Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Sensitive and Selective Electrochemical Sensor for Sulfadimethoxine Based on Electropolymerized Molecularly Imprinted Poly (o-aminophenol) Film

Author(s): Youyuan Peng* and Qiaolan Ji

Volume 16, Issue 4, 2020

Page: [413 - 420] Pages: 8

DOI: 10.2174/1573411015666190103144415

Price: $65

conference banner
Abstract

Background: As a broad-spectrum antibiotic of the sulfonamide family, Sulfadimethoxine (SDM) has been widely utilized for therapeutic and growth-promoting purposes in animals. However, the use of SDM can cause residual problems. Even a low concentration of SDM in the aquatic system can exert toxic effects on target organisms and green algae. Therefore, the quantitation of SDM residues has become an important task.

Methods: The present work describes the development of a sensitive and selective electrochemical sensor for sulfadimethoxine based on molecularly imprinted poly(o-aminophenol) film. The molecular imprinted polymer film was fabricated by electropolymerizing o-aminophenol in the presence of SDM after depositing carboxylfunctionalized multi-walled carbon nanotubes onto a glassy carbon electrode surface. SDM can be quickly removed by electrochemical methods. The imprinted polymer film was characterized by cyclic voltammetry, differential pulse voltammetry and scanning electron microscopy.

Results: Under the selected optimal conditions, the molecularly imprinted sensor shows a linear range from 1.0 × 10-7 to 2.0 × 10-5 mol L-1 for SDM, with a detection limit of 4.0 × 10-8 mol L-1. The sensor was applied to the determination of SDM in aquaculture water samples successfully, with the recoveries ranging from 95% to 106%.

Conclusion: The proposed sensor exhibited a high degree of selectivity for SDM in comparison to other structurally similar molecules, along with long-term stability, good reproducibility and excellent regeneration capacity. The sensor may offer a feasible strategy for the analysis of SDM in aquaculture water samples.

Keywords: Electrochemical polymerization, electrochemical sensor, molecularly imprinted polymer, multiwalled carbon nanotubes, poly(o-aminophenol) film, sulfadimethoxine.

Graphical Abstract

[1]
Liu, J.Q.; Wulff, G. Molecularly imprinted polymers with strong carboxypeptidase a-like activity: combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities. Angew. Chem. Int. Ed. Engl., 2004, 43(10), 1287-1290.
[http://dx.doi.org/10.1002/anie.200352770] [PMID: 14991801]
[2]
Turner, N.W.; Jeans, C.W.; Brain, K.R.; Allender, C.J.; Hlady, V.; Britt, D.W. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog., 2006, 22(6), 1474-1489.
[http://dx.doi.org/10.1002/bp060122g] [PMID: 17137293]
[3]
Yang, H.H.; Zhang, S.Q.; Tan, F.; Zhuang, Z.X.; Wang, X.R. Surface molecularly imprinted nanowires for biorecognition. J. Am. Chem. Soc., 2005, 127(5), 1378-1379.
[http://dx.doi.org/10.1021/ja0467622] [PMID: 15686362]
[4]
Kim, J.M.; Ahn, K.D.; Wulff, G. Cholesterol esterase activity of a molecularly imprinted polymer. Macromol. Chem. Phys., 2001, 202, 1105-1108.
[http://dx.doi.org/10.1002/1521-3935(20010401)202:7<1105:AID-MACP1105>3.0.CO;2-P]
[5]
Greene, N.T.; Shimizu, K.D. Colorimetric molecularly imprinted polymer sensor array using dye displacement. J. Am. Chem. Soc., 2005, 127(15), 5695-5700.
[http://dx.doi.org/10.1021/ja0468022] [PMID: 15826210]
[6]
Matsui, J.; Akamatsu, K.; Hara, N.; Miyoshi, D.; Nawafune, H.; Tamaki, K.; Sugimoto, N. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal. Chem., 2005, 77(13), 4282-4285.
[http://dx.doi.org/10.1021/ac050227i] [PMID: 15987138]
[7]
Tom, L.A.; Schneck, N.A.; Walter, C. Improving the imprinting effect by optimizing template:monomer:cross-linker ratios in a molecularly imprinted polymer for sulfadimethoxine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 909, 61-64.
[http://dx.doi.org/10.1016/j.jchromb.2012.10.020] [PMID: 23153645]
[8]
Zhang, H.; Liu, G.; Chai, C. A novel amperometric sensor based on screen-printed electrode modified with multi-walled carbon nanotubes and molecularly imprinted membrane for rapid determination of ractopamine in pig urine. Sens. Actuators B Chem., 2012, 168, 103-110.
[http://dx.doi.org/10.1016/j.snb.2012.03.032]
[9]
Gu, L.; Jiang, X.; Liang, Y.; Zhou, T.; Shi, G. Double recognition of dopamine based on a boronic acid functionalized poly(aniline-co-anthranilic acid)-molecularly imprinted polymer composite. Analyst (Lond.), 2013, 138(18), 5461-5469.
[http://dx.doi.org/10.1039/c3an00845b] [PMID: 23884110]
[10]
Prasad, B.B.; Kumar, D.; Madhuri, R.; Tiwari, M.P. Ascorbic acid imprinted polymer-modified graphite electrode: A diagnostic sensor for hypovitaminosis C at ultra trace ascorbic acid level. Sens. Actuators B Chem., 2011, 160, 418-427.
[http://dx.doi.org/10.1016/j.snb.2011.08.003]
[11]
Li, H.; Wang, Z.; Wu, B.; Liu, X.; Xue, Z.; Lu, X. Rapid and sensitive detection of methyl-parathion pesticide with an electropolymerized molecularly imprinted polymer capacitive sensor. Electrochim. Acta, 2012, 62, 319-326.
[http://dx.doi.org/10.1016/j.electacta.2011.12.035]
[12]
Li, B.; Zhou, Y.; Wu, W.; Liu, M.; Mei, S.; Zhou, Y.; Jing, T. Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens. Bioelectron., 2015, 67, 121-128.
[http://dx.doi.org/10.1016/j.bios.2014.07.053] [PMID: 25103340]
[13]
Peng, Y.Y.; Su, H.P. Recent innovations of molecularly imprinted electrochemical sensors based on electropolymerization technique. Curr. Anal. Chem., 2015, 11, 307-317.
[http://dx.doi.org/10.2174/1573411011666150326001941]
[14]
Song, K.M.; Jeong, E.; Jeon, W.; Jo, H.; Ban, C. A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine. Biosens. Bioelectron., 2012, 33(1), 113-119.
[http://dx.doi.org/10.1016/j.bios.2011.12.034] [PMID: 22244734]
[15]
De Liguoro, M.; Poltronieri, C.; Capolongo, F.; Montesissa, C. Use of sulfadimethoxine in intensive calf farming: evaluation of transfer to stable manure and soil. Chemosphere, 2007, 68(4), 671-676.
[http://dx.doi.org/10.1016/j.chemosphere.2007.02.009] [PMID: 17368507]
[16]
Almeida, S.A.A.; Montenegro, M.C.B.S.M.; Sales, M.G.F. New and low cost plastic membrane electrode with low detection limits for sulfadimethoxine determination in aquaculture waters. J. Electroanal. Chem. (Lausanne Switz.), 2013, 709, 39-45.
[http://dx.doi.org/10.1016/j.jelechem.2013.09.029]
[17]
Okoth, O.K.; Yan, K.; Liu, Y.; Zhang, J. Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosens. Bioelectron., 2016, 86, 636-642.
[http://dx.doi.org/10.1016/j.bios.2016.07.037] [PMID: 27471154]
[18]
Ghanem, M.M.; Abu-Lafi, S.A. Validation of a stability-indicating RP-HPLC method for the simultaneous determination of trimethoprim and sulfadimethoxine sodium in oral liquid dosage form. Sci. Pharm., 2013, 81(2), 459-474.
[http://dx.doi.org/10.3797/scipharm.1212-30] [PMID: 23833713]
[19]
Louati, K.; Mistiri, F.; Kallel, M.; Safta, F. Validation of a liquid chromatography method for the simultaneous determination of sulfadimethoxine and trimethoprim and application to a stability study. Ann. Pharm. Fr., 2010, 68(2), 113-126.
[http://dx.doi.org/10.1016/j.pharma.2010.01.005] [PMID: 20434600]
[20]
Shi, X.; Meng, Y.; Liu, J.; Sun, A.; Li, D.; Yao, C.; Lu, Y.; Chen, J. Group-selective molecularly imprinted polymer solid-phase extraction for the simultaneous determination of six sulfonamides in aquaculture products. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(15-16), 1071-1076.
[http://dx.doi.org/10.1016/j.jchromb.2011.03.019] [PMID: 21459054]
[21]
Díaz-Álvarez, M.; Mazzotta, E.; Malitesta, C.; Martín-Esteban, A. Evaluation of electrochemically synthesized sulfadimethoxine-imprinted polymer for solid-phase microextraction of sulfonamides. J. Mol. Recognit., 2014, 27(6), 415-420.
[http://dx.doi.org/10.1002/jmr.2362] [PMID: 24700627]
[22]
Turco, A.; Corvaglia, S.; Mazzotta, E.; Pompa, P.P.; Malitesta, C. Preparation and characterization of molecularly imprinted mussel inspired film as antifouling and selective layer for electrochemical detection of sulfamethoxazole. Sens. Actuators B Chem., 2018, 255, 3374-3383.
[http://dx.doi.org/10.1016/j.snb.2017.09.164]
[23]
Turco, A.; Corvaglia, S.; Mazzotta, E. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters. Biosens. Bioelectron., 2015, 63, 240-247.
[http://dx.doi.org/10.1016/j.bios.2014.07.045] [PMID: 25104433]
[24]
Zhang, A.Q.; Chen, Y.Z.; Tian, S.W. Studies of OAP electropolymer film. Wuli Huaxue Xuebao, 2003, 19, 528-532.
[25]
Peng, Y.Y.; Wu, Z.B.; Liu, Z.G. An electrochemical sensor for paracetamol based on an electropolymerized molecularly imprinted ophenylenediamine film on a multi-walled carbon nanotube modified glassy carbon electrode. Anal. Methods, 2014, 6, 5673-5681.
[http://dx.doi.org/10.1039/C4AY00753K]
[26]
Arjomandi, J.; Ashrafian, A.; Parvin, M.H. Conducting copolymers of N-methylaniline and o-aminophenol: Electrosynthesis and in situ spectroelectrochemical characterization. J. Electrochem. Soc., 2015, 162, E353-E361.
[http://dx.doi.org/10.1149/2.0781514jes]
[27]
Mu, S.L. Electrochemical copolymerization of aniline and o-aminophenol. Synth. Met., 2004, 143, 259-268.
[http://dx.doi.org/10.1016/j.synthmet.2003.12.008]
[28]
Zhang, L.; Lian, J. Electrochemical synthesis of copolymer of aniline and o-aminophenol and its use to the electrocatalytic oxidation of ascorbic acid. J. Electroanal. Chem. (Lausanne Switz.), 2007, 611, 51-59.
[http://dx.doi.org/10.1016/j.jelechem.2007.08.002]
[29]
Yang, C.H.; Wen, T.C. Electrochemical copolymerization of aniline and para-phenylenediamine on IrO2-coated titanium electrode. J. Appl. Electrochem., 1994, 24, 166-178.
[http://dx.doi.org/10.1007/BF00247789]
[30]
Arjomandi, J.; Kakaei, Z. Electrosynthesis and in situ spectroelectrochemistry of conducting o-aminophenol-p-aminophenol copolymers in aqueous solution. J. Electrochem. Soc., 2014, 161, E53-E60.
[http://dx.doi.org/10.1149/2.086403jes]
[31]
Liu, L.; Cui, H.; An, H.; Zhai, J.P.; Pan, Y. Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics, 2017, 23, 1517-1523.
[http://dx.doi.org/10.1007/s11581-017-1972-6]
[32]
Chen, A.; Jiang, X.; Zhang, W.; Chen, G.; Zhao, Y.; Tunio, T.M.; Liu, J.; Lv, Z.; Li, C.; Yang, S. High sensitive rapid visual detection of sulfadimethoxine by label-free aptasensor. Biosens. Bioelectron., 2013, 42, 419-425.
[http://dx.doi.org/10.1016/j.bios.2012.10.059] [PMID: 23228493]
[33]
Feng, M.; Li, H.; Zhang, L.; Zhang, J.; Dai, J.; Wang, X.; Zhang, L.; Wei, Y. Preparation and application of novel magnetic molecularly imprinted composites for recognition of sulfadimethoxine in feed samples. Anal. Sci., 2016, 32(5), 517-521.
[http://dx.doi.org/10.2116/analsci.32.517] [PMID: 27169650]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy