[1]
J. Yan, H. Zhang, Y. Liu, S. Han, L. Li, and Z. Lu, "Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping", IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3276-3284, 2018.
[2]
X. Wang, C. Wang, and Q. Li, "Short-term wind power prediction using GA-ELM", The Open Electr. Electron. Eng. J., vol. 11, pp. 48-56, 2017.
[3]
N.S. Pearre, and L.G. Swan, "Statistical approach for improved wind speed forecasting for wind power production", Sustain. Energ. Technol. Assess., vol. 27, pp. 180-191, 2018.
[5]
R.G. Kavasseri, and K. Seetharaman, Day-ahead wind speed forecasting using f-ARIMA models.Renew. Energ, . Vol. 34, pp. 1388-1393, 2009.
[6]
D.C. Hill, D. McMillan, K.R.W. Bell, and D. Infield, "Application of auto-regressive models to U.K. wind speed data for power system impact studies", IEEE Transact. Sustain. Energ., vol. 3, no. 1, pp. 134-141, 2012.
[7]
E. Erdem, and J. Shi, "ARMA based approaches for forecasting the tuple of wind speed and direction", Appl. Energy, vol. 88, pp. 1405-1414, 2011.
[8]
H. Lei, S. Jie, C. Qiong, and J.G. Xiu, "Wind power forecasting base on ARMAX-GARCH for a microgrid", Adv. New Renew. Energ., vol. 1, no. 3, pp. 224-229, 2013.
[9]
E. Cadenas, and W. Rivera, "Wind speed forecasting in the South Coast of Oaxaca, Mexico", Renew. Energy, vol. 32, pp. 2116-2128, 2007.
[10]
M. Monfared, H. Rastegar, and H.M. Kojabadi, "A new strategy for wind speed forecasting using artificial intelligent methods", Renew. Energy, vol. 34, pp. 845-848, 2009.
[11]
E. Erdem, and W. Rivera, "Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks", Renew. Energy, vol. 34, pp. 274-278, 2009.
[12]
E. Erdem, and W. Rivera, "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-FFNN model", Renew. Energy, vol. 35, pp. 2732-2738, 2010.
[13]
G. Li, and J. Shi, "On comparing three artificial neural networks for wind speed forecasting", Appl. Energy, vol. 87, pp. 2313-2320, 2010.
[14]
K. Sreelakshmi, and P.R. Kumar, "Short-term wind speed prediction using support vector machine model", WSEAS Trans. Comput., vol. 7, no. 11, pp. 1828-1837, 2008.
[15]
J.P.S. Catalão, H.M.I. Pousinho, and V.M.F. Mendes, "Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal", IEEE Transact. Sustain. Energ., vol. 2, no. 1, pp. 50-59, 2011.
[16]
H. Liu, H.Q. Tian, C. Chen, and Y.F. Li, "A hybrid statistical method to predict wind speed and wind power", Renew. Energy, vol. 35, pp. 1857-1861, 2010.
[17]
X. An, D. Jiang, C. Liu, and M. Zhao, "Wind farm power prediction based on wavelet decomposition and chaotic time series", Expert Syst. Appl., vol. 38, pp. 11280-11285, 2011.
[18]
J.P.S. Catalão, H.M.I. Pousinhom, and V.M.F. Mendes, "Short-term wind power forecasting in Portugal by neural networks and wavelet transform", Renew. Energy, vol. 36, pp. 1245-1251, 2011.
[19]
D. Liu, D. Niu, H. Wang, and L. Fan, "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm", Renew. Energy, vol. 62, pp. 592-597, 2014.
[20]
X. An, D. Jiang, M. Zhao, and C. Liu, "Short-term prediction of wind power using EMD and chaotic theory", Commun. Nonlinear Sci. Numer. Simul., vol. 17, pp. 1036-1042, 2012.
[22]
S.K. Aggarwal, L.M. Saini, and A. Kumar, "Electricity price forecasting in Ontario electricity market using wavelet transform in artificial neural network based model", Int. J. Control. Autom. Syst., vol. 6, no. 5, pp. 639-650, 2008.
[23]
S.K. Aggarwal, L.M. Saini, and A. Kumar, "Day-ahead Price forecasting in Ontario electricity market using variable-segmented support vector machine-based model", Electr. Power Compon. Syst., vol. 37, pp. 495-516, 2009.
[24]
A. Sfetsos, and C. Siriopoulos, "“Time series forecasting of averaged data with efficient use of information”, IEEE Transact. Syst. Man Cybernet.-Part A", Syst. Humans, vol. 35, no. 5, pp. 738-745, 2005.
[25]
J. Varmaak, and E.C. Botha, "Recurrent neural networks for short-term load forecasting", IEEE Trans. Power Syst., vol. 13, no. 1, pp. 12-132, 1998.
[26]
S. Anbazhagan, and N. Kumarappan, "Day-Ahead deregulated electricity market price forecasting using recurrent neural network", IEEE Syst. J., vol. 7, no. 4, pp. 866-872, 2013.
[27]
D.F. Specht, "A generalized regression neural network", IEEE Transactions on Neural Networks, vol. 2, pp. 568-576, 1991.
[28]
O. Kisi, "A combined generalized regression neural network wavelet model for monthly stream flow prediction", KSCE J. Civ. Eng., vol. 15, no. 8, pp. 1469-1479, 2011.
[29]
H.B. Celikoglu, and H.K. Cigizoglu, "Public transportation trip flow modeling with generalized regression neural networks", Adv. Eng. Software, vol. 38, pp. 71-79, 2007.
[30]
K.N. Filho, D.P. Lotufo, and C.R. Minussi, "Short-term multinodal load forecasting using a modified general regression neural network", IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2862-2869, 2011.
[31]
Y. Li, and J. Wang, "The load forecasting model based on bayes-GRNN", J. Softw., vol. 7, no. 6, pp. 1273-1280, 2012.
[32]
G. Gross, and F.D. Galiana, "Short-term load forecasting", Proc. IEEE, vol. 75, no. 12, pp. 1558-1573, 1987.