretasatin B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. J. Nat. Prod., 1987, 50(1), 119-131.
[http://dx.doi.org/10.1021/np50049a016] [PMID: 3598594]
[80]
Park, S.; Kim, Y.N.; Kwak, H.J.; Jeong, E.J.; Kim, S.H. Estrogenic activity of constituents from the rhizomes of Rheum undulatum Linné. Bioorg. Med. Chem. Lett., 2018, 28(4), 552-557.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.063] [PMID: 29402747+]
[81]
Kaszkin-Bettag, M.; Richardson, A.; Rettenberger, R.; Heger, P.W. Long-term toxicity studies in dogs support the safety of the special extract ERr 731 from the roots of Rheum rhaponticum. Food Chem. Toxicol., 2008, 46(5), 1608-1618.
[http://dx.doi.org/10.1016/j.fct.2007.12.026] [PMID: 18267351]
[82]
Chae, Y.S.; Kim, J.G.; Jung, H.J.; Yang, J.D.; Jung, J.H.; Aiyar, S.E.; Kim, S.; Park, H. Anticancer effect of (E)-2-hydroxy-3 ',4,5 '-trimethoxystilbene on breast cancer cells by mitochondrial depolarization. Cancer Chemother. Pharmacol., 2011, 68(2), 349-358.
[http://dx.doi.org/10.1007/s00280-010-1464-0] [PMID: 20978764]
[83]
Cho, S.G.; Choi, H.N.; Jeong, H.S.; Lee, E.R.; Kim, J.K.; Choi, H.Y. Pharmaceutical composition useful for preventing or treating cancer, preferably breast cancer by inducing apoptosis, comprises rhapontigenin compound. KR20110- 55176-A; KR1114438-B1, (Accessed: 19 Nov, 2009).
[84]
Yeh, Y.H.; Wang, S.W.; Yeh, Y.C.; Hsiao, H.F.; Li, T.K. Rhapo-TOR pathway and is not associated with HIF-1α degradation. Oncol. Rep., 2016, 35(5), 2887-2895.
[http://dx.doi.org/10.3892/or.2016.4664] [PMID: 26986649]
[85]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[86]
Burridge, K.; Wennerberg, K. Rho and Rac take center stage. Cell, 2004, 116(2), 167-179.
[http://dx.doi.org/10.1016/S0092-8674(04)00003-0] [PMID: 14744429]
[87]
Welch, H.C.E.; Coadwell, W.J.; Stephens, L.R.; Hawkins, P.T. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett., 2003, 546(1), 93-97.
[http://dx.doi.org/10.1016/S0014-5793(03)00454-X] [PMID: 12829242]
[88]
Lee, D.; Park, S.; Choi, S.; Kim, S.H.; Kang, K.S. In vitro estrogenic and breast cancer inhibitory activities of chemical constituents isolated from Rheum undulatum L. Molecules, 2018, 23(5) E1215
[http://dx.doi.org/10.3390/molecules23051215] [PMID: 29783719]
[89]
Kim, A.; Ma, J.Y. Rhaponticin decreases the metastatic and angiogenic abilities of cancer cells via suppression of the HIF1α pathway. Int. J. Oncol., 2018, 53(3), 1160-1170.
[http://dx.doi.org/10.3892/ijo.2018.4479] [PMID: 30015877]
[90]
Sporn, M.B. Carcinogenesis and cancer: different perspectives on the same disease. Cancer Res., 1991, 51(23 Pt 1), 6215-6218.
[PMID: 1933881]
[91]
Sun, Y.; Ji, Z.; Zhao, Y.; Liang, X.; Hu, X.; Fan, J. Enhanced distribution and anti-tumor activity of ergosta-4,6,8(14),22-tetraen-3-one by polyethylene glycol liposomalization. J. Nanosci. Nanotechnol., 2013, 13(2), 1435-1439.
[http://dx.doi.org/10.1166/jnn.2013.6009] [PMID: 23646655]
[92]
Sun, Y.; Zhao, Y.; Li, G.; Yang, S.; Hu, X.; Fan, J. Studies of interaction between ergosta-4,6,8(14),22-tetraen-3-one (ergone) and human serum albumin by molecular spectroscopy and modeling. J. Chin. Chem. Soc. (Taipei), 2011, 58(5), 602-610.
[http://dx.doi.org/10.1002/jccs.201190094]
[93]
Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine. Free Radic. Biol. Med., 1985, i-xii, 1-346.
[http://dx.doi.org/10.1016/0748-5514(85)90140-0]
[94]
Griendling, K.K.; FitzGerald, G.A. Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 2003, 108(16), 1912-1916.
[http://dx.doi.org/10.1161/01.CIR.0000093660.86242.BB] [PMID: 14568884]
[95]
Gresele, P.; Cerletti, C.; Guglielmini, G.; Pignatelli, P.; de Gaetano, G.; Violi, F. Effects of resveratrol and other wine polyphenols on vascular function: an update. J. Nutr. Biochem., 2011, 22(3), 201-211.
[http://dx.doi.org/10.1016/j.jnutbio.2010.07.004] [PMID: 21111592]
[96]
Rimando, A.M.; Nagmani, R.; Feller, D.R.; Yokoyama, W. Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J. Agric. Food Chem., 2005, 53(9), 3403-3407.
[http://dx.doi.org/10.1021/jf0580364] [PMID: 15853379]
[97]
Chai, Y.Y.; Wang, F.; Li, Y.L.; Liu, K.; Xu, H. Antioxidant activities of stilbenoids from Rheum emodi wall. Evid. Based Complement. Alternat. Med., 2012, 2012 603678
[http://dx.doi.org/10.1155/2012/603678] [PMID: 23193425]
[98]
Iliya, I.; Tanaka, T.; Iinuma, M.; Ali, Z.; Furasawa, M.; Nakaya, K.; Matsuura, N.; Ubukata, M. Four dimeric stilbenes in stem lianas of Gnetum africanum. Heterocycles, 2002, 57(8), 1507-1512.
[http://dx.doi.org/10.3987/COM-02-9527]
[99]
Stojanovic, S.; Brede, O. Elementary reactions of the antioxidant action of trans-stilbene derivatives: resveratrol, pinosylvin and 4-hydroxystilbene. Phys. Chem. Chem. Phys., 2002, 4(5), 757-764.
[http://dx.doi.org/10.1039/b109063c]
[100]
Mikulski, D.; Górniak, R.; Molski, M. A theoretical study of the structure-radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment. Eur. J. Med. Chem., 2010, 45(3), 1015-1027.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.044] [PMID: 20004046]
[101]
Widmann, C.; Gibson, S.; Jarpe, M.B.; Johnson, G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev., 1999, 79(1), 143-180.
[http://dx.doi.org/10.1152/physrev.1999.79.1.143] [PMID: 9922370]
[102]
Karin, M.; Takahashi, T.; Kapahi, P.; Delhase, M.; Chen, Y.; Makris, C.; Rothwarf, D.; Baud, V.; Natoli, G.; Guido, F.; Li, N. Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors, 2001, 15(2-4), 87-89.
[http://dx.doi.org/10.1002/biof.5520150207] [PMID: 12016332]
[103]
Li, G.; Luan, G.; He, Y.; Tie, F.; Wang, Z.; Suo, Y.; Ma, C.; Wang, H. Polyphenol stilbenes from fenugreek (Trigonella foenum-graecum L.) seeds improve insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. Oxid. Med. Cell. Longev., 2018, 2018 7634362
[http://dx.doi.org/10.1155/2018/7634362] [PMID: 29967664]
[104]
Sun, Y.; Liang, X.; Zhao, Y.; Fan, J. Solvent effects on the absorption and fluorescence spectra of rhaponticin: experimental and theoretical studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 102, 194-199.
[105]
Tang, J.J.; Fan, G.J.; Dai, F.; Ding, D.J.; Wang, Q.; Lu, D.L.; Li, R.R.; Li, X.Z.; Hu, L.M.; Jin, X.L.; Zhou, B. Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radic. Biol. Med., 2011, 50(10), 1447-1457.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.028] [PMID: 21376113]
[106]
Heart Protection Study Collaborative Group. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet, 2002, 360(9326), 7-22.
[http://dx.doi.org/10.1016/S0140-6736(02)09327-3] [PMID: 12114036]
[107]
Park, K.T.; Kim, J.K.; Lim, Y.H. Deglycosylation of stilbene glucoside compounds improves inhibition of 3-hydroxy-3-methylglutaryl coenzyme a reductase and squalene synthase activities. Food Sci. Biotechnol., 2014, 23(2), 647-651.
[http://dx.doi.org/10.1007/s10068-014-0088-2]
[108]
Jo, S.P.; Kim, J.K.; Lim, Y.H. Antihyperlipidemic effects of rhapontin and rhapontigenin from Rheum undulatum in rats fed a high-cholesterol diet. Planta Med., 2014, 80(13), 1067-1071.
[http://dx.doi.org/10.1055/s-0034-1382999] [PMID: 25127020]
[109]
Chen, Q.; Wang, E.; Ma, L.; Zhai, P. Dietary resveratrol increases the expression of hepatic 7α-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6J mice. Lipids Health Dis., 2012, 11, 56.
[http://dx.doi.org/10.1186/1476-511X-11-56] [PMID: 22607622]
[110]
Fumery, M.; Xiaocang, C.; Dauchet, L.; Gower-Rousseau, C.; Peyrin-Biroulet, L.; Colombel, J.F. Thromboembolic events and cardiovascular mortality in inflammatory bowel diseases: a meta-analysis of observational studies. J. Crohn’s Colitis, 2014, 8(6), 469-479.
[http://dx.doi.org/10.1016/j.crohns.2013.09.021] [PMID: 24183231]
[111]
Park, E.K.; Choo, M.K.; Yoon, H.K.; Kim, D.H. Antithrombotic and antiallergic activities of rhaponticin from Rhei rhizoma are activated by human intestinal bacteria. Arch. Pharm. Res., 2002, 25(4), 528-533.
[http://dx.doi.org/10.1007/BF02976613] [PMID: 12214867]
[112]
Demierre, M.F.; Higgins, P.D.; Gruber, S.B.; Hawk, E.; Lippman, S.M. Statins and cancer prevention. Nat. Rev. Cancer, 2005, 5(12), 930-942.
[http://dx.doi.org/10.1038/nrc1751] [PMID: 16341084]
[113]
de Fougerolles, A.R.; Springer, T.A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med., 1992, 175(1), 185-190.
[http://dx.doi.org/10.1084/jem.175.1.185] [PMID: 1730916]
[114]
Lee, S.W.; Hwang, B.S.; Kim, M.H.; Park, C.S.; Lee, W.S.; Oh, H.M.; Rho, M.C. Inhibition of LFA-1/ICAM-1-mediated cell adhesion by stilbene derivatives from Rheum undulatum. Arch. Pharm. Res., 2012, 35(10), 1763-1770.
[http://dx.doi.org/10.1007/s12272-012-1008-8] [PMID: 23139127]
[115]
Chiva-Blanch, G.; Urpi-Sarda, M.; Llorach, R.; Rotches-Ribalta, M.; Guillén, M.; Casas, R.; Arranz, S.; Valderas-Martinez, P.; Portoles, O.; Corella, D.; Tinahones, F.; Lamuela-Raventos, R.M.; Andres-Lacueva, C.; Estruch, R. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. Am. J. Clin. Nutr., 2012, 95(2), 326-334.
[http://dx.doi.org/10.3945/ajcn.111.022889] [PMID: 22205309]
[116]
Sirerol, J.A.; Rodriguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of natural stilbenesin the prevention of cancer. Oxid. Med. Cell. Longev., 2016, 2016 3128951
[http://dx.doi.org/10.1155/2016/3128951] [PMID: 26798416]
[117]
Sun, Y.; Zhao, Y.; Yang, X. A simple and rapid spectrofluorimetric method for determining the pharmacokinetics and metabolism of rhaponticin in rat plasma, feces and urine using a cerium probe. Luminescence, 2013, 28(4), 523-529.
[http://dx.doi.org/10.1002/bio.2488] [PMID: 23364836]
[118]
Mikstacka, R.; Przybylska, D.; Rimando, A.M.; Baer-Dubowska, W. Inhibition of human recombinant cytochromes P450 CYP1A1 and CYP1B1 by trans-resveratrol methyl ethers. Mol. Nutr. Food Res., 2007, 51(5), 517-524.
[http://dx.doi.org/10.1002/mnfr.200600135] [PMID: 17440990]
[119]
Chang, T.K.H.; Lee, W.B.K.; Ko, H.H. Trans-resveratrol modulates the catalytic activity and mRNA expression of the procarcinogen-activating human cytochrome P450 1B1. Can. J. Physiol. Pharmacol., 2000, 78(11), 874-881.
[http://dx.doi.org/10.1139/y00-067] [PMID: 11100935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy