[1]
Capello, C.; Fischer, U.; Hungerbuhler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9, 927-934; b) Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13, 1391-1398; c) Banerjee, B.; Brahmachari, G. Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: An emerging field of green chemistry practice and sustainability. Curr. Green Chem., 2015, 2, 274-305; d) Pena-Pereira, F.; Kloskowski, A.; Namiesnik, J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of eco-friendly alternatives. Green Chem., 2015, 17, 3687-3705.
[2]
Shivhare, K.N.; Jaiswal, M.K.; Srivastava, A.; Tiwari, S.K.; Siddiqui, I.R. Visible-light-activated C-C and C-N bond formation in
the synthesis of imidazo[1,2-a]pyridines and imidazo[2,1-
b]thiazoles under catalyst and solvent-free conditions New J.
Chem, 2018, 42, 16591-16601; b) Shivhare, K.N.; Siddiqui, I.R. β-
Cyclodextrin mediated synthesis of indole derivatives: Reactions of
Isatins with 2-amino(or 2-thiole)anilines by supramolecular catalysis
in water. Supramol. Chem., 2019, 31, 52-61; c) Shivhare, K.N.;
Siddiqui, I.R. Chitosan: A natural and sustainable polymeric organocatalyst
for C-C Bond formation during the synthesis of 5-
amino-2,3-dihydrobenzo[d]thiazole-4,6-dicarbonitriles. Curr. Organocatal doi: 10.2174/2213337205666180925142458; d) Rai, P.;
Sagir, H.; Kumar, A.; Yadav, V.B.; Siddiqui, I.R. Organocatalyzed
synthesis of medicinally important chromeno[2, 3-d]pyrimidinetriones
in biodegradable reaction medium. ChemistrySelect, 2018,
3, 2565 - 2570
[3]
Safaei, R.H.; Shekouhy, M.; Rahmanpur, S.; Shirinfeshan, A. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-Pyrans. Green Chem., 2012, 14, 1696-1704.
[4]
Gu, Y.; Barrault, J.; Jérôme, F. Glycerol as an efficient promoting medium for organic reactions. Adv. Synth. Catal., 2008, 350, 2007-2012.
[5]
Wolfson, A.; Snezhko, A.; Meyouhas, T.; Tavor, D. Glycerol derivatives as green reaction mediums. Green Chem. Lett. Rev., 2012, 5, 7-12.
[6]
Francos, J.; Cadierno, V. Palladium-catalyzed cycloisomerization of (Z)-enynols into furans using green solvents: Glycerol vs. water. Green Chem., 2010, 12, 1552-1555.
[7]
Gu, Y.; Jerome, F. Glycerol as a sustainable solvent for green chemistry. Green Chem., 2010, 12, 1127-1138.
[8]
Reddy, B.V.S.; Venkateswarlu, A.; Reddy, G.N.; Reddy, Y.V.R. Chitosan-SO3H: An efficient, biodegradable and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett., 2013, 54, 5767-5770.
[9]
(a) Refat, H.M.; Mohamed, K.S. Efficient and convenient synthesis of pyrido [2,1-b]benzothiazole, pyrimidopyrido [2,1-b] benzothiazole and benzothiazolo [3,2-a][1,8] naphthyridine derivatives. Heterocycl. Commun., 2015, 21, 219.
(b) Tsuzuki, Y.; Tomita, K.; Sato, Y.; Kashimoto, S.; Chiba, K. Synthesis and structure-activity relationships of 3-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines as novel antitumor agents. Bioorg. Med. Chem. Lett., 2004, 14, 3189.
(c) Seefeld, M.A.; Miller, W.H.; Newlander, K.A.; Burgess, W.J.; Dewolfjr, W.E.; Elkins, P.A.; Head, M.S.; Jakas, D.R.; Janson, C.A.; Keller, P.M.; Manley, P.J.; Moore, T.D.; Payne, D.J.; Pearson, S.; Polizzi, B.J.; Qiu, X.; Rittenhouse, S.F.; Uzinskas, I.N.; Wallis, N.G.; Huffman, W.F. Indole naphthyridinones as inhibitors of bacterial enoyl-ACP reductases FabI and FabK. J. Med. Chem., 2003, 46, 1627.
(d) Roma, G.; Grossi, G.; Braccio, M.D.; Piras, D.; Ballabeni, V.; Tognolini, M.; Bertoni, S.; Barocelli, E. 1,8-Naphthyridines VII. New substituted 5-amino [1,2,4]triazolo [4,3-a][1,8]naphthyridine-6-carboxamides and their isosteric analogues, exhibiting notable anti-inflammatory and/or analgesic activities, but no acute gastrolesivity. Eur. J. Med. Chem., 2008, 43, 1165.
[11]
Goswami, S.V.; Thorat, P.B.; Khade, B.C.; Bhusare, S.R. A convenient one-pot synthesis of 2-amino-4-phenyl-1,8-naphthyridine-3-carbonitrile derivatives. Chem. Biol. Int., 2012, 2, 228-233.
[12]
Atmakuri, N.; Maringanti, C.T. Silica sulfuric acid catalysed synthesis of 1,8-naphthyridines in the solid state under microwave irradiation. OCAIJ, 2014, 10, 5-8.
[13]
Mogilaiah, K.; Reddy, N.V. Microwave induced Friedlander condensation- A facile synthesis of 1,8-naphthyridines. Indian J. Chem., 2002, 41, 215-217.
[14]
Li, B.; Nguyen, S.; Huang, J.; Wang, G.; Wei, H.; Pereshivko, O.P.; Peshkov, V.A. Synthesis of 1,8-naphthyridines from 2-aminonicotinaldehydes and terminal alkynes. Tetrahedron Lett., 2016, 57, 1958-1962.
[15]
Wu, J.; Xia, G.H.; Gao, K. Molecular iodine: A highly efficient catalyst in the synthesis of quinolines via Friedlander annulation. Org. Biomol. Chem., 2006, 4, 126-129.
[16]
Jia, S.C.; Zhang, Z.; Tu, J.S.; Wang, W.G. Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: Comparative study of microwave irradiation versus conventional heating. Org. Biomol. Chem., 2006, 4, 104-110.
[18]
Tufail, F.; Singh, S.; Saquib, M.; Tiwari, J.; Singh, J.; Singh, J. catalyst-free, glycerol-assisted facile approach to imidazole-fused nitrogen-bridgehead heterocycles. ChemistrySelect, 2017, 2, 6082-6089.