Review Article

质膜修复过程中膜联蛋白弯曲创面边缘

卷 27, 期 22, 2020

页: [3600 - 3610] 页: 11

弟呕挨: 10.2174/0929867326666190121121143

价格: $65

摘要

真核细胞的质膜是细胞外环境的边界,因此提供了必要的保护。因此,过度的机械或生化压力导致细胞膜破裂,对细胞构成致命威胁,细胞需要应对这些威胁才能生存。真核细胞通过激活细胞膜修复系统来应对这些威胁,这一系统与其他细胞功能相同,包括通过内化(内吞作用)、脱落、重组细胞骨架和膜融合来清除受损的细胞膜,从而重新封膜。膜联蛋白家族的成员,其特征是Ca2+依赖结合阴离子磷脂,对调节质膜修复很重要。近年来基于细胞和生物物理膜模型的研究表明,它们通过调节膜弯曲和损伤膜的切除,在修复反应中具有比以前认为的更明显的功能。在细胞中,质膜损伤和Ca2+离子进入细胞质触发膜联蛋白的招募,包括膜联蛋白A4和A6到膜创面边缘。在这里,它们会产生弯曲力和收缩力,帮助将伤口边缘拉到一起,最终融合。癌细胞依赖于有效的质膜修复来对抗频繁的压力诱导的膜损伤,这为通过膜修复系统靶向癌细胞开辟了新的途径。在此,我们讨论了膜联蛋白和膜弯曲对单细胞创面愈合的影响。

关键词: 膜联蛋白,质膜修复,膜曲率,膜损伤,癌症,膜联蛋白A4,膜联蛋白A6。

[1]
Grewal, T.; Wason, S.J.; Enrich, C.; Rentero, C. Annexins - insights from knockout mice. Biol. Chem., 2016, 397(10), 1031-1053.
[http://dx.doi.org/10.1515/hsz-2016-0168] [PMID: 27318360]
[2]
Boye, T.L.; Nylandsted, J. Annexins in plasma membrane repair. Biol. Chem., 2016, 397(10), 961-969.
[http://dx.doi.org/10.1515/hsz-2016-0171] [PMID: 27341560]
[3]
Moss, S.E.; Morgan, R.O. The annexins. Genome Biol., 2004, 5(4), 219.
[http://dx.doi.org/10.1186/gb-2004-5-4-219] [PMID: 15059252]
[4]
Clark, G.B.; Morgan, R.O.; Fernandez, M.P.; Roux, S.J. Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol., 2012, 196(3), 695-712.
[http://dx.doi.org/10.1111/j.1469-8137.2012.04308.x] [PMID: 22994944]
[5]
Morgan, R.O.; Martin-Almedina, S.; Iglesias, J.M.; Gonzalez-Florez, M.I.; Fernandez, M.P. Evolutionary perspective on annexin calcium-binding domains. Biochim. Biophys. Acta, 2004, 1742(1-3), 133-140.
[http://dx.doi.org/10.1016/j.bbamcr.2004.09.010] [PMID: 15590063]
[6]
Morgan, R.O.; Pilar Fernandez, M. Distinct annexin subfamilies in plants and protists diverged prior to animal annexins and from a common ancestor. J. Mol. Evol., 1997, 44(2), 178-188.
[http://dx.doi.org/10.1007/PL00006134] [PMID: 9069178]
[7]
Swairjo, M.A.; Concha, N.O.; Kaetzel, M.A.; Dedman, J.R.; Seaton, B.A. Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Biol., 1995, 2(11), 968-974.
[http://dx.doi.org/10.1038/nsb1195-968] [PMID: 7583670]
[8]
Gerke, V.; Creutz, C.E.; Moss, S.E. Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol., 2005, 6(6), 449-461.
[http://dx.doi.org/10.1038/nrm1661] [PMID: 15928709]
[9]
Meers, P.; Mealy, T. Calcium-dependent annexin V binding to phospholipids: stoichiometry, specificity, and the role of negative charge. Biochemistry, 1993, 32(43), 11711-11721.
[http://dx.doi.org/10.1021/bi00094a030] [PMID: 8218240]
[10]
Geisow, M.J.; Walker, J.H.; Boustead, C.; Taylor, W. Localization and structure of novel calcium-regulated phospholipid-binding proteins. Biochem. Soc. Trans., 1987, 15(5), 800-802.
[http://dx.doi.org/10.1042/bst0150800] [PMID: 3319735]
[11]
Lizarbe, M.A.; Barrasa, J.I.; Olmo, N.; Gavilanes, F.; Turnay, J. Annexin-phospholipid interactions. Functional implications. Int. J. Mol. Sci., 2013, 14(2), 2652-2683.
[http://dx.doi.org/10.3390/ijms14022652] [PMID: 23358253]
[12]
Geisow, M.J.; Walker, J.H.; Boustead, C.; Taylor, W. Annexins--new family of Ca2+-regulated-phospholipid binding protein. Biosci. Rep., 1987, 7(4), 289-298.
[http://dx.doi.org/10.1007/BF01121450] [PMID: 2960386]
[13]
Cooper, S.T.; McNeil, P.L. Membrane repair: mechanisms and pathophysiology. Physiol. Rev., 2015, 95(4), 1205-1240.
[http://dx.doi.org/10.1152/physrev.00037.2014] [PMID: 26336031]
[14]
Demonbreun, A.R.; Quattrocelli, M.; Barefield, D.Y.; Allen, M.V.; Swanson, K.E.; McNally, E.M. An actin-dependent annexin complex mediates plasma membrane repair in muscle. J. Cell Biol., 2016, 213(6), 705-718.
[http://dx.doi.org/10.1083/jcb.201512022] [PMID: 27298325]
[15]
Gerke, V.; Moss, S.E. Annexins: from structure to function. Physiol. Rev., 2002, 82(2), 331-371.
[http://dx.doi.org/10.1152/physrev.00030.2001] [PMID: 11917092]
[16]
Barton, G.J.; Newman, R.H.; Freemont, P.S.; Crumpton, M.J. Amino acid sequence analysis of the annexin super-gene family of proteins. Eur. J. Biochem., 1991, 198(3), 749-760.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb16076.x] [PMID: 1646719]
[17]
Lauritzen, S.P.; Boye, T.L.; Nylandsted, J. Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin. Cell Dev. Biol., 2015, 45, 32-38.
[http://dx.doi.org/10.1016/j.semcdb.2015.10.028] [PMID: 26498035]
[18]
Turnay, J.; Lecona, E.; Fernández-Lizarbe, S.; Guzmán-Aránguez, A.; Fernández, M.P.; Olmo, N.; Lizarbe, M.A. Structure-function relationship in annexin A13, the founder member of the vertebrate family of annexins. Biochem. J., 2005, 389(Pt 3), 899-911.
[http://dx.doi.org/10.1042/BJ20041918] [PMID: 15813707]
[19]
Brownawell, A.M.; Creutz, C.E. Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII). J. Biol. Chem., 1997, 272(35), 22182-22190.
[http://dx.doi.org/10.1074/jbc.272.35.22182] [PMID: 9268363]
[20]
Smith, P.D.; Davies, A.; Crumpton, M.J.; Moss, S.E. Structure of the human annexin VI gene. Proc. Natl. Acad. Sci. USA, 1994, 91(7), 2713-2717.
[http://dx.doi.org/10.1073/pnas.91.7.2713] [PMID: 8146179]
[21]
Rintala-Dempsey, A.C.; Rezvanpour, A.; Shaw, G.S. S100-annexin complexes--structural insights. FEBS J., 2008, 275(20), 4956-4966.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06654.x] [PMID: 18795951]
[22]
Dempsey, A.C.; Walsh, M.P.; Shaw, G.S. Unmasking the annexin I interaction from the structure of Apo-S100A11. Structure, 2003, 11(7), 887-897.
[http://dx.doi.org/10.1016/S0969-2126(03)00126-6] [PMID: 12842051]
[23]
Lewit-Bentley, A.; Réty, S.; Sopkova-de Oliveira Santos, J.; Gerke, V. S100-annexin complexes: some insights from structural studies. Cell Biol. Int., 2000, 24(11), 799-802.
[http://dx.doi.org/10.1006/cbir.2000.0629] [PMID: 11067764]
[24]
Rezvanpour, A.; Santamaria-Kisiel, L.; Shaw, G.S. The S100A10-annexin A2 complex provides a novel asymmetric platform for membrane repair. J. Biol. Chem., 2011, 286(46), 40174-40183.
[http://dx.doi.org/10.1074/jbc.M111.244038] [PMID: 21949189]
[25]
Miwa, N.; Uebi, T.; Kawamura, S. S100-annexin complexes--biology of conditional association. FEBS J., 2008, 275(20), 4945-4955.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06653.x] [PMID: 18795952]
[26]
Rintala-Dempsey, A.C.; Santamaria-Kisiel, L.; Liao, Y.; Lajoie, G.; Shaw, G.S. Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2. Biochemistry, 2006, 45(49), 14695-14705.
[http://dx.doi.org/10.1021/bi061754e] [PMID: 17144662]
[27]
Santamaria-Kisiel, L.; Rintala-Dempsey, A.C.; Shaw, G.S. Calcium-dependent and -independent interactions of the S100 protein family. Biochem. J., 2006, 396(2), 201-214.
[http://dx.doi.org/10.1042/BJ20060195] [PMID: 16683912]
[28]
Sonnemann, K.J.; Bement, W.M. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol., 2011, 27, 237-263.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154251] [PMID: 21721944]
[29]
Abreu-Blanco, M.T.; Verboon, J.M.; Parkhurst, S.M. Single cell wound repair: Dealing with life’s little traumas. Bioarchitecture, 2011, 1(3), 114-121.
[http://dx.doi.org/10.4161/bioa.1.3.17091] [PMID: 21922041]
[30]
Horn, A.; Jaiswal, J.K. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell. Mol. Life Sci., 2018, 75(20), 3751-3770.
[http://dx.doi.org/10.1007/s00018-018-2888-7] [PMID: 30051163]
[31]
Cooper, S.T.; Head, S.I. Membrane injury and repair in the muscular dystrophies. Neuroscientist, 2015, 21(6), 653-668.
[http://dx.doi.org/10.1177/1073858414558336] [PMID: 25406223]
[32]
Cong, X.; Hubmayr, R.D.; Li, C.; Zhao, X. Plasma membrane wounding and repair in pulmonary diseases. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 312(3), L371-L391.
[http://dx.doi.org/10.1152/ajplung.00486.2016] [PMID: 28062486]
[33]
McNeil, P.L.; Ito, S. Gastrointestinal cell plasma membrane wounding and resealing in vivo. Gastroenterology, 1989, 96(5 Pt 1), 1238-1248.
[http://dx.doi.org/10.1016/S0016-5085(89)80010-1] [PMID: 2703112]
[34]
Proske, U.; Morgan, D.L. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physiol., 2001, 537(Pt 2), 333-345.
[http://dx.doi.org/10.1111/j.1469-7793.2001.00333.x] [PMID: 11731568]
[35]
Fridén, J.; Sjöström, M.; Ekblom, B. Myofibrillar damage following intense eccentric exercise in man. Int. J. Sports Med., 1983, 4(3), 170-176.
[http://dx.doi.org/10.1055/s-2008-1026030] [PMID: 6629599]
[36]
Tidball, J.G. Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol., 2011, 1(4), 2029-2062.
[http://dx.doi.org/10.1002/cphy.c100092] [PMID: 23733696]
[37]
Shin, J.; Tajrishi, M.M.; Ogura, Y.; Kumar, A. Wasting mechanisms in muscular dystrophy. Int. J. Biochem. Cell Biol., 2013, 45(10), 2266-2279.
[http://dx.doi.org/10.1016/j.biocel.2013.05.001] [PMID: 23669245]
[38]
Potez, S.; Luginbühl, M.; Monastyrskaya, K.; Hostettler, A.; Draeger, A.; Babiychuk, E.B. Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J. Biol. Chem., 2011, 286(20), 17982-17991.
[http://dx.doi.org/10.1074/jbc.M110.187625] [PMID: 21454475]
[39]
Weng, X.; Luecke, H.; Song, I.S.; Kang, D.S.; Kim, S.H.; Huber, R. Crystal structure of human annexin I at 2.5 A resolution. Protein Sci., 1993, 2(3), 448-458.
[http://dx.doi.org/10.1002/pro.5560020317] [PMID: 8453382]
[40]
Bharadwaj, A.; Bydoun, M.; Holloway, R.; Waisman, D. Annexin A2 heterotetramer: structure and function. Int. J. Mol. Sci., 2013, 14(3), 6259-6305.
[http://dx.doi.org/10.3390/ijms14036259] [PMID: 23519104]
[41]
Lennon, N.J.; Kho, A.; Bacskai, B.J.; Perlmutter, S.L.; Hyman, B.T.; Brown, R.H., Jr Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J. Biol. Chem., 2003, 278(50), 50466-50473.
[http://dx.doi.org/10.1074/jbc.M307247200] [PMID: 14506282]
[42]
McNeil, A.K.; Rescher, U.; Gerke, V.; McNeil, P.L. Requirement for annexin A1 in plasma membrane repair. J. Biol. Chem., 2006, 281(46), 35202-35207.
[http://dx.doi.org/10.1074/jbc.M606406200] [PMID: 16984915]
[43]
Babiychuk, E.B.; Monastyrskaya, K.; Potez, S.; Draeger, A. Blebbing confers resistance against cell lysis. Cell Death Differ., 2011, 18(1), 80-89.
[http://dx.doi.org/10.1038/cdd.2010.81] [PMID: 20596076]
[44]
Swaggart, K.A.; Demonbreun, A.R.; Vo, A.H.; Swanson, K.E.; Kim, E.Y.; Fahrenbach, J.P.; Holley-Cuthrell, J.; Eskin, A.; Chen, Z.; Squire, K.; Heydemann, A.; Palmer, A.A.; Nelson, S.F.; McNally, E.M. Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proc. Natl. Acad. Sci. USA, 2014, 111(16), 6004-6009.
[http://dx.doi.org/10.1073/pnas.1324242111] [PMID: 24717843]
[45]
Jaiswal, J.K.; Lauritzen, S.P.; Scheffer, L.; Sakaguchi, M.; Bunkenborg, J.; Simon, S.M.; Kallunki, T.; Jäättelä, M.; Nylandsted, J. S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat. Commun., 2014, 5, 3795.
[http://dx.doi.org/10.1038/ncomms4795] [PMID: 24806074]
[46]
Jaiswal, J.K.; Nylandsted, J. S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle, 2015, 14(4), 502-509.
[http://dx.doi.org/10.1080/15384101.2014.995495] [PMID: 25565331]
[47]
Rafn, B.; Nielsen, C.F.; Andersen, S.H.; Szyniarowski, P.; Corcelle-Termeau, E.; Valo, E.; Fehrenbacher, N.; Olsen, C.J.; Daugaard, M.; Egebjerg, C.; Bøttzauw, T.; Kohonen, P.; Nylandsted, J.; Hautaniemi, S.; Moreira, J.; Jäättelä, M.; Kallunki, T. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol. Cell, 2012, 45(6), 764-776.
[http://dx.doi.org/10.1016/j.molcel.2012.01.029] [PMID: 22464443]
[48]
Egeblad, M.; Mortensen, O.H.; Jäättelä, M. Truncated ErbB2 receptor enhances ErbB1 signaling and induces reversible, ERK-independent loss of epithelial morphology. Int. J. Cancer, 2001, 94(2), 185-191.
[http://dx.doi.org/10.1002/ijc.1459] [PMID: 11668496]
[49]
Mussunoor, S.; Murray, G.I. The role of annexins in tumour development and progression. J. Pathol., 2008, 216(2), 131-140.
[http://dx.doi.org/10.1002/path.2400] [PMID: 18698663]
[50]
Rehman, I.; Azzouzi, A.R.; Cross, S.S.; Deloulme, J.C.; Catto, J.W.; Wylde, N.; Larre, S.; Champigneuille, J.; Hamdy, F.C. Dysregulated expression of S100A11 (calgizzarin) in prostate cancer and precursor lesions. Hum. Pathol., 2004, 35(11), 1385-1391.
[http://dx.doi.org/10.1016/j.humpath.2004.07.015] [PMID: 15668896]
[51]
Xiao, M.B.; Jiang, F.; Ni, W.K.; Chen, B.Y.; Lu, C.H.; Li, X.Y.; Ni, R.Z. High expression of S100A11 in pancreatic adenocarcinoma is an unfavorable prognostic marker. Med. Oncol., 2012, 29(3), 1886-1891.
[http://dx.doi.org/10.1007/s12032-011-0058-y] [PMID: 21912994]
[52]
Liu, X.; Ma, D.; Jing, X.; Wang, B.; Yang, W.; Qiu, W. Overexpression of ANXA2 predicts adverse outcomes of patients with malignant tumors: a systematic review and meta-analysis. Med. Oncol., 2015, 32(1), 392.
[http://dx.doi.org/10.1007/s12032-014-0392-y] [PMID: 25476478]
[53]
Grewal, T.; Enrich, C. Annexins--modulators of EGF receptor signalling and trafficking. Cell. Signal., 2009, 21(6), 847-858.
[http://dx.doi.org/10.1016/j.cellsig.2009.01.031] [PMID: 19385045]
[54]
Qi, H.; Liu, S.; Guo, C.; Wang, J.; Greenaway, F.T.; Sun, M.Z. Role of annexin A6 in cancer. Oncol. Lett., 2015, 10(4), 1947-1952.
[http://dx.doi.org/10.3892/ol.2015.3498] [PMID: 26622779]
[55]
Hannon, R.; Croxtall, J.D.; Getting, S.J.; Roviezzo, F.; Yona, S.; Paul-Clark, M.J.; Gavins, F.N.; Perretti, M.; Morris, J.F.; Buckingham, J.C.; Flower, R.J. Aberrant inflammation and resistance to glucocorticoids in annexin 1-/- mouse. FASEB J., 2003, 17(2), 253-255.
[http://dx.doi.org/10.1096/fj.02-0239fje] [PMID: 12475898]
[56]
Boye, T.L.; Maeda, K.; Pezeshkian, W.; Sønder, S.L.; Haeger, S.C.; Gerke, V.; Simonsen, A.C.; Nylandsted, J. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nat. Commun., 2017, 8(1), 1623.
[http://dx.doi.org/10.1038/s41467-017-01743-6] [PMID: 29158488]
[57]
Idone, V.; Tam, C.; Goss, J.W.; Toomre, D.; Pypaert, M.; Andrews, N.W. Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J. Cell Biol., 2008, 180(5), 905-914.
[http://dx.doi.org/10.1083/jcb.200708010] [PMID: 18316410]
[58]
Idone, V.; Tam, C.; Andrews, N.W. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol., 2008, 18(11), 552-559.
[http://dx.doi.org/10.1016/j.tcb.2008.09.001] [PMID: 18848451]
[59]
Steinhardt, R.A.; Bi, G.; Alderton, J.M. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science, 1994, 263(5145), 390-393.
[http://dx.doi.org/10.1126/science.7904084] [PMID: 7904084]
[60]
Jimenez, A.J.; Maiuri, P.; Lafaurie-Janvore, J.; Divoux, S.; Piel, M.; Perez, F. ESCRT machinery is required for plasma membrane repair. Science, 2014, 343(6174)1247136
[http://dx.doi.org/10.1126/science.1247136] [PMID: 24482116]
[61]
Scheffer, L.L.; Sreetama, S.C.; Sharma, N.; Medikayala, S.; Brown, K.J.; Defour, A.; Jaiswal, J.K. Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat. Commun., 2014, 5, 5646.
[http://dx.doi.org/10.1038/ncomms6646] [PMID: 25534348]
[62]
Bement, W.M.; Mandato, C.A.; Kirsch, M.N. Wound-induced assembly and closure of an actomyosin purse string in Xenopus oocytes. Curr. Biol., 1999, 9(11), 579-587.
[http://dx.doi.org/10.1016/S0960-9822(99)80261-9] [PMID: 10359696]
[63]
Seemann, J.; Weber, K.; Gerke, V. Annexin I targets S100C to early endosomes. FEBS Lett., 1997, 413(1), 185-190.
[http://dx.doi.org/10.1016/S0014-5793(97)00911-3] [PMID: 9287141]
[64]
Rescher, U.; Zobiack, N.; Gerke, V. Intact Ca(2+)-binding sites are required for targeting of annexin 1 to endosomal membranes in living HeLa cells. J. Cell Sci., 2000, 113(Pt 22), 3931-3938.
[PMID: 11058080]
[65]
König, J.; Gerke, V. Modes of annexin-membrane interactions analyzed by employing chimeric annexin proteins. Biochim. Biophys. Acta, 2000, 1498(2-3), 174-180.
[http://dx.doi.org/10.1016/S0167-4889(00)00094-X] [PMID: 11108961]
[66]
Harder, T.; Gerke, V. The subcellular distribution of early endosomes is affected by the annexin II2p11(2) complex. J. Cell Biol., 1993, 123(5), 1119-1132.
[http://dx.doi.org/10.1083/jcb.123.5.1119] [PMID: 8245122]
[67]
Salzer, U.; Hinterdorfer, P.; Hunger, U.; Borken, C.; Prohaska, R. Ca(++)-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood, 2002, 99(7), 2569-2577.
[http://dx.doi.org/10.1182/blood.V99.7.2569] [PMID: 11895795]
[68]
Karatekin, E.; Sandre, O.; Guitouni, H.; Borghi, N.; Puech, P.H.; Brochard-Wyart, F. Cascades of transient pores in giant vesicles: line tension and transport. Biophys. J., 2003, 84(3), 1734-1749.
[http://dx.doi.org/10.1016/S0006-3495(03)74981-9] [PMID: 12609875]
[69]
Chabanon, M.; Ho, J.C.S.; Liedberg, B.; Parikh, A.N.; Rangamani, P. Pulsatile lipid vesicles under osmotic stress. Biophys. J., 2017, 112(8), 1682-1691.
[http://dx.doi.org/10.1016/j.bpj.2017.03.018] [PMID: 28445759]
[70]
Simonsen, A.C. Activation of phospholipase A2 by ternary model membranes. Biophys. J., 2008, 94(10), 3966-3975.
[http://dx.doi.org/10.1529/biophysj.107.114363] [PMID: 18234820]
[71]
Jensen, M.H.; Morris, E.J.; Simonsen, A.C. Domain shapes, coarsening, and random patterns in ternary membranes. Langmuir, 2007, 23(15), 8135-8141.
[http://dx.doi.org/10.1021/la700647v] [PMID: 17590026]
[72]
Simonsen, A.C.; Bagatolli, L.A. Structure of spin-coated lipid films and domain formation in supported membranes formed by hydration. Langmuir, 2004, 20(22), 9720-9728.
[http://dx.doi.org/10.1021/la048683+] [PMID: 15491207]
[73]
Nielsen, M.M.; Simonsen, A.C. Imaging ellipsometry of spin-coated membranes: mapping of multilamellar films, hydrated membranes, and fluid domains. Langmuir, 2013, 29(5), 1525-1532.
[http://dx.doi.org/10.1021/la3046675] [PMID: 23281595]
[74]
Hakobyan, D.; Gerke, V.; Heuer, A. Modeling of annexin A2-Membrane interactions by molecular dynamics simulations. PLoS One, 2017, 12(9)e0185440
[http://dx.doi.org/10.1371/journal.pone.0185440] [PMID: 28937994]
[75]
Boye, T.L.; Jeppesen, J.C.; Maeda, K.; Pezeshkian, W.; Solovyeva, V.; Nylandsted, J.; Simonsen, A.C. Annexins induce curvature on free-edge membranes displaying distinct morphologies. Sci. Rep., 2018, 8(1), 10309.
[http://dx.doi.org/10.1038/s41598-018-28481-z] [PMID: 29985397]
[76]
Piljic, A.; Schultz, C. Annexin A4 self-association modulates general membrane protein mobility in living cells. Mol. Biol. Cell, 2006, 17(7), 3318-3328.
[http://dx.doi.org/10.1091/mbc.e06-01-0041] [PMID: 16687573]
[77]
Bouter, A.; Gounou, C.; Bérat, R.; Tan, S.; Gallois, B.; Granier, T.; d’Estaintot, B.L.; Pöschl, E.; Brachvogel, B.; Brisson, A.R. Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat. Commun., 2011, 2, 270.
[http://dx.doi.org/10.1038/ncomms1270] [PMID: 21468022]
[78]
Huber, R.; Römisch, J.; Paques, E.P. The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J., 1990, 9(12), 3867-3874.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07605.x] [PMID: 2147412]
[79]
Koopman, G.; Reutelingsperger, C.P.; Kuijten, G.A.; Keehnen, R.M.; Pals, S.T.; van Oers, M.H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood, 1994, 84(5), 1415-1420.
[http://dx.doi.org/10.1182/blood.V84.5.1415.bloodjournal8451415] [PMID: 8068938]
[80]
Zhang, G.; Gurtu, V.; Kain, S.R.; Yan, G. Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques, 1997, 23(3), 525-531.
[http://dx.doi.org/10.2144/97233pf01] [PMID: 9298227]
[81]
Bouter, A.; Carmeille, R.; Gounou, C.; Bouvet, F.; Degrelle, S.A.; Evain-Brion, D.; Brisson, A.R. Review: Annexin-A5 and cell membrane repair. Placenta, 2015, 36(Suppl. 1), S43-S49.
[http://dx.doi.org/10.1016/j.placenta.2015.01.193] [PMID: 25701430]
[82]
Carmeille, R.; Bouvet, F.; Tan, S.; Croissant, C.; Gounou, C.; Mamchaoui, K.; Mouly, V.; Brisson, A.R.; Bouter, A. Membrane repair of human skeletal muscle cells requires Annexin-A5. Biochim. Biophys. Acta, 2016, 1863(9), 2267-2279.
[http://dx.doi.org/10.1016/j.bbamcr.2016.06.003] [PMID: 27286750]
[83]
Carmeille, R.; Degrelle, S.A.; Plawinski, L.; Bouvet, F.; Gounou, C.; Evain-Brion, D.; Brisson, A.R.; Bouter, A. Annexin-A5 promotes membrane resealing in human trophoblasts. Biochim. Biophys. Acta, 2015, 1853(9), 2033-2044.
[http://dx.doi.org/10.1016/j.bbamcr.2014.12.038] [PMID: 25595530]
[84]
Gerke, V.; Weber, K. Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J., 1984, 3(1), 227-233.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb01789.x] [PMID: 6323166]
[85]
Zaks, W.J.; Creutz, C.E. Ca(2+)-dependent annexin self-association on membrane surfaces. Biochemistry, 1991, 30(40), 9607-9615.
[http://dx.doi.org/10.1021/bi00104a007] [PMID: 1911746]
[86]
Zanotti, G.; Malpeli, G.; Gliubich, F.; Folli, C.; Stoppini, M.; Olivi, L.; Savoia, A.; Berni, R. Structure of the trigonal crystal form of bovine annexin IV. Biochem. J., 1998, 329(Pt 1), 101-106.
[http://dx.doi.org/10.1042/bj3290101] [PMID: 9405281]
[87]
Kaetzel, M.A.; Mo, Y.D.; Mealy, T.R.; Campos, B.; Bergsma-Schutter, W.; Brisson, A.; Dedman, J.R.; Seaton, B.A. Phosphorylation mutants elucidate the mechanism of annexin IV-mediated membrane aggregation. Biochemistry, 2001, 40(13), 4192-4199.
[http://dx.doi.org/10.1021/bi002507s] [PMID: 11300800]
[88]
Frislev, H.S.; Boye, T.L.; Nylandsted, J.; Otzen, D. Liprotides kill cancer cells by disrupting the plasma membrane. Sci. Rep., 2017, 7(1), 15129.
[http://dx.doi.org/10.1038/s41598-017-15003-6] [PMID: 29123177]
[89]
Choi, C.H.; Chung, J.Y.; Chung, E.J.; Sears, J.D.; Lee, J.W.; Bae, D.S.; Hewitt, S.M. Prognostic significance of annexin A2 and annexin A4 expression in patients with cervical cancer. BMC Cancer, 2016, 16, 448.
[http://dx.doi.org/10.1186/s12885-016-2459-y] [PMID: 27402115]
[90]
Lokman, N.A.; Ween, M.P.; Oehler, M.K.; Ricciardelli, C. The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron., 2011, 4(2), 199-208.
[http://dx.doi.org/10.1007/s12307-011-0064-9] [PMID: 21909879]
[91]
Sobral-Leite, M.; Wesseling, J.; Smit, V.T.; Nevanlinna, H.; van Miltenburg, M.H.; Sanders, J.; Hofland, I.; Blows, F.M.; Coulson, P.; Patrycja, G.; Schellens, J.H.; Fagerholm, R.; Heikkilä, P.; Aittomäki, K.; Blomqvist, C.; Provenzano, E.; Ali, H.R.; Figueroa, J.; Sherman, M.; Lissowska, J.; Mannermaa, A.; Kataja, V.; Kosma, V.M.; Hartikainen, J.M.; Phillips, K.A.; Couch, F.J.; Olson, J.E.; Vachon, C.; Visscher, D.; Brenner, H.; Butterbach, K.; Arndt, V.; Holleczek, B.; Hooning, M.J.; Hollestelle, A.; Martens, J.W.; van Deurzen, C.H.; van de Water, B.; Broeks, A.; Chang-Claude, J.; Chenevix-Trench, G.; Easton, D.F.; Pharoah, P.D.; García-Closas, M.; de Graauw, M.; Schmidt, M.K. kConFab/AOCS Investigators. Annexin A1 expression in a pooled breast cancer series: association with tumor subtypes and prognosis. BMC Med., 2015, 13, 156.
[http://dx.doi.org/10.1186/s12916-015-0392-6] [PMID: 26137966]
[92]
Yao, H.; Zhang, Z.; Xiao, Z.; Chen, Y.; Li, C.; Zhang, P.; Li, M.; Liu, Y.; Guan, Y.; Yu, Y.; Chen, Z. Identification of metastasis associated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection. Lung Cancer, 2009, 65(1), 41-48.
[http://dx.doi.org/10.1016/j.lungcan.2008.10.024] [PMID: 19058872]
[93]
Yan, X.; Yin, J.; Yao, H.; Mao, N.; Yang, Y.; Pan, L. Increased expression of annexin A3 is a mechanism of platinum resistance in ovarian cancer. Cancer Res., 2010, 70(4), 1616-1624.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3215] [PMID: 20103635]
[94]
Kim, A.; Enomoto, T.; Serada, S.; Ueda, Y.; Takahashi, T.; Ripley, B.; Miyatake, T.; Fujita, M.; Lee, C.M.; Morimoto, K.; Fujimoto, M.; Kimura, T.; Naka, T. Enhanced expression of Annexin A4 in clear cell carcinoma of the ovary and its association with chemoresistance to carboplatin. Int. J. Cancer, 2009, 125(10), 2316-2322.
[http://dx.doi.org/10.1002/ijc.24587] [PMID: 19598262]
[95]
Ma, R.L.; Shen, L.Y.; Chen, K.N. Coexpression of ANXA2, SOD2 and HOXA13 predicts poor prognosis of esophageal squamous cell carcinoma. Oncol. Rep., 2014, 31(5), 2157-2164.
[http://dx.doi.org/10.3892/or.2014.3088] [PMID: 24626613]
[96]
Yang, S.F.; Hsu, H.L.; Chao, T.K.; Hsiao, C.J.; Lin, Y.F.; Cheng, C.W. Annexin A2 in renal cell carcinoma: expression, function, and prognostic significance. Urol. Oncol., 2015, 33(1), 22.e11-22.e21.
[http://dx.doi.org/10.1016/j.urolonc.2014.08.015] [PMID: 25284003]
[97]
Wang, Y.S.; Li, H.; Li, Y.; Zhu, H.; Jin, Y.H. Identification of natural compounds targeting Annexin A2 with an anti-cancer effect. Protein Cell, 2018, 9(6), 568-579.
[http://dx.doi.org/10.1007/s13238-018-0513-z] [PMID: 29508276]
[98]
Attele, A.S.; Wu, J.A.; Yuan, C.S. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol., 1999, 58(11), 1685-1693.
[http://dx.doi.org/10.1016/S0006-2952(99)00212-9] [PMID: 10571242]
[99]
Reddy, T.R.; Li, C.; Guo, X.; Fischer, P.M.; Dekker, L.V. Design, synthesis and SAR exploration of tri-substituted 1,2,4-triazoles as inhibitors of the annexin A2-S100A10 protein interaction. Bioorg. Med. Chem., 2014, 22(19), 5378-5391.
[http://dx.doi.org/10.1016/j.bmc.2014.07.043] [PMID: 25172147]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy