Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Catalyst-Free Glycerol Promoted Green Synthesis of 2-amino-1,8- naphthyridine -3-carbonitriles and 2-amino-3-quinolinecarbonitriles

Author(s): Km Neha Shivhare, Anushree Srivastava and Ibadur Rahman Siddiqui*

Volume 6, Issue 1, 2019

Page: [62 - 68] Pages: 7

DOI: 10.2174/2452273203666190114145322

Abstract

We describe herein the use of glycerol as an efficient and sustainable approach for the synthesis of 2-amino-1, 8-naphthyridine-3-carbonitriles and 2-amino-3-quinolinecarbonitriles. The catalyst- free reactions occur straightforwardly using biodegradable and non-hazardous solvent. It is a strategy to address mounting environmental concerns with current approach includes the use of environmentally benign solvent, simple workup procedure, economic viability, shorter reaction time and providing good to excellent yield.

Keywords: Glycerol, naphthyridines, quinolines, biocatalyst, bio-renewable, eco-compatible.

Graphical Abstract

[1]
Capello, C.; Fischer, U.; Hungerbuhler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9, 927-934; b) Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13, 1391-1398; c) Banerjee, B.; Brahmachari, G. Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: An emerging field of green chemistry practice and sustainability. Curr. Green Chem., 2015, 2, 274-305; d) Pena-Pereira, F.; Kloskowski, A.; Namiesnik, J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of eco-friendly alternatives. Green Chem., 2015, 17, 3687-3705.
[2]
Shivhare, K.N.; Jaiswal, M.K.; Srivastava, A.; Tiwari, S.K.; Siddiqui, I.R. Visible-light-activated C-C and C-N bond formation in the synthesis of imidazo[1,2-a]pyridines and imidazo[2,1- b]thiazoles under catalyst and solvent-free conditions New J. Chem, 2018, 42, 16591-16601; b) Shivhare, K.N.; Siddiqui, I.R. β- Cyclodextrin mediated synthesis of indole derivatives: Reactions of Isatins with 2-amino(or 2-thiole)anilines by supramolecular catalysis in water. Supramol. Chem., 2019, 31, 52-61; c) Shivhare, K.N.; Siddiqui, I.R. Chitosan: A natural and sustainable polymeric organocatalyst for C-C Bond formation during the synthesis of 5- amino-2,3-dihydrobenzo[d]thiazole-4,6-dicarbonitriles. Curr. Organocatal doi: 10.2174/2213337205666180925142458; d) Rai, P.; Sagir, H.; Kumar, A.; Yadav, V.B.; Siddiqui, I.R. Organocatalyzed synthesis of medicinally important chromeno[2, 3-d]pyrimidinetriones in biodegradable reaction medium. ChemistrySelect, 2018, 3, 2565 - 2570
[3]
Safaei, R.H.; Shekouhy, M.; Rahmanpur, S.; Shirinfeshan, A. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-Pyrans. Green Chem., 2012, 14, 1696-1704.
[4]
Gu, Y.; Barrault, J.; Jérôme, F. Glycerol as an efficient promoting medium for organic reactions. Adv. Synth. Catal., 2008, 350, 2007-2012.
[5]
Wolfson, A.; Snezhko, A.; Meyouhas, T.; Tavor, D. Glycerol derivatives as green reaction mediums. Green Chem. Lett. Rev., 2012, 5, 7-12.
[6]
Francos, J.; Cadierno, V. Palladium-catalyzed cycloisomerization of (Z)-enynols into furans using green solvents: Glycerol vs. water. Green Chem., 2010, 12, 1552-1555.
[7]
Gu, Y.; Jerome, F. Glycerol as a sustainable solvent for green chemistry. Green Chem., 2010, 12, 1127-1138.
[8]
Reddy, B.V.S.; Venkateswarlu, A.; Reddy, G.N.; Reddy, Y.V.R. Chitosan-SO3H: An efficient, biodegradable and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett., 2013, 54, 5767-5770.
[9]
(a) Refat, H.M.; Mohamed, K.S. Efficient and convenient synthesis of pyrido [2,1-b]benzothiazole, pyrimidopyrido [2,1-b] benzothiazole and benzothiazolo [3,2-a][1,8] naphthyridine derivatives. Heterocycl. Commun., 2015, 21, 219.
(b) Tsuzuki, Y.; Tomita, K.; Sato, Y.; Kashimoto, S.; Chiba, K. Synthesis and structure-activity relationships of 3-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines as novel antitumor agents. Bioorg. Med. Chem. Lett., 2004, 14, 3189.
(c) Seefeld, M.A.; Miller, W.H.; Newlander, K.A.; Burgess, W.J.; Dewolfjr, W.E.; Elkins, P.A.; Head, M.S.; Jakas, D.R.; Janson, C.A.; Keller, P.M.; Manley, P.J.; Moore, T.D.; Payne, D.J.; Pearson, S.; Polizzi, B.J.; Qiu, X.; Rittenhouse, S.F.; Uzinskas, I.N.; Wallis, N.G.; Huffman, W.F. Indole naphthyridinones as inhibitors of bacterial enoyl-ACP reductases FabI and FabK. J. Med. Chem., 2003, 46, 1627.
(d) Roma, G.; Grossi, G.; Braccio, M.D.; Piras, D.; Ballabeni, V.; Tognolini, M.; Bertoni, S.; Barocelli, E. 1,8-Naphthyridines VII. New substituted 5-amino [1,2,4]triazolo [4,3-a][1,8]naphthyridine-6-carboxamides and their isosteric analogues, exhibiting notable anti-inflammatory and/or analgesic activities, but no acute gastrolesivity. Eur. J. Med. Chem., 2008, 43, 1165.
[10]
(a) Kuo, S.C.; Tsai, S.Y.; Li, H.T.; Wu, C.H.; Ishii, K.; Nakamura, H. Studies on Heterocyclic Compounds. IX. Synthesis and Antiallergic Activity of Furo [2,3-b][1,8]naphthyridine-3,4(2H,9H)- diones and 4H-Furo [2,3-d]pyrido [1,2-a]- pyrimidine-3,4(2H)-diones. Chem. Pharm. Bull., 1998, 36, 4403.
(b) Massari, S.; Daelemans, D.; Barreca, M.L.; Knezevich, A.; Sabatini, S.; Cecchetti, V.; Marcello, A.; Pannecouque, C.; Tabarrini, O.A. 1,8-Naphthyridone Derivative Targets the HIV-1 Tat-Mediated Transcription and Potently Inhibits the HIV-1 Replication. J. Med. Chem., 2010, 53, 641.
(c) Olepu, S.; Suryadevara, P.K.; Rivas, K.; Yokoyama, K.; Verlinde, C.L.M.J.; Chakrabarti, D.; VanVoorhis, W.C.; Gelb, M.H. 2-Oxo-tetrahydro-1,8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials. Bioorg. Med. Chem. Lett., 2008, 18, 494.
[11]
Goswami, S.V.; Thorat, P.B.; Khade, B.C.; Bhusare, S.R. A convenient one-pot synthesis of 2-amino-4-phenyl-1,8-naphthyridine-3-carbonitrile derivatives. Chem. Biol. Int., 2012, 2, 228-233.
[12]
Atmakuri, N.; Maringanti, C.T. Silica sulfuric acid catalysed synthesis of 1,8-naphthyridines in the solid state under microwave irradiation. OCAIJ, 2014, 10, 5-8.
[13]
Mogilaiah, K.; Reddy, N.V. Microwave induced Friedlander condensation- A facile synthesis of 1,8-naphthyridines. Indian J. Chem., 2002, 41, 215-217.
[14]
Li, B.; Nguyen, S.; Huang, J.; Wang, G.; Wei, H.; Pereshivko, O.P.; Peshkov, V.A. Synthesis of 1,8-naphthyridines from 2-aminonicotinaldehydes and terminal alkynes. Tetrahedron Lett., 2016, 57, 1958-1962.
[15]
Wu, J.; Xia, G.H.; Gao, K. Molecular iodine: A highly efficient catalyst in the synthesis of quinolines via Friedlander annulation. Org. Biomol. Chem., 2006, 4, 126-129.
[16]
Jia, S.C.; Zhang, Z.; Tu, J.S.; Wang, W.G. Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: Comparative study of microwave irradiation versus conventional heating. Org. Biomol. Chem., 2006, 4, 104-110.
[17]
Singh, S.; Saquib, M.; Singh, M.; Tiwari, J.; Tufail, F.; Singh, J.; Singh, J. A catalyst free, multicomponent - tandem, facile synthesis of pyrido [2,3-d]pyrimidines using glycerol as a recyclable promoting medium. New J. Chem., 2016, 40, 63-67.
[18]
Tufail, F.; Singh, S.; Saquib, M.; Tiwari, J.; Singh, J.; Singh, J. catalyst-free, glycerol-assisted facile approach to imidazole-fused nitrogen-bridgehead heterocycles. ChemistrySelect, 2017, 2, 6082-6089.

© 2024 Bentham Science Publishers | Privacy Policy