[1]
Rai VK, Mishra N, Agrawal AK, et al. Novel drug delivery system: An immense hope for diabetics. Drug Deliv 2016; 23(7): 2371-90.
[2]
Fangueiro JF, Silva AM, Garcia ML, et al. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm 2015; 95: 307-22.
[3]
Subramani K, Pathak S, Hosseinkhani H. Recent trends in diabetes treatment using nanotechnology. Dig J Nanomater Biostruct 2012; 7(1): 85-95.
[4]
Zhang W, Du Y, Wang ML. Noninvasive glucose monitoring using saliva nano-biosensor. Sens Biosensing Res 2015; 4: 23-9.
[5]
DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. Nanomed Nanobiotechnol 2015; 7(4): 548-64.
[6]
Piya MK, Tahrani AA, Barnett AH. Emerging treatment options for type 2 diabetes. Br J Clin Pharmacol 2010; 70(5): 631-44.
[7]
Roth GA, Tahiliani S, Neu‐Baker NM, Brenner SA. Hyperspectral microscopy as an analytical tool for nanomaterials. Nanomed Nanobiotechnol 2015; 7(4): 565-79.
[8]
Salek-Maghsoudi A, Vakhshiteh F, Torabi R, et al. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron 2018; 99: 122-35.
[9]
Sadikot SM, Das AK, Wilding J, et al. Consensus recommendations on exploring effective solutions for the rising cost of diabetes. Diabetes Metabolic Syndrome: Clin Res Rev 2017; 11(2): 141-7.
[10]
Akash MS, Rehman K, Chen S. An overview of valuable scientific models for diabetes mellitus. Curr Diabetes Rev 2013; 9(4): 286-93.
[11]
Thassu D, Deleers M, Pathak Y. Nanoparticulate Drug-Delivery Systems: An Overview. Drug Dev Ind Pharm 2008; 34(1): 1-31.
[12]
Boulaiz H, Alvarez PJ, Ramirez A, et al. Nanomedicine: Application areas and development prospects. Int J Mol Sci 2011; 12(5): 3303-21.
[13]
Rees M, Moghimi SM. Nanotechnology: From fundamental concepts to clinical applications for healthy aging. Maturitas 2012; 73(1): 1-4.
[14]
Krol S, Ellis-Behnke R, Marchetti P. Nanomedicine for treatment of diabetes in an aging population: State of the art and future developments. Maturitas 2012; 73(1): 61-7.
[15]
Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 2010; 16(12): 584-93.
[16]
Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997; 277(5330): 1232-7.
[17]
Hu N, Frueh J, Zheng C, Zhang B, He Q. Photo-crosslinked natural polyelectrolyte multilayer capsules for drug delivery. Colloids Surf A Physicochem Eng Asp 2015; 482: 315-23.
[18]
Decher G, Hong JD. Buildup of ultrathin multilayer films by a self‐assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. In: Makromolekulare Chemie Macromolecular Symposia. Basel: Hüthig & Wepf Verlag 1991; pp. 321-7.
[19]
Balducci S, Sacchetti M, Haxhi J, et al. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab Res Rev 2014; 30(S1): 13-23.
[20]
Jeffery CJ. Engineering periplasmic ligand binding proteins as glucose nanosensors. Nano Rev 2011; 2(1): 5743-9.
[21]
Golden SH, Sapir T. Methods for insulin delivery and glucose monitoring in diabetes: Summary of a comparative effectiveness review. J Manag Care Pharm 2012; 18: 1-7.
[22]
Scognamiglio V. Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosens Bioelectron 2013; 15(47): 12-25.
[23]
Zhang X, Guo Q, Cui D. Recent advances in nanotechnology applied to biosensors. Sensors 2009; 9(2): 1033-53.
[24]
Eckert MA, Vu PQ, Zhang K, et al. Novel molecular and nanosensors for in vivo sensing. Theranostic 2013; 3(8): 583-94.
[25]
Lee H, Choi TK, Lee YB, et al. A graphene-based electrochemical device with thermo responsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 2016; 11(6): 566-72.
[26]
Zhi ZL, Khan F, Pickup JC. Multilayer nanoencapsulation: A nanomedicine technology for diabetes research and management. Diabetes Res Clin Pract 2013; 100(2): 162-9.
[27]
Balaconis MK, Clark HA. Gel encapsulation of glucose nanosensors for prolonged in vivo lifetime. J Diabetes Sci Technol 2013; 7(1): 53-61.
[28]
Saran AD, Sadawana MM, Srivastava R, Bellare JR. An optimized quantum dot-ligand system for biosensing applications: Evaluation as a glucose biosensor. Colloids Surf A Physicochem Eng Asp 2011; 384(1-3): 393-400.
[29]
Wang L, Yun X, Stanacevic M, Gouma PI. An acetone nanosensor for non‐invasive diabetes detection.In AIP Conference Proceedings
2009; 1137(1): 206-8.
[30]
Arya AK, Kumar L, Pokharia D, Tripathi K. Applications of nanotechnology in diabetes. Dig J Nanomater Biostruct 2008; 3(4): 221-5.
[31]
Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulations-opportunities and limitations. Drug Discov Today Technol 2012; 9(2): 87-95.
[32]
Rahiman S. Nanomedicine Current Trends in Diabetes Management. J Nanomed Nanotechnol 2012; 3(4): 3-8.
[33]
Gundogdu E, Yurdasiper A. Drug transport mechanism of oral antidiabetic nanomedicines. Int J Endocrinol Metab 2014; 12(1): 1-5.
[34]
Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 2005; 293(1-2): 271-80.
[35]
Mesiha MS, Sidhom MB, Fasipe B. Oral and subcutaneous absorption of insulin poly (isobutyl cyanoacrylate) nanoparticles. Int J Pharm 2005; 288(2): 289-93.
[36]
Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. J Control Release 2006; 114(2): 242-50.
[37]
Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 2007; 24(8): 1415-26.
[38]
Sarmento B, Ribeiro A, Veiga F, et al. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 2007; 24(12): 2198-206.
[39]
Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 2007; 117(2): 163-70.
[40]
Reis CP, Veiga FJ, Ribeiro AJ, Neufeld RJ, Damgé C. Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J Pharm Sci 2008; 97(12): 5290-305.
[41]
Yin L, Ding J, He C, et al. Drug permeability and mucoadhesion properties of thiolate trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 2009; 30(29): 5691-700.
[42]
Sonaje K, Lin YH, Juang JH, et al. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomater 2009; 30(12): 2329-39.
[43]
Zhang N, Li J, Jiang W, et al. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm 2010; 393(1-2): 213-9.
[44]
Elsayed A, Al-Remawi M, Qinna N, et al. Chitosan-sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin. AAPS PharmSciTech 2011; 12(3): 958-64.
[45]
Zhang X, Sun M, Zheng A, et al. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 2012; 45(5): 632-8.
[46]
Mukhopadhyay P, Sarkar K, Chakraborty M, et al. Oral insulin delivery by self-assembled chitosan nanoparticles: In vitro and in vivo studies in diabetic animal model. Mater Sci Eng 2013; 33(1): 376-82.
[47]
Liu L, Zhou C, Xia X, Liu Y. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: Preparation and functional evaluation. Int J Nanomedicine 2016; 11: 761-9.
[48]
Bhattacharyya A, Mukherjee D, Mishra R, Kundu PP. Preparation of polyurethane-alginate/chitosan core shell nanoparticles for the purpose of oral insulin delivery. Eur Polym J 2017; 92: 294-313.
[49]
Czuba E, Diop M, Mura C, et al. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Int J Pharm 2018; 542(1-2): 47-55.
[50]
Jain AK, Khar RK, Ahmed FJ, Diwan PV. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur J Pharm Biopharm 2008; 69(2): 426-35.
[51]
Zhang X, Zhang H, Wu Z, et al. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm 2008; 68(3): 526-34.
[52]
Gatti TH, Eloy JO, Ferreira LM, et al. Insulin-loaded polymeric mucoadhesive nanoparticles: Development, characterization and cytotoxicity evaluation. Braz J Pharm Sci 2018; 54(1): 54-62.
[53]
Subramani K. Applications of nanotechnology in drug delivery systems for the treatment of cancer and diabetes. Int J Nanotechnol 2006; 3(4): 557-80.
[54]
Jain S, Saraf S. Influence of processing variables and in vitro characterization of glipizide loaded biodegradable nanoparticles. Diabetes
Metabolic Syndrome: Clin Res Rev 2009; 3(2): 113-7.
[55]
Poovi G, Kishore N, Reddy PN. In vitro characterization and in vivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles. Int J Pharm 2010; 396(1-2): 194-203.
[56]
Singh SK, Srinivasan KK, Gowthamarajan K, et al. Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Eur J Pharm Biopharm 2011; 78(3): 441-6.
[57]
Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and characterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patches: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2013; 111: 150-5.
[58]
Lokhande AB, Mishra S, Kulkarni RD, Naik JB. Preparation and characterization of repaglinide loaded ethylcellulose nanoparticles by solvent diffusion technique using high pressure homogenizer. J Pharm Res 2013; 7(5): 421-6.
[59]
Kumar BS, Saraswathi R, Dhanaraj SA. Solid-state characterization studies and effect of PEG 20000 and P90G on particle size reduction and stability of complexed glimepiride nanocrystals. J Young Pharm 2013; 5(3): 83-9.
[60]
Shah SR, Parikh RH, Chavda JR, Sheth NR. Application of Plackett-Burman screening design for preparing glibenclamide nanoparticles for dissolution enhancement. Powder Technol 2013; 235: 405-11.
[61]
Gonçalves LM, Maestrelli F, Mannelli LD, et al. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm 2016; 102: 41-50.
[62]
Ali HS, Hanafy AF. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: Engineering, formulation, and evaluation. J Pharm Sci 2017; 106(1): 402-10.
[63]
Elbahwy IA, Ibrahim HM, Ismael HR, Kasem AA. Enhancing bioavailability and controlling the release of glibenclamide from optimized solid lipid nanoparticles. J Drug Deliv Sci Technol 2017; 38: 78-89.
[64]
HaqAsif A. Harsha S, HodalurPuttaswamy N, E Al-Dhubiab B. An effective delivery system of sitagliptin using optimized mucoadhesive nanoparticles. Appl Sci 2018; 8(6): 861-8.
[65]
Haidar A, Smaoui MR, Legault L, Rabasa-Lhoret R. The role of glucagon in the artificial pancreas. Lancet Diabetes Endocrinol 2016; 4(6): 476-9.
[66]
Pfeiffer EF, Thum C, Clemens AH. The artificial beta cell-a continuous control of blood sugar by external regulation of insulin infusion (glucose-controlled insulin infusion system). Horm Metab Res 1974; 6(5): 339-42.
[67]
Messori M, Cobelli C, Magni L. Artificial Pancreas: From in silico to in-vivo. IFAC-Papers Online 2015; 48(8): 1300-8.
[68]
Weisman A, Bai JW, Cardinez M, Kramer CK, Perkins BA. Effect of artificial pancreas systems on glycemic control in patients with type 1 diabetes: A systematic review and meta-analysis of outpatient randomized controlled trials. Lancet Diabetes Endocrinol 2017; 5(7): 501-12.
[69]
Cavalcanti A, Shirinzadeh B, Kretly LC. Medical nanorobotics for diabetes control. Nanomed: Nanotechnol Biol Med 2008; 4(2): 127-38.
[70]
Meetoo D, Lappin M. Nanotechnology and the future of diabetes management. J Diabetes Nurs 2009; 13(8): 288-97.
[71]
Selvaraj K, Gowthamarajan K, Karri VV, et al. Current treatment strategies and nanocarrier based approaches for the treatment and management of diabetic retinopathy. J Drug Target 2017; 25(5): 386-405.
[72]
Moura LI, Dias AM, Carvalho E, de Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment - A review. Acta Biomater 2013; 9(7): 7093-114.
[73]
Ramtoola Z. Controlled release biodegradable nanoparticles containing
insulin. US Patent 5641515, 1997
[74]
West JL, Sershen SR, Halas NJ, Oldenburg SJ, Averitt RD. Temperature-
sensitive polymer/nanoshell composites for photothermally
modulated drug delivery. US Patent 6428811, 2002
[75]
Melker RJ, Dennins DM. Application of biosensors for diagnosis
and treatment of disease. US Patent 6974706, 2005
[76]
Harnandez FE. Noninvasive glucose monitoring. US Patent
7972862B2, 2011
[77]
Sung HW, Sonaje K, Nguyen HN, Tu H. Pharmacetical composition
of nanoparticles. US Patent 8257740B1, 2011.
[78]
Feng Z, Zhang L, Zhang X, He Q, Xiaohong Y. Nasal cavity drop for treating diabetes and preparation method thereofChinese Patent
CN101601646B, 2011
[79]
Feng Z, Zhang L, Zhang X, He Q, Xiaohong Y. Oral drug for treating diabetes and preparation method thereofChinese Patent
CN101607080B, 2012
[80]
Sung HW, Sonaje K, Nguyen HN, et al. Pharmaceutical composition
of nanoparticles. US Patent 8226928B1, 2012.
[81]
Zang J, Hodge WG. Contact lens integrated with a biosensor for
the detection of glucose and other components in tears. US Patent
8385998B2, 2013
[82]
Rademcher T, Williams P, Bachmann C, et al. Peptide carrying
nanoparticles. US Patent 8568781B2, 2013
[83]
Heon JJ. Sustained drug-release nanoparticle and pharmaceutical composition for preventing or treating diabetes comprising pancreatic islets having modified surface by the nanoparticle Korean Patent
KR 101822912B1, 2018
[84]
Gai M, Frueh J, Kudryavtseva VL, Yashchenok AM, Sukhorukov GB. Polylactic acid sealed polyelectrolyte multilayer microchambers for entrapment of salts and small hydrophilic molecules precipitates. ACS Appl Mater Interfaces 2017; 9(19): 16536-45.
[85]
Gai M, Frueh J, Tao T, et al. Polylactic acid nano-and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound. Nanoscale 2017; 9(21): 7063-70.
[86]
Gai M, Li W, Frueh J, Sukhorukov GB. Polylactic acid sealed polyelectrolyte complex microcontainers for controlled encapsulation and NIR-laser based release of cargo. Colloids Surf B Biointerfaces 2018; 173: 521-8.