[1]
Chen, W.; Zheng, R.; Zhang, S.; Zeng, H.; Xia, C.; Zuo, T.; Yang, Z.; Zou, X.; He, J. Cancer incidence and mortality in China, 2013. Cancer Lett., 2017, 401, 63-71.
[2]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[3]
Kolahdooz, F.; Jang, S.L.; Corriveau, A.; Gotay, C.; Johnston, N.; Sharma, S. Knowledge, attitudes, and behaviours towards cancer screening in indigenous populations: A systematic review. Lancet Oncol., 2014, 15(11), 504-516.
[4]
Liu, M.; Yu, X.; Chen, Z.; Yang, T.; Yang, D.; Liu, Q.; Du, K.; Li, B.; Wang, Z.; Li, S.; Deng, Y.; He, N. Aptamer selection and applications for breast cancer diagnostics and therapy. J. Nanobiotechnology, 2017, 15(1), 81.
[5]
Zhang, X.H.; Hao, S.; Gao, B.; Tian, W.G.; Jiang, Y.; Zhang, S. A network meta-analysis for toxicity of eight chemotherapy regimens in the treatment of metastatic advanced breast cancer. Oncotarget, 2016, 7, 84533-84543.
[6]
Ansari, L.; Shiehzadeh, F.; Taherzadeh, Z.; Nikoofal-Sahlabadi, S.; Momtazi-Borojeni, A.A.; Sahebkar, A.; Eslami, S. The most prevalent side effects of pegylated liposomal doxorubicin monotherapy in women with metastatic breast cancer: a systematic review of clinical trials. Cancer Gene Ther., 2017, 24(5), 189-193.
[7]
Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.E.; Habak, K.; Mostafa, R.; Ali, M.A.; Ellithy, M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother., 2017, 95, 1209-1218.
[8]
Aniogo, E.C.; George, B.P.A.; Abrahamse, H. Phthalocyanine induced phototherapy coupled with Doxorubicin; a promising novel treatment for breast cancer. Expert Rev. Anticancer Ther., 2017, 17(8), 693-702.
[9]
Karthikeyan, K.; Thappa, D.M. Pellagra and skin. Int. J. Dermatol., 2002, 41(8), 476-481.
[10]
Ishaque, A.; Al-Rubeai, M. Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture. Apoptosis, 2002, 7(3), 231-239.
[11]
Jacobson, E.L.; Giacomoni, P.U.; Roberts, M.J.; Wondrak, G.T.; Jacobson, M.K. Optimizing the energy status of skin cells during solar radiation. J. Photochem. Photobiol. B, 2001, 63(1-3), 141-147.
[12]
Benavente, C.A.; Jacobson, E.L. Niacin restriction upregulates NADPH oxidase and reactive oxygen species (ROS) in human keratinocytes. Free Radic. Biol. Med., 2008, 44(4), 527-537.
[13]
Wang, X.Y.; Wang, J.Z.; Gao, L.; Zhang, F.Y.; Wang, Q.; Liu, K.J.; Xiang, B. Inhibition of nicotinamide phosphoribosyltransferase and depletion of nicotinamide adenine dinucleotide contribute to arsenic trioxide suppression of oral squamous cell carcinoma. Toxicol. Appl. Pharmacol., 2017, 331, 54-61.
[14]
Sawicka-Gutaj, N.; Waligórska-Stachura, J.; Andrusiewicz, M.; Biczysko, M.; Sowiński, J.; Skrobisz, J.; Ruchała, M. Nicotinamide phosphorybosiltransferase overexpression in thyroid malignancies and its correlation with tumor stage and with survivin/survivin DEx3 expression. Tumour Biol., 2015, 36(10), 7859-7863.
[15]
Takao, S.; Chien, W.; Madan, V.; Lin, D.C.; Ding, L.W.; Sun, Q.Y.; Mayakonda, A.; Sudo, M.; Xu, L.; Chen, Y.; Jiang, Y.Y.; Gery, S.; Lill, M.; Park, E.; Senapedis, W.; Baloglu, E.; Müschen, M.; Koeffler, H.P. Targeting the vulnerability to NAD+ depletion in B-cell acute lymphoblastic leukemia. Leukemia, 2018, 32(3), 616-625.
[16]
Kim, J.Y.; Lee, H.; Woo, J.; Yue, W.; Kim, K.; Choi, S.; Jang, J.J.; Kim, Y.; Park, I.A.; Han, D.; Ryu, H.S. Reconstruction of pathway modification induced by nicotinamide using multi-omic network analyses in triple negative breast cancer. Sci. Rep., 2017, 7(1), 3466.
[17]
Zheng, J.; Glezerman, I.G.; Sadot, E.; McNeil, A.; Zarama, C.; Gönen, M.; Creasy, J.; Pak, L.M.; Balachandran, V.P.; D’Angelica, M.I.; Allen, P.J.; DeMatteo, R.P.; Kingham, T.P.; Jarnagin, W.R.; Jaimes, E.A. Hypophosphatemia after hepatectomy or pancreatectomy: Role of the nicotinamide phosphoribosyltransferase. J. Am. Coll. Surg., 2017, 225(4), 488-497.
[18]
Dong, G.; Chen, W.; Wang, X.; Yang, X.; Xu, T.; Wang, P.; Zhang, W.; Rao, Y.; Miao, C.; Sheng, C. Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: Discovery of novel Nicotinamide Phosphoribosyltransferase (NAMPT) and Histone Deacetylase (HDAC) dual inhibitors. J. Med. Chem., 2017, 60(19), 7965-7983.
[19]
Vaziri, H.; Dessain, S.K.; Ng Eaton, E.; Imai, S.I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-Dependent p53 Deacetylase. Cell, 2001, 107(2), 149-159.
[20]
Bordone, L.; Guarente, L. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat. Rev. Mol. Cell Biol., 2005, 6(4), 298-305.
[21]
Jin, X.; Wei, Y.; Xu, F.; Zhao, M.; Dai, K.; Shen, R.; Yang, S.; Zhang, N. SIRT1 promotes formation of breast cancer through modulating Akt activity. J. Cancer, 2018, 9(11), 2012-2023.
[22]
Zhang, J.G.; Zhao, G.; Qin, Q.; Wang, B.; Liu, L.; Liu, Y.; Deng, S.C.; Tian, K.; Wang, C.Y. Nicotinamide prohibits proliferation and enhances chemosensitivity of pancreatic cancer cells through deregulating SIRT1 and Ras/Akt pathways. Pancreatology, 2013, 13(2), 140-146.
[23]
Jung-Hynes, B.; Nihal, M.; Zhong, W.; Ahmad, N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J. Biol. Chem., 2009, 284(6), 3823-3832.
[24]
Audrito, V.; Vaisitti, T.; Rossi, D.; Gottardi, D.; D’Arena, G.; Laurenti, L.; Gaidano, G.; Malavasi, F.; Deaglio, S. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res., 2011, 71(13), 4473-4483.
[25]
Deng, C.X. SIRT1, Is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci., 2009, 5(2), 147-152.
[26]
Chen, W.; Bhatia, R. Roles of SIRT1 in leukemogenesis. Curr. Opin. Hematol., 2013, 20(4), 308-313.
[27]
Han, L.; Liang, X.H.; Chen, L.X.; Bao, S.M.; Yan, Z.Q. SIRT1 is highly expressed in brain metastasis tissues of non-small cell lung cancer (NSCLC) and in positive regulation of NSCLC cell migration. Int. J. Clin. Exp. Pathol., 2013, 6(11), 2357-2365.
[28]
Chu, F.; Chou, P.M.; Zheng, X.; Mirkin, B.L.; Rebbaa, A. Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res., 2005, 65(22), 10183-10187.
[29]
Lee, M.S.; Jeong, M.H.; Lee, H.W.; Han, H.J.; Ko, A.; Hewitt, S.M.; Kim, J.H.; Chun, K.H.; Chung, J.Y.; Lee, C.; Cho, H.
Song, J. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat. Commun., 2015, 6, 7769.
[30]
Tanno, M.; Sakamoto, J.; Miura, T.; Shimamoto, K.; Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem., 2007, 282(9), 6823-6832.
[31]
Rosenberg, M.I.; Parkhurst, S.M. Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell, 2002, 109(4), 447-458.
[32]
Lain, S.; Hollick, J.J.; Campbell, J.; Staples, O.D.; Higgins, M.; Aoubala, M.; McCarthy, A.; Appleyard, V.; Murray, K.E.; Baker, L.; Thompson, A.; Mathers, J.; Holland, S.J.; Stark, M.J.; Pass, G.; Woods, J.; Lane, D.P.; Westwood, N.J. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell, 2008, 13(5), 454-463.
[33]
Pissios, P. Nicotinamide N-Methyltransferase: More than a vitamin B3 clearance enzyme. Trends Endocrinol. Metab., 2017, 28(5), 340-353.