Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Vanadium and Oxidative Stress Markers - In Vivo Model: A Review

Author(s): Agnieszka Ścibior* and Joanna Kurus

Volume 26, Issue 29, 2019

Page: [5456 - 5500] Pages: 45

DOI: 10.2174/0929867326666190108112255

Price: $65

Abstract

This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.

Keywords: Vanadium, oxidative stress markers, animal studies, magnesium, interactions, reactive oxygen species (ROS), lipid peroxidation (LPO), antioxidants

[1]
Barceloux, D.G. Vanadium. J. Toxicol. Clin. Toxicol., 1999, 37(2), 265-278.
[http://dx.doi.org/10.1081/CLT-100102425] [PMID: 10382561]
[2]
Nechay, B.R. Mechanisms of action of vanadium. Annu. Rev. Pharmacol. Toxicol., 1984, 24, 501-524.
[http://dx.doi.org/10.1146/annurev.pa.24.040184.002441] [PMID: 6145387]
[3]
Goc, A. Biological activity of vanadium compounds. Cent. Eur. J. Biol., 2006, 1(3), 314-332.
[4]
Fortoul, T.I.; Rojas-Lemus, M.; Rodriguez-Lara, V.; Gonzalez-Villalva, A.; Ustarroz-Cano, M.; Cano-Gutierrez, G.; Gonzalez-Rendon, S.E.; Montaño, L.F.; Altamirano-Lozano, M. Overview of environmental and occupational vanadium exposure and associated health outcomes: an article based on a presentation at the 8th International Symposium on Vanadium Chemistry, Biological Chemistry, and Toxicology, Washington DC, August 15-18, 2012. J. Immunotoxicol., 2014, 11(1), 13-18.
[http://dx.doi.org/10.3109/1547691X.2013.789940] [PMID: 23659523]
[5]
Crans, D.C. Antidiabetic, chemical, and physical properties of organic vanadates as presumed transition-state inhibitors for phosphatases. J. Org. Chem., 2015, 80(24), 11899-11915.
[http://dx.doi.org/10.1021/acs.joc.5b02229] [PMID: 26544762]
[6]
Thompson, K.H.; Orvig, C. Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coord. Chem. Rev., 2001, 219-221, 1033-1053.
[http://dx.doi.org/10.1016/S0010-8545(01)00395-2]
[7]
Zaporowska, H.; Ścibior, A. Vanadium and its significance in animal cell metabolism. In: Vanadium in the Environment. Part 2: Health Effects; Nriagu, J.O., Ed.; John Wiley & Sons: New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1998; Vol. 31, pp. 121-133.
[8]
Byczkowski, J.Z.; Kulkarni, A.P. Oxidative stress and pro-oxidant biological effects of vanadium. In: Vanadium in the Environment. Part 2: Health Effects; Nriagu, J.O., Ed.; John Wiley & Sons: New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1998; Vol. 31, pp. 235-264.
[9]
Niki, E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic. Biol. Med., 2009, 47(5), 469-484.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.032] [PMID: 19500666]
[10]
Rehder, D. The potentiality of vanadium in medicinal applications. Future Med. Chem., 2012, 4(14), 1823-1837.
[http://dx.doi.org/10.4155/fmc.12.103] [PMID: 23043479]
[11]
Rehder, D. The future of/for vanadium. Dalton Trans., 2013, 42(33), 11749-11761.
[http://dx.doi.org/10.1039/c3dt50457c] [PMID: 23567506]
[12]
Rehder, D. The role of vanadium in biology. Metallomics, 2015, 7(5), 730-742.
[http://dx.doi.org/10.1039/C4MT00304G] [PMID: 25608665]
[13]
Rehder, D. Perspectives for vanadium in health issues. Future Med. Chem., 2016, 8(3), 325-338.
[http://dx.doi.org/10.4155/fmc.15.187] [PMID: 26898507]
[14]
Nriagu, J.O. Vanadium in the Environment. Part 2: Health Effects; John Wiley & Sons: New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1998.
[15]
Rehder, D. Implications of vanadium in technical applications and pharmaceutical issues. Inorg. Chim. Acta, 2017, 455, 378-389.
[http://dx.doi.org/10.1016/j.ica.2016.06.021]
[16]
Rehder, D. Vanadium. Its role for humans. Met. Ions Life Sci., 2013, 13, 139-169.
[http://dx.doi.org/10.1007/978-94-007-7500-8_5] [PMID: 24470091]
[17]
Tandon, V.; Gupta, B.M.; Tandon, R. Free radicals/reactive oxygen species. JK Pract., 2005, 12(3), 143-148.
[18]
Rutkowska, M.; Iskra, M. History of the effect of oxidative stress on modification of proteins. Nowiny Lek., 2007, 76, 70-72.
[19]
Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie, 2nd ed; Wyd. Nauk. PWN: Warszawa, 2013.
[20]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[21]
Repetto, M.; Semprine, J.; Boveris, A. Lipid peroxidation: chemical mechanism, biological implications and analytical determination.Lipid Peroxidation; Catala, A., Ed.; IntechOpen: London, 2012, pp. 1-30.
[http://dx.doi.org/10.5772/45943]
[22]
Catalá, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids, 2009, 157(1), 1-11.
[http://dx.doi.org/10.1016/j.chemphyslip.2008.09.004] [PMID: 18977338]
[23]
Gutteridge, J.M.C. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem., 1995, 41(12 Pt 2), 1819-1828.
[PMID: 7497639]
[24]
Niki, E. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett., 2012, 586(21), 3767-3770.
[http://dx.doi.org/10.1016/j.febslet.2012.09.025] [PMID: 23022561]
[25]
Singhal, S.S.; Singh, S.P.; Singhal, P.; Horne, D.; Singhal, J.; Awasthi, S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol. Appl. Pharmacol., 2015, 289(3), 361-370.
[http://dx.doi.org/10.1016/j.taap.2015.10.006] [PMID: 26476300]
[26]
Chen, Z.H.; Niki, E. Two faces of lipid peroxidation products: the ‘Yin and Yang” principles of oxidative stress. J. Exp. Integr. Med., 2011, 1, 215-219.
[http://dx.doi.org/10.5455/jeim.300711.ir.007]
[27]
Ramana, K.V.; Srivastava, S.; Singhal, S.S. Lipid peroxidation products in human health and disease 2016. Oxid. Med. Cell. Longev., 2017, 20172163285
[http://dx.doi.org/10.1155/2017/2163285] [PMID: 28337246]
[28]
Schaich, K.M. Metals and lipid oxidation. Contemporary issues. Lipids, 1992, 27(3), 209-218.
[http://dx.doi.org/10.1007/BF02536181] [PMID: 1522766]
[29]
Ścibior, A.; Gołębiowska, D.; Niedźwiecka, I.; Adamczyk, A. Inhibitory and stimulating effect of magnesium on vanadate-induced lipid peroxidation under in vitro conditions. Indian J. Exp. Biol., 2013, 51(9), 721-731.
[PMID: 24377132]
[30]
Donaldson, J.; LaBella, F. Prooxidant properties of vanadate in vitro on catecholamines and on lipid peroxidation by mouse and rat tissues. J. Toxicol. Environ. Health, 1983, 12(1), 119-126.
[http://dx.doi.org/10.1080/15287398309530411] [PMID: 6556257]
[31]
Donaldson, J.; Hemming, R.; LaBella, F. Vanadium exposure enhances lipid peroxidation in the kidney of rats and mice. Can. J. Physiol. Pharmacol., 1985, 63(3), 196-199.
[http://dx.doi.org/10.1139/y85-037] [PMID: 3845830]
[32]
Zychlinski, L.; Byczkowski, J.Z.; Kulkarni, A.P. Toxic effects of long-term intratracheal administration of vanadium pentoxide in rats. Arch. Environ. Contam. Toxicol., 1991, 20(3), 295-298.
[http://dx.doi.org/10.1007/BF01064393] [PMID: 1859204]
[33]
Younes, M.; Strubelt, O. Vanadate-induced toxicity towards isolated perfused rat livers: the role of lipid peroxidation. Toxicology, 1991, 66(1), 63-74.
[http://dx.doi.org/10.1016/0300-483X(91)90178-4] [PMID: 1996468]
[34]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[35]
Tas, S.; Sarandol, E.; Ziyanok-Ayvalik, S.; Ocak, N.; Serdar, Z.; Dirican, M. Vanadyl sulfate treatment improves oxidative stress and increases serum paraoxonase activity in streptozotocin-induced diabetic rats. Nutr. Res., 2006, 26, 670-676.
[http://dx.doi.org/10.1016/j.nutres.2006.09.022]
[36]
Tunali, S.; Yanardag, R. Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacol. Res., 2006, 53(3), 271-277.
[http://dx.doi.org/10.1016/j.phrs.2005.12.004] [PMID: 16431126]
[37]
Zaporowska, H.; Wasilewski, W.; Słotwińska, M. Effect of chronic vanadium administration in drinking water to rats. Biometals, 1993, 6(1), 3-10.
[http://dx.doi.org/10.1007/BF00154226] [PMID: 8471823]
[38]
Zaporowska, H.; Ścibior, A.; Słotwińska, M. Some selected blood parameters in the rats intoxicated with vanadium and selenium. Pol. J. Environ. Stud., 1997, 6, 206-209.
[39]
Thompson, K.H.; McNeill, J.H. Effect of vanadyl sulfate feeding on susceptibility to peroxidative change in diabetic rats. Res. Commun. Chem. Pathol. Pharmacol., 1993, 80(2), 187-200.
[PMID: 8100638]
[40]
Russanov, E.; Zaporowska, H.; Ivancheva, E.; Kirkova, M.; Konstantinova, S. Lipid peroxidation and antioxidant enzymes in vanadate-treated rats. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol., 1994, 107(3), 415-421.
[http://dx.doi.org/10.1016/1367-8280(94)90070-1] [PMID: 8061948]
[41]
Sekar, N.; Kanthasamy, A.; William, S.; Balasubramaniyan, N.; Govindasamy, S. Antioxidant effect of vanadate on experimental diabetic rats. Acta Diabetol. Lat., 1990, 27(4), 285-293.
[http://dx.doi.org/10.1007/BF02580932] [PMID: 2087929]
[42]
Aydin, A.; Sayal, A.; Sayin, S.; Erdem, O. An investigation on the relationship between vanadium and antioxidative enzyme system in rats. Turk. J. Pharm. Sci., 2005, 2, 17-24.
[43]
Soussi, A.; Croute, F.; Soleilhavoup, J.P.; Kammoun, A.; El-Feki, A. [Impact of green tea on oxidative stress induced by ammonium metavanadate exposure in male rats C. R. Biol., 2006, 329(10), 775-784.
[http://dx.doi.org/10.1016/j.crvi.2006.07.004] [PMID: 17027638]
[44]
Sánchez-González, C.; Bermudez-Peña, C.; Trenzado, C.E.; Goenaga-Infante, H.; Montes-Bayon, M.; Sanz-Medel, A.; Llopis, J. Changes in the antioxidant defence and in selenium concentration in tissues of vanadium exposed rats. Metallomics, 2012, 4(8), 814-819.
[http://dx.doi.org/10.1039/c2mt20066j] [PMID: 22678714]
[45]
Ramachandran, B.; Ravi, K.; Narayanan, V.; Kandaswamy, M.; Subramanian, S. Effect of macrocyclic binuclear oxovanadium complex on tissue defense system in streptozotocin-induced diabetic rats. Clin. Chim. Acta, 2004, 345(1-2), 141-150.
[http://dx.doi.org/10.1016/j.cccn.2004.03.014] [PMID: 15193989]
[46]
Zaporowska, H.; Ścibior, A. Lipid peroxidation in liver and kidneys of rats intoxicated with vanadium. Acta Polon. Toxicol., 1997, 5, 35-40.
[47]
Kamal, M.; Tamara, S.; Shaban, D. Investigation of antioxidant system activity in rats liver exposed to ammonium metavanadate and/or nickel sulfate. Adv. Environ. Biol., 2012, 6, 24-32.
[48]
Bishayee, A.; Oinam, S.; Basu, M.; Chatterjee, M. Vanadium chemoprevention of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis: probable involvement of representative hepatic phase I and II xenobiotic metabolizing enzymes. Breast Cancer Res. Treat., 2000, 63(2), 133-145.
[http://dx.doi.org/10.1023/A:1006476003685] [PMID: 11097089]
[49]
Elfant, M.; Keen, C.L. Sodium vanadate toxicity in adult and developing rats: Role of peroxidative damage. Biol. Trace Elem. Res., 1987, 14(3), 193-208.
[http://dx.doi.org/10.1007/BF02795686] [PMID: 24254821]
[50]
Oster, M.H.; Llobet, J.M.; Domingo, J.L.; German, J.B.; Keen, C.L. Vanadium treatment of diabetic Sprague-Dawley rats results in tissue vanadium accumulation and pro-oxidant effects. Toxicology, 1993, 83(1-3), 115-130.
[http://dx.doi.org/10.1016/0300-483X(93)90096-B] [PMID: 8248940]
[51]
Shrivastava, S.; Jadon, A.; Shukla, S.; Mathur, R. Chelation therapy and vanadium: effect on reproductive organs in rats. Indian J. Exp. Biol., 2007, 45(6), 515-523.
[PMID: 17585685]
[52]
Shrivastava, S.; Joshi, D.; Bhadauria, M.; Shukla, S.; Mathur, R. Cotherapy of Tiron and selenium against vanadium induced toxic effects in lactating rats. Iran. J. Reprod. Med., 2011, 9(3), 229-238.
[PMID: 26396569]
[53]
Usende, I.L.; Olopade, J.O.; Emikpe, B.O.; Oyagbemi, A.A.; Adedapo, A.A. Oxidative stress changes observed in selected organs of African giant rats (Cricetomys gambianus) exposed to sodium metavanadate. Int. J. Vet. Sci. Med., 2018, 6(1), 80-89.
[http://dx.doi.org/10.1016/j.ijvsm.2018.03.004] [PMID: 30255083]
[54]
Liu, J.; Cui, H.; Liu, X.; Peng, X.; Deng, J.; Zuo, Z.; Cui, W.; Deng, Y.; Wang, K. Dietary high vanadium causes oxidative damage-induced renal and hepatic toxicity in broilers. Biol. Trace Elem. Res., 2012, 145(2), 189-200.
[http://dx.doi.org/10.1007/s12011-011-9185-8] [PMID: 21882068]
[55]
Gândara, R.M.C.; Soares, S.S.; Martins, H. Gutiérrez- Merino, C.; Aureliano, M. Vanadate oligomers: in vivo effects in hepatic vanadium accumulation and stress markers. J. Inorg. Biochem., 2005, 99(5), 1238-1244.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.02.023] [PMID: 15833347]
[56]
Soussi, A.; Murat, J.C.; Gaubin, Y.; Croute, F.; Soleilhavoup, J.P.; El-Feki, A. Green tea drinking reduces the effects of vanadium poisoning in rat kidney. Food Sci. Technol. Res., 2009, 15, 413-422.
[http://dx.doi.org/10.3136/fstr.15.413]
[57]
Folarin, O.R.; Adaramoye, O.A.; Akanni, O.O.; Olopade, J.O. Changes in the brain antioxidant profile after chronic vanadium administration in mice. Metab. Brain Dis., 2018, 33(2), 377-385.
[http://dx.doi.org/10.1007/s11011-017-0070-9] [PMID: 28744799]
[58]
Haider, S.S.; Abdel-Gayoum, A.A.; el-Fakhri, M.; Ghwarsha, K.M. Effect of selenium on vanadium toxicity in different regions of rat brain. Hum. Exp. Toxicol., 1998, 17(1), 23-28.
[http://dx.doi.org/10.1177/096032719801700104] [PMID: 9491334]
[59]
Aureliano, M.; Joaquim, N.; Sousa, A.; Martins, H.; Coucelo, J.M. Oxidative stress in toadfish (Halobactrachus didactylus) cardiac muscle. Acute exposure to vanadate oligomers. J. Inorg. Biochem., 2002, 90(3-4), 159-165.
[http://dx.doi.org/10.1016/S0162-0134(02)00414-2] [PMID: 12031809]
[60]
Soares, S.S.; Martins, H.; Gutiérrez-Merino, C.; Aureliano, M. Vanadium and cadmium in vivo effects in teleost cardiac muscle: metal accumulation and oxidative stress markers. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2008, 147(2), 168-178.
[http://dx.doi.org/10.1016/j.cbpc.2007.09.003] [PMID: 17920336]
[61]
Soares, S.S.; Martins, H.; Duarte, R.O.; Moura, J.J.G.; Coucelo, J.; Gutiérrez-Merino, C.; Aureliano, M. Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration. J. Inorg. Biochem., 2007, 101(1), 80-88.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.08.002] [PMID: 17030392]
[62]
Sheriff, D.S. Effect of vanadium on rat liver and testicular glutathione (GSH) and lipid peroxide levels. Reprod. Toxicol., 1991, 5(6), 513-515.
[http://dx.doi.org/10.1016/0890-6238(91)90023-9] [PMID: 1810577]
[63]
Chandra, A.K.; Ghosh, R.; Chatterjee, A.; Sarkar, M. Effects of vanadate on male rat reproductive tract histology, oxidative stress markers and androgenic enzyme activities. J. Inorg. Biochem., 2007, 101(6), 944-956.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.03.003] [PMID: 17475337]
[64]
Chandra, A.K.; Ghosh, R.; Chatterjee, A.; Sarkar, M. Amelioration of vanadium-induced testicular toxicity and adrenocortical hyperactivity by vitamin E acetate in rats. Mol. Cell. Biochem., 2007, 306(1-2), 189-200.
[http://dx.doi.org/10.1007/s11010-007-9569-4] [PMID: 17668152]
[65]
Ramachandran, B.; Ravi, K.; Narayanan, V.; Kandaswamy, M.; Subramanian, S. Protective effect of macrocyclic binuclear oxovanadium complex on oxidative stress in pancreas of streptozotocin induced diabetic rats. Chem. Biol. Interact., 2004, 149(1), 9-21.
[http://dx.doi.org/10.1016/j.cbi.2004.06.007] [PMID: 15356917]
[66]
Deng, Y.; Cui, H.; Peng, X.; Fang, J.; Wang, K.; Cui, W.; Liu, X. Dietary vanadium induces oxidative stress in the intestine of broilers. Biol. Trace Elem. Res., 2012, 145(1), 52-58.
[http://dx.doi.org/10.1007/s12011-011-9163-1] [PMID: 21809051]
[67]
Ścibior, A.; Gołębiowska, D.; Adamczyk, A.; Kurus, J.; Staniszewska, M.; Sadok, I. Evaluation of lipid peroxidation and antioxidant defense mechanisms in the bone of rats in conditions of separate and combined administration of vanadium (V) and magnesium (Mg). Chem. Biol. Interact., 2018, 284, 112-125.
[http://dx.doi.org/10.1016/j.cbi.2018.02.016] [PMID: 29453945]
[68]
Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem., 2005, 12(10), 1161-1208.
[http://dx.doi.org/10.2174/0929867053764635] [PMID: 15892631]
[69]
Lee, J.C.; Son, Y.O.; Pratheeshkumar, P.; Shi, X. Oxidative stress and metal carcinogenesis. Free Radic. Biol. Med., 2012, 53(4), 742-757.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.002] [PMID: 22705365]
[70]
Hodgson, E.K.; Fridovich, I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry, 1975, 14(24), 5294-5299.
[http://dx.doi.org/10.1021/bi00695a010] [PMID: 49]
[71]
Bray, R.C.; Cockle, S.A.; Fielden, E.M.; Roberts, P.B.; Rotilio, G.; Calabrese, L. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem. J., 1974, 139(1), 43-48.
[http://dx.doi.org/10.1042/bj1390043] [PMID: 4377099]
[72]
Blech, D.M.; Borders, C.L. Jr Hydroperoxide anion, HO-2, is an affinity reagent for the inactivation of yeast Cu, Zn superoxide dismutase: modification of one histidine per subunit. Arch. Biochem. Biophys., 1983, 224(2), 579-586.
[http://dx.doi.org/10.1016/0003-9861(83)90245-X] [PMID: 6347073]
[73]
Uchida, K.; Kawakishi, S. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett., 1993, 332(3), 208-210.
[http://dx.doi.org/10.1016/0014-5793(93)80632-5] [PMID: 8405458]
[74]
Uchida, K.; Kawakishi, S. Identification of oxidized histidine generated at the active site of Cu, Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J. Biol. Chem., 1994, 269(4), 2405-2410.
[PMID: 8300566]
[75]
Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: new roles in redox signaling for an old antioxidant. Front. Pharmacol., 2014, 5, 196.
[http://dx.doi.org/10.3389/fphar.2014.00196] [PMID: 25206336]
[76]
Wielkoszyński, T.; Zawadzki, M.; Lebek-Ordon, J.; Olek, J.; Korzonek-Szlacheta, I. Enzymatic antioxidative systems - properties, occurrence and biological role. Diagn. Lab., 2007, 43, 283-294.
[77]
Zaporowska, H. The role of vanadium in animal cell metabolism. Post. Biol. Kom., 1995, 22, 149-165.
[78]
Kono, Y.; Fridovich, I. Superoxide radical inhibits catalase. J. Biol. Chem., 1982, 257(10), 5751-5754.
[PMID: 6279612]
[79]
Aureliano, M.; Ohlin, C.A. Decavanadate in vitro and in vivo effects: facts and opinions. J. Inorg. Biochem., 2014, 137, 123-130.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.05.002] [PMID: 24865633]
[80]
Board, P.G.; Menon, D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta, 2013, 1830(5), 3267-3288.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.019] [PMID: 23201197]
[81]
Fransen, M.; Nordgren, M.; Wang, B.; Apanasets, O. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim. Biophys. Acta, 2012, 1822(9), 1363-1373.
[http://dx.doi.org/10.1016/j.bbadis.2011.12.001] [PMID: 22178243]
[82]
Gómez-Manzo, S.; Marcial-Quino, J.; Vanoye-Carlo, A.; Serrano-Posada, H.; Ortega-Cuellar, D.; González-Valdez, A.; Castillo-Rodríguez, R.A.; Hernández-Ochoa, B.; Sierra-Palacios, E.; Rodríguez-Bustamante, E.; Arreguin-Espinosa, R. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int. J. Mol. Sci., 2016, 17(12), 1-15.
[http://dx.doi.org/10.3390/ijms17122069] [PMID: 27941691]
[83]
Guz, J.; Dziaman, T.; Szpila, A. Do antioxidant vitamins influence carcinogenesis? Postepy Hig. Med. Dosw., 2007, 61, 185-198.
[84]
Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857] [PMID: 15822171]
[85]
Imai, H.; Nakagawa, Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med., 2003, 34(2), 145-169.
[http://dx.doi.org/10.1016/S0891-5849(02)01197-8] [PMID: 12521597]
[86]
Łukaszewicz-Hussain, A. The role of glutathione and glutathione-related enzymes in antioxidative process Med. Pr., 2003, 54(5), 473-479.
[PMID: 14978897]
[87]
Marchewka, Z.; Piwowar, A.; Ruzik, S.; Długosz, A. Glutathione S - transferases class Pi and Mi and their significance in oncolog. Postepy Hig. Med. Dosw., 2017, 71, 541-550.
[PMID: 28665283]
[88]
Marí, M.; Morales, A.; Colell, A.; García-Ruiz, C.; Fernández-Checa, J.C. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal., 2009, 11(11), 2685-2700.
[http://dx.doi.org/10.1089/ars.2009.2695] [PMID: 19558212]
[89]
Raza, H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J., 2011, 278(22), 4243-4251.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08358.x] [PMID: 21929724]
[90]
Rogers, L.K.; Gupta, S.; Welty, S.E.; Hansen, T.N.; Smith, C.V. Nuclear and nucleolar glutathione reductase, peroxidase, and transferase activities in livers of male and female Fischer-344 rats. Toxicol. Sci., 2002, 69(1), 279-285.
[http://dx.doi.org/10.1093/toxsci/69.1.279] [PMID: 12215683]
[91]
Roncalli, V.; Cieslak, M.C.; Passamaneck, Y.; Christie, A.E.; Lenz, P.H. Glutathione S-transferase (GST) gene diversity in the crustacean Calanus finmarchicus – contributors to cellular detoxification. PLoS One, 2015, 10(5)e0123322
[http://dx.doi.org/10.1371/journal.pone.0123322] [PMID: 25945801]
[92]
Ścibior, D.; Czeczot, H. Catalase: structure, properties, functions. Hig. Med. Progress, 2006, 60, 170-180.
[PMID: 16618987]
[93]
Wu, B.; Dong, D. Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol. Sci., 2012, 33(12), 656-668.
[http://dx.doi.org/10.1016/j.tips.2012.09.007] [PMID: 23121834]
[94]
Blum, J.; Fridovich, I. Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys., 1985, 240(2), 500-508.
[http://dx.doi.org/10.1016/0003-9861(85)90056-6] [PMID: 2992378]
[95]
Fuchs, H.J.R.; Borders, C.L. Jr Affinity inactivation of bovine Cu,Zn superoxide dismutase by hydroperoxide anion, HO2-. Biochem. Biophys. Res. Commun., 1983, 116(3), 1107-1113.
[http://dx.doi.org/10.1016/S0006-291X(83)80256-3] [PMID: 6651842]
[96]
Pigeolet, E.; Corbisier, P.; Houbion, A.; Lambert, D.; Michiels, C.; Raes, M.; Zachary, M.D.; Remacle, J. Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech. Ageing Dev., 1990, 51(3), 283-297.
[http://dx.doi.org/10.1016/0047-6374(90)90078-T] [PMID: 2308398]
[97]
Savvides, S.N.; Scheiwein, M.; Böhme, C.C.; Arteel, G.E.; Karplus, P.A.; Becker, K.; Schirmer, R.H. Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J. Biol. Chem., 2002, 277(4), 2779-2784.
[http://dx.doi.org/10.1074/jbc.M108190200] [PMID: 11705998]
[98]
Shen, H.X.; Tamai, K.; Satoh, K.; Hatayama, I.; Tsuchida, S.; Sato, K. Modulation of class Pi glutathione transferase activity by sulfhydryl group modification. Arch. Biochem. Biophys., 1991, 286(1), 178-182.
[http://dx.doi.org/10.1016/0003-9861(91)90025-E] [PMID: 1897944]
[99]
Sinet, P.M.; Garber, P. Inactivation of the human CuZn superoxide dismutase during exposure to O-2 and H2O2. Arch. Biochem. Biophys., 1981, 212(2), 411-416.
[http://dx.doi.org/10.1016/0003-9861(81)90382-9] [PMID: 6275795]
[100]
Symonyan, M.A.; Nalbandyan, R.M. Interaction of hydrogen peroxide with superoxide dismutase from erythrocytes. FEBS Lett., 1972, 28(1), 22-24.
[http://dx.doi.org/10.1016/0014-5793(72)80667-7] [PMID: 4345871]
[101]
Shen, H.; Tsuchida, S.; Tamai, K.; Sato, K. Identification of cysteine residues involved in disulfide formation in the inactivation of glutathione transferase P-form by hydrogen peroxide. Arch. Biochem. Biophys., 1993, 300(1), 137-141.
[http://dx.doi.org/10.1006/abbi.1993.1019] [PMID: 8424645]
[102]
Sluis-Cremer, N.; Naidoo, N.; Dirr, H. Class-pi glutathione S-transferase is unable to regain its native conformation after oxidative inactivation by hydrogen peroxide. Eur. J. Biochem., 1996, 242(2), 301-307.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0301r.x] [PMID: 8973647]
[103]
Apella, M.C.; González, S.N.; Baran, E.J. The inhibitory effect of vanadium oxoanions on the activity of copper-zinc superoxide dismutase. Biol. Trace Elem. Res., 1988, 18, 123-130.
[http://dx.doi.org/10.1007/BF02917496] [PMID: 2484557]
[104]
Rehder, D. Vanadium. Its role for humans. Met. Ions Life Sci., 2013, 13, 139-169.
[http://dx.doi.org/10.1007/978-94-007-7500-8_5] [PMID: 24470091]
[105]
Serra, M.A.; Pintar, A.; Casella, L.; Sabbioni, E. Vanadium effect on the activity of horseradish peroxidase, catalase, glutathione peroxidase, and superoxide dismutase in vitro. J. Inorg. Biochem., 1992, 46(3), 161-174.
[http://dx.doi.org/10.1016/0162-0134(92)80027-S] [PMID: 1325536]
[106]
Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta, 2013, 1830(5), 3217-3266.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.018] [PMID: 23036594]
[107]
Cohen, M.D.; Sen, A.C.; Wie, C.I. Ammonium metavanadate complexation with glutathione disulfide: a contribution to the inhibition of glutathione reductase. Inorg. Chim. Acta, 1987, 138, 91-93.
[http://dx.doi.org/10.1016/S0020-1693(00)81187-1]
[108]
Cohen, M.D.; Sen, A.C.; Wie, C.I. Vanadium inhibition of yeast glucose-6-phosphate dehydrogenase. Inorg. Chim. Acta, 1987, 138, 179-186.
[http://dx.doi.org/10.1016/S0020-1693(00)81220-7]
[109]
Tamai, K.; Shen, H.X.; Tsuchida, S.; Hatayama, I.; Satoh, K.; Yasui, A.; Oikawa, A.; Sato, K. Role of cysteine residues in the activity of rat glutathione transferase P (7-7): elucidation by oligonucleotide site-directed mutagenesis. Biochem. Biophys. Res. Commun., 1991, 179(2), 790-797.
[http://dx.doi.org/10.1016/0006-291X(91)91886-H] [PMID: 1898401]
[110]
Yoshinaga, M.; Ueki, T.; Yamaguchi, N.; Kamino, K.; Michibata, H. Glutathione transferases with vanadium-binding activity isolated from the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim. Biophys. Acta, 2006, 1760(3), 495-503.
[http://dx.doi.org/10.1016/j.bbagen.2006.01.008] [PMID: 16503380]
[111]
Yoshinaga, M.; Ueki, T.; Michibata, H.; Michibata, H. Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum. Biochim. Biophys. Acta, 2007, 1770(9), 1413-1418.
[http://dx.doi.org/10.1016/j.bbagen.2007.05.007] [PMID: 17602839]
[112]
Francik, R.; Krośniak, M.; Barlik, M.; Kudła, A.; Gryboś, R.; Librowski, T. Impact of vanadium complexes treatment on the oxidative stress factors in wistar rats plasma. Bioinorg. Chem. Appl., 2011, 2011206316
[http://dx.doi.org/10.1155/2011/206316] [PMID: 22007153]
[113]
Gupta, B.L.; Preet, A.; Baquer, N.Z. Protective effects of sodium orthovanadate in diabetic reticulocytes and ageing red blood cells of Wistar rats. J. Biosci., 2004, 29(1), 73-79.
[http://dx.doi.org/10.1007/BF02702564] [PMID: 15286406]
[114]
Cohen, M.D.; Wei, C.I. Effects of ammonium metavanadate treatment upon macrophage glutathione redox cycle activity, superoxide production, and intracellular glutathione status. J. Leukoc. Biol., 1988, 44(2), 122-129.
[http://dx.doi.org/10.1002/jlb.44.2.122] [PMID: 2841397]
[115]
Saxena, A.K.; Srivastava, P.; Kale, R.K.; Baquer, N.Z. Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem. Pharmacol., 1993, 45(3), 539-542.
[http://dx.doi.org/10.1016/0006-2952(93)90124-F] [PMID: 8442752]
[116]
Bishayee, A.; Chatterjee, M. Selective enhancement of glutathione S-transferase activity in liver and extrahepatic tissues of rat following oral administration of vanadate. Acta Physiol. Pharmacol. Bulg., 1993, 19(3), 83-89.
[PMID: 8203278]
[117]
Bishayee, A.; Chatterjee, M. Time course effects of vanadium supplement on cytosolic reduced glutathione level and glutathione S-transferase activity. Biol. Trace Elem. Res., 1995, 48(3), 275-285.
[http://dx.doi.org/10.1007/BF02789409] [PMID: 9398947]
[118]
Basak, R.; Basu, M.; Chatterjee, M. Combined supplementation of vanadium and 1α,25-dihydroxyvitamin D(3) inhibit diethylnitrosamine-induced rat liver carcinogenesis. Chem. Biol. Interact., 2000, 128(1), 1-18.
[http://dx.doi.org/10.1016/S0009-2797(00)00183-6] [PMID: 10996297]
[119]
Chakraborty, T.; Ghosh, S.; Datta, S.; Chakraborty, P.; Chatterjee, M. Vanadium suppresses sister-chromatid exchange and DNA-protein crosslink formation and restores antioxidant status and hepatocellular architecture during 2-acetylaminofluorene-induced experimental rat hepatocarcinogenesis. J. Exp. Ther. Oncol., 2003, 3(6), 346-362.
[http://dx.doi.org/10.1111/j.1533-869X.2003.01107.x] [PMID: 14678523]
[120]
Thompson, K.H.; Leichter, J.; McNeill, J.H. Studies of vanadyl sulfate as a glucose-lowering agent in STZ-diabetic rats. Biochem. Biophys. Res. Commun., 1993, 197(3), 1549-1555.
[http://dx.doi.org/10.1006/bbrc.1993.2654] [PMID: 8280174]
[121]
Yilmaz-Ozden, T.; Kurt-Sirin, O.; Tunali, S.; Akev, N.; Can, A.; Yanardag, R. Effect of oral vanadium supplementation on oxidative stress factors in the lung tissue of diabetic rats. Trace Elem. Electrolytes, 2014, 31, 48-52.
[http://dx.doi.org/10.5414/TEX01317]
[122]
Yilmaz-Ozden, T.; Kurt-Sirin, O.; Tunali, S.; Akev, N.; Can, A.; Yanardag, R. Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats. Bosn. J. Basic Med. Sci., 2014, 14(2), 105-109.
[http://dx.doi.org/10.17305/bjbms.2014.2273] [PMID: 24856383]
[123]
Kanna, P.S.; Mahendrakumar, C.B.; Indira, B.N.; Srivastawa, S.; Kalaiselvi, K.; Elayaraja, T.; Chatterjee, M. Chemopreventive effects of vanadium toward 1,2-dimethylhydrazine-induced genotoxicity and preneoplastic lesions in rat colon. Environ. Mol. Mutagen., 2004, 44(2), 113-118.
[http://dx.doi.org/10.1002/em.20038] [PMID: 15278915]
[124]
Dickinson, D.A.; Forman, H.J. Cellular glutathione and thiols metabolism. Biochem. Pharmacol., 2002, 64(5-6), 1019-1026.
[http://dx.doi.org/10.1016/S0006-2952(02)01172-3] [PMID: 12213601]
[125]
Younes, M.; Siegers, C.P. Lipid peroxidation as a consequence of glutathione depletion in rat and mouse liver. Res. Commun. Chem. Pathol. Pharmacol., 1980, 27(1), 119-128.
[PMID: 7360992]
[126]
Pessoa, J.C.; Tomaz, I.; Kiss, T.; Kiss, E.; Buglyó, P. The systems V(IV)O(2+)-glutathione and related ligands: a potentiometric and spectroscopic study. J. Biol. Inorg. Chem., 2002, 7(3), 225-240.
[http://dx.doi.org/10.1007/s007750100289] [PMID: 11935347]
[127]
Saeki, K.; Nakajima, M.; Noda, K.; Loughlin, T.R.; Baba, N.; Kiyota, M.; Tatsukawa, R.; Calkins, D.G. Vanadium accumulation in pinnipeds. Arch. Environ. Contam. Toxicol., 1999, 36(1), 81-86.
[http://dx.doi.org/10.1007/s002449900445] [PMID: 9828265]
[128]
Sakurai, H. Vanadium distribution in rats and DNA cleavage by vanadyl complex: Implication for vanadium toxicity and biological effects. Environ. Health Perspect., 1994, 102(Suppl. 3), 35-36.
[PMID: 7843133]
[129]
Crans, D.C.; Zhang, B.; Gaidamauskas, E.; Keramidas, A.D.; Willsky, G.R.; Roberts, C.R. Is vanadate reduced by thiols under biological conditions? Changing the redox potential of V(V)/V(IV) by complexation in aqueous solution. Inorg. Chem., 2010, 49(9), 4245-4256.
[http://dx.doi.org/10.1021/ic100080k] [PMID: 20359175]
[130]
Baran, E.J. Vanadium detoxification.Vanadium in the Environment. Part 2: Health Effects; Nriagu, J.O., Ed.; John Wiley & Sons: New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1998, Vol. 31, pp. 317-345.
[131]
Baran, E.J. Oxovanadium(IV) and oxovanadium(V) complexes relevant to biological systems. J. Inorg. Biochem., 2000, 80(1-2), 1-10.
[http://dx.doi.org/10.1016/S0162-0134(00)00032-5] [PMID: 10885456]
[132]
Baran, E.J. Model studies related to vanadium biochemistry: recent advances and perspectives. K. Braz. Chem. Soc., 2003, 14, 878-888.
[http://dx.doi.org/10.1590/S0103-50532003000600004]
[133]
Cremer, K.D. Speciation of vanadium. Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine, and Occupational Health; Cornelis, R.; Caruso, J.; Crews, H; Heumann, K., Ed.; John Wiley & Sons, 2005, pp. 464-487.
[http://dx.doi.org/10.1002/0470856009.ch2u]
[134]
Nechay, B.R.; Nanninga, L.B.; Nechay, P.S.E. Vanadyl (IV) and vanadate (V) binding to selected endogenous phosphate, carboxyl, and amino ligands; calculations of cellular vanadium species distribution. Arch. Biochem. Biophys., 1986, 251(1), 128-138.
[http://dx.doi.org/10.1016/0003-9861(86)90059-7] [PMID: 3789729]
[135]
Nemet, I.; Monnier, V.M. Vitamin C degradation products and pathways in the human lens. J. Biol. Chem., 2011, 286(43), 37128-37136.
[http://dx.doi.org/10.1074/jbc.M111.245100] [PMID: 21885436]
[136]
Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic. Biol. Med., 2000, 29(11), 1106-1114.
[http://dx.doi.org/10.1016/S0891-5849(00)00394-4] [PMID: 11121717]
[137]
Baran, E.J. Vanadium detoxification: chemical and biochemical aspects. Chem. Biodivers., 2008, 5(8), 1475-1484.
[http://dx.doi.org/10.1002/cbdv.200890136] [PMID: 18729109]
[138]
Baran, E.J. Oxovanadium(IV) complexes of carbohydrates: a brief overview. J. Inorg. Biochem., 2009, 103(4), 547-553.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.10.008] [PMID: 19027960]
[139]
Ferrer, E.G.; Baran, E.J. Reduction of vanadium(V) with ascorbic acid and isolation of the generated oxovanadium(IV) species. Biol. Trace Elem. Res., 2001, 83(2), 111-119.
[http://dx.doi.org/10.1385/BTER:83:2:111] [PMID: 11762528]
[140]
Goda, T.; Sakurai, H.; Yashimura, T. Structure of oxovanadium-glutathione complex and reductive complexation of vanadate (pentavalent vanadium) to oxovanadium by glutathione. J. Chem. Soc. Japan, 1988, 1988(4), 654-661.
[http://dx.doi.org/10.1246/nikkashi.1988.654]
[141]
Legrum, W. The mode of reduction of vanadate(+V) to oxovanadium(+IV) by glutathione and cysteine. Toxicology, 1986, 42(2-3), 281-289.
[http://dx.doi.org/10.1016/0300-483X(86)90016-8] [PMID: 3026064]
[142]
Tasiopoulos, A.J.; Troganis, A.N.; Evangelou, A.; Raptopoulou, C.P.; Terzis, A.; Deligiannakis, Y.; Jabanos, T.A. Synthetic analogues for oxovanadium(IV)-glutathione interaction: An EPR, synthetic and structural study of oxovanadium(IV) compounds with sulfhydryl-containing pseudopeptides and dipeptides. Chemistry, 1999, 5, 910-921.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990301)5:3<910:AID-CHEM910>3.0.CO;2-#]
[143]
Wilkins, P.C.; Johnson, M.D.; Holder, A.A.; Crans, D.C. Reduction of vanadium(V) by L-ascorbic acid at low and neutral pH: kinetic, mechanistic, and spectroscopic characterization. Inorg. Chem., 2006, 45(4), 1471-1479.
[http://dx.doi.org/10.1021/ic050749g] [PMID: 16471958]
[144]
Bolkent, S.; Bolkent, S.; Yanardag, R.; Tunali, S. Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract., 2005, 70(2), 103-109.
[http://dx.doi.org/10.1016/j.diabres.2005.02.003] [PMID: 16188572]
[145]
Yanardag, R.; Bolkent, S.; Karabulut-Bulan, O.; Tunali, S. Effects of vanadyl sulfate on kidney in experimental diabetes. Biol. Trace Elem. Res., 2003, 95(1), 73-85.
[http://dx.doi.org/10.1385/BTER:95:1:73] [PMID: 14555801]
[146]
Chakraborty, D.; Bhattacharyya, A.; Majumdar, K.; Chatterjee, G.C. Effects of chronic vanadium pentoxide administration on L-ascorbic acid metabolism in rats: influence of L-ascorbic acid supplementation. Int. J. Vitam. Nutr. Res., 1977, 47(1), 81-87.
[PMID: 844953]
[147]
Zaporowska, H. Effect of vanadium on L-ascorbic acid concentration in rat tissues. Gen. Pharmacol., 1994, 25(3), 467-470.
[http://dx.doi.org/10.1016/0306-3623(94)90199-6] [PMID: 7926592]
[148]
Zaporowska, H.; Słotwińska, M. [Effect of vanadium on selected biochemical parameters of the blood and internal organs in rats] Rocz. Panstw. Zakl. Hig., 1988, 39, 379-384.
[149]
Zaporowska, H. Effect of chronic vanadium poisoning on rats. Bromatol. Chem. Toxicol., 1991, 24, 139-142.
[150]
Sánchez, C.; Torres, M.; Bermúdez-Peña, M.C.; Aranda, P.; Montes-Bayón, M.; Sanz-Medel, A.; Llopis, J. Bioavailability, tissue distribution and hypoglycaemic effect of vanadium in magnesium-deficient rats. Magnes. Res., 2011, 24(4), 196-208.
[PMID: 22068015]
[151]
Ścibior, A.; Zaporowska, H.; Ostrowski, J. Selected haematological and biochemical parameters of blood in rats after subchronic administration of vanadium and/or magnesium in drinking water. Arch. Environ. Contam. Toxicol., 2006, 51(2), 287-295.
[http://dx.doi.org/10.1007/s00244-005-0126-4] [PMID: 16783625]
[152]
Ścibior, A.; Zaporowska, H.; Niedźwiecka, I. Lipid peroxidation in the liver of rats treated with V and/or Mg in drinking water. J. Appl. Toxicol., 2009, 29(7), 619-628.
[http://dx.doi.org/10.1002/jat.1450] [PMID: 19557770]
[153]
Ścibior, A.; Zaporowska, H.; Niedźwiecka, I. Lipid peroxidation in the kidney of rats treated with V and/or Mg in drinking water. J. Appl. Toxicol., 2010, 30(5), 487-496.
[PMID: 20309841]
[154]
Ścibior, A.; Adamczyk, A.; Gołębiowska, D.; Niedźwiecka, I. Effect of 12-week vanadate and magnesium co-administration on chosen haematological parameters as well as on some indices of iron and copper metabolism and biomarkers of oxidative stress in rats. Environ. Toxicol. Pharmacol., 2012, 34(2), 235-252.
[http://dx.doi.org/10.1016/j.etap.2012.04.006] [PMID: 22561110]
[155]
Ścibior, A.; Gołębiowska, D.; Niedźwiecka, I. Magnesium can protect against vanadium-induced lipid peroxidation in the hepatic tissue. Oxid. Med. Cell. Longev., 2013, 2013802734
[http://dx.doi.org/10.1155/2013/802734] [PMID: 23766862]
[156]
Ścibior, A.; Gołębiowska, D.; Adamczyk, A.; Niedźwiecka, I.; Fornal, E. The renal effects of vanadate exposure: potential biomarkers and oxidative stress as a mechanism of functional renal disorders - preliminary studies. BioMed. Res. Int. Special Issue POMT, 2014, 2014, 1-15.
[157]
Ścibior, A.; Adamczyk, A.; Gołębiowska, D.; Kurus, J. Evaluation of changes in lipid peroxidation and selected elements in rat erythrocytes during separate and combined vanadium and magnesium administration. Chem.-. Biol. Int., 2018, 293, 1-10.
[http://dx.doi.org/10.1016/j.cbi.2018.07.014] [PMID: 30028963]
[158]
Ścibior, A.; Zaporowska, H. Effects of combined vanadate and magnesium treatment on erythrocyte antioxidant defence system in rats. Environ. Toxicol. Pharmacol., 2010, 30(2), 153-161.
[http://dx.doi.org/10.1016/j.etap.2010.05.003] [PMID: 21787646]
[159]
Ścibior, A. Selected parameters of the antioxidant system in rats in the vanadium-selenium and vanadium-zinc interactions. PhD Thesis, The Maria Curie-Skłodowska University: Lublin. 1999.
[160]
Ścibior, A.; Adamczyk, A.; Gołębiowska, D.; Niedźwiecka, I.; Fornal, E. The influence of combined magnesium and vanadate administration on the level of some elements in selected rat organs: V-Mg interactions and the role of iron-essential protein (DMT-1) in the mechanism underlying altered tissues iron level. Metallomics, 2014, 6(4), 907-920.
[http://dx.doi.org/10.1039/C3MT00363A] [PMID: 24549458]
[161]
Ścibior, A.; Adamczyk, A.; Mroczka, R.; Niedźwiecka, I.; Gołębiowska, D.; Fornal, E. Effects of vanadium (V) and magnesium (Mg) on rat bone tissue: mineral status and micromorphology. Consequences of V-Mg interactions. Metallomics, 2014, 6(12), 2260-2278.
[http://dx.doi.org/10.1039/C4MT00234B] [PMID: 25371215]
[162]
Berg, L.R. Effect of diet composition on vanadium toxicity for the chick. Poult. Sci., 1966, 45(6), 1346-1352.
[http://dx.doi.org/10.3382/ps.0451346] [PMID: 5972256]
[163]
Bermúdez-Peña, M.C.; López-Chaves, C.; Llopis, J.; Guerrero-Romero, F.; Montes-Bayón, M.; Sanz-Medel, A.; Sánchez-González, C. Aggravation by vanadium of magnesium deficiency in STZ-induced diabetic rats. Magnes. Res., 2013, 26(2), 74-82.
[PMID: 23823277]
[164]
Matsuda, M.; Mandarino, L.; DeFronzo, R.A. Synergistic interaction of magnesium and vanadate on glucose metabolism in diabetic rats. Metabolism, 1999, 48(6), 725-731.
[http://dx.doi.org/10.1016/S0026-0495(99)90171-3] [PMID: 10381146]
[165]
Kim, H.Y. Statistical notes for clinical researchers: two-way analysis of variance (ANOVA)-exploring possible interaction between factors. Restor. Dent. Endod, 2014, 39(2), 143-147.
[http://dx.doi.org/10.5395/rde.2014.39.2.143] [PMID: 24790929]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy