Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity

Author(s): Esteban N. Lorenzon, Julia P. Piccoli, Norival A. Santos-Filho and Eduardo M. Cilli*

Volume 26, Issue 2, 2019

Page: [98 - 107] Pages: 10

DOI: 10.2174/0929866526666190102125304

Abstract

Antimicrobial resistance is a global health problem with strong social and economic impacts. The development of new antimicrobial agents is considered an urgent challenge. In this regard, Antimicrobial Peptides (AMPs) appear to be novel candidates to overcome this problem. The mechanism of action of AMPs involves intracellular targets and membrane disruption. Although the exact mechanism of action of AMPs remains controversial, most AMPs act through membrane disruption of the target cell. Several strategies have been used to improve AMP activity, such as peptide dimerization. In this review, we focus on AMP dimerization, showing many examples of dimerized peptides and their effects on biological activity. Although more studies are necessary to elucidate the relationship between peptide properties and the dimerization effect on antimicrobial activity, dimerization constitutes a promising strategy to improve the effectiveness of AMPs.

Keywords: Peptide, antimicrobial, dimerization, mechanism of action, membrane, Antimicrobial Peptides (AMPs).

Graphical Abstract

[1]
WHO; Antimicrobial resistance: Global report on surveillance; World Health Organization: Geneva. , 2014, p. 256.
[2]
Shlaes, D.M.; Sahm, D.; Opiela, C.; Spellberg, B. The FDA reboot of antibiotic development. Antimicrob. Agents Chemother., 2013, 57(10), 4605-4607.
[3]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[4]
de Freitas, L.M.; Lorenzón, E.N.; Santos-Filho, N.A.; de Paula Zago, L.H.; Uliana, M.P.; de Oliveira, K.T.; Cilli, E.M.; Fontana, C.R. Antimicrobial photodynamic therapy enhanced by the peptide aurein 1.2. Sci. Rep., 2018, 8(1), 4212.
[5]
Aida, K.L.; Kreling, P.F.; Caiaffa, K.S.; Calixto, G.M.F.; Chorilli, M.; Spolidorio, D.M.; Santos-Filho, N.A.; Cilli, E.M.; Duque, C. Antimicrobial peptide-loaded liquid crystalline precursor bioadhesive system for the prevention of dental caries. Int. J. Nanomedicine, 2018, 13, 3081.
[6]
Carretero, G.P.; Vicente, E.F.; Cilli, E.M.; Alvarez, C.M.; Jenssen, H.; Schreier, S. Dissecting the mechanism of action of actinoporins. Role of the N-terminal amphipathic α-helix in membrane binding and pore activity of sticholysins I and II. PLoS One, 2018, 13(8), e0202981.
[7]
Kishi, R.N.I.; Stach-Machado, D.; de Lacorte Singulani, J.; dos Santos, C.T.; Fusco-Almeida, A.M.; Cilli, E.M.; Freitas-Astúa, J.; Picchi, S.C.; Machado, M.A. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One, 2018, 13(9), e0203451.
[8]
Masias, E.; Dupuy, F.G.; da Silva Sanches, P.R.; Farizano, J.V.; Cilli, E.; Bellomio, A.; Saavedra, L.; Minahk, C. Impairment of the class IIa bacteriocin receptor function and membrane structural changes are associated to enterocin CRL35 high resistance in Listeria monocytogenes. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(7), 1770-1776.
[9]
Zhao, J.; Zhao, C.; Liang, G.; Zhang, M.; Zheng, J. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities. J. Chem. Inf. Model., 2013, 53(12), 3280-3296.
[10]
Huang, Y.W.; Lee, C.T.; Wang, T.C.; Kao, Y.C.; Yang, C.H.; Lin, Y.M.; Huang, K.S. The development of peptide-based antimicrobial agents against dengue virus. Curr. Protein Pept. Sci., 2018, 19(10), 998-1010.
[11]
Libério, M.S.; Joanitti, G.A.; Azevedo, R.B.; Cilli, E.M.; Zanotta, L.C.; Nascimento, A.C.; Sousa, M.V.; Júnior, O.R.P.; Fontes, W.; Castro, M.S. Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids, 2011, 40(1), 51-59.
[12]
Pinto, M.E.F.; Najas, J.Z.; Magalhães, L.G.; Bobey, A.F.; Mendonça, J.N.; Lopes, N.P.; Leme, F.V.M.; Teixeira, S.P.; Trovó, M.; Andricopulo, A.D. Inhibition of breast cancer cell migration by cyclotides isolated from Pombalia calceolaria. J. Nat. Prod., 2018, 81(5), 1203-1208.
[13]
Sato, H.; Feix, J.B. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Biophys. Acta (BBA)-. Biomembr., 2006, 1758(9), 1245-1256.
[14]
Gregory, S.M.; Pokorny, A.; Almeida, P.F. Magainin 2 revisited: A test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys. J., 2009, 96(1), 116-131.
[15]
Wang, K.F.; Nagarajan, R.; Mello, C.M.; Camesano, T.A. Characterization of supported lipid bilayer disruption by chrysophsin-3 using QCM-D. J. Phys. Chem. B, 2011, 115(51), 15228-15235.
[16]
Peters, B.M.; Shirtliff, M.E.; Jabra-Rizk, M.A. Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog., 2010, 6(10)
[17]
Mechkarska, M.; Meetani, M.; Michalak, P.; Vaksman, Z.; Takada, K.; Conlon, J.M. Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2012, 7(3), 285-291.
[18]
Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. BBA: Biomembranes, 2009, 1788(8), 1687-1692.
[19]
Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37(2), 207-215.
[20]
Wang, K.; Yan, J.; Dang, W.; Liu, X.; Chen, R.; Zhang, J.; Zhang, B.; Zhang, W.; Kai, M.; Yan, W. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Peptides, 2013, 39, 80-88.
[21]
Tan, J.; Huang, J.; Huang, Y.; Chen, Y. Effects of single amino acid substitution on the biophysical properties and biological activities of an amphipathic α-helical antibacterial peptide against gram-negative bacteria. Molecules, 2014, 19(8), 10803-10817.
[22]
Gofman, Y.; Linser, S.; Rzeszutek, A.; Shental-Bechor, D.; Funari, S.S.; Ben-Tal, N.; Willumeit, R. Interaction of an antimicrobial peptide with membranes: Experiments and simulations with NKCS. J. Phys. Chem. B, 2010, 114(12), 4230-4237.
[23]
Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 2010, 5(10), 905-917.
[24]
Melo, M.N.; Ferre, R.; Castanho, M.A.R.B. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol., 2009, 7(3), 245-250.
[25]
Sengupta, D.; Leontiadou, H.; Mark, A.E.; Marrink, S.J. Toroidal pores formed by antimicrobial peptides show significant disorder. BBA: Biomembranes, 2008, 1778(10), 2308-2317.
[26]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[27]
Mechler, A.; Praporski, S.; Atmuri, K.; Boland, M.; Separovic, F.; Martin, L.L. Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys. J., 2007, 93(11), 3907-3916.
[28]
Wang, Y.; Chen, C.H.; Hu, D.; Ulmschneider, M.B.; Ulmschneider, J.P. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide. Nat. Commun., 2016, 7, 13535.
[29]
Wimley, W.C.; Hristova, K. Antimicrobial peptides: Successes, challenges and unanswered questions. J. Membr. Biol., 2011, 239(1-2), 27-34.
[30]
Galdiero, S.; Falanga, A.; Cantisani, M.; Vitiello, M.; Morelli, G.; Galdiero, M. Peptide-lipid interactions: Experiments and applications. Int. J. Mol. Sci., 2013, 14(9), 18758-18789.
[31]
Riske, K.A. Chapter four-optical microscopy of giant vesicles as a tool to reveal the mechanism of action of antimicrobial peptides and the specific case of gomesin. Adv. Planar Lipid Bilayers Liposomes, 2015, 21, 99-129.
[32]
Berglund, N.A.; Piggot, T.J.; Jefferies, D.; Sessions, R.B.; Bond, P.J.; Khalid, S. Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: A molecular dynamics study. PLOS Comput. Biol., 2015, 11(4), e1004180.
[33]
Arias, M.; Prenner, E.J.; Vogel, H.J. Calorimetry methods to study membrane interactions and perturbations induced by antimicrobial host defense peptides. Antimicrob. Peptide Method Protocol, 2017, 1548, 119-140.
[34]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[35]
Steckbeck, J.D.; Deslouches, B.; Montelaro, R.C. Antimicrobial peptides: New drugs for bad bugs? Expert Opin. Biol. Ther., 2014, 14(1), 11-14.
[36]
Zhu, W.L.; Shin, S.Y. Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. J. Pept. Sci., 2009, 15(5), 345-352.
[37]
Yang, S.T.; Kim, J.I.; Shin, S.Y. Effect of dimerization of a beta-turn antimicrobial peptide, PST13-RK, on antimicrobial activity and mammalian cell toxicity. Biotechnol. Lett., 2009, 31(2), 233-237.
[38]
Glukhov, E.; Stark, M.; Burrows, L.L.; Deber, C.M. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J. Biol. Chem., 2005, 280(40), 33960-33967.
[39]
Sal-Man, N.; Oren, Z.; Shai, Y. Preassembly of membrane-active peptides is an important factor in their selectivity toward target cells. Biochemistry, 2002, 41(39), 11921-11930.
[40]
Sengupta, J.; Khan, M.A.; Huppertz, B.; Ghosh, D. In-vitro effects of the antimicrobial peptide Ala8,13,18-magainin II amide on isolated human first trimester villous trophoblast cells. Reprod. Biol. Endocrinol., 2011, 9, 49.
[41]
Welling, M.M.; Brouwer, C.P.J.M.; Hof, W.; Veerman, E.C.I.; Amerongen, A.V.N. Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo. Antimicrob. Agents Chemother., 2007, 51(9), 3416-3419.
[42]
Lakshminarayanan, R.; Liu, S.; Li, J.; Nandhakumar, M.; Aung, T.T.; Goh, E.; Chang, J.Y.; Saraswathi, P.; Tang, C.; Safie, S.R.; Lin, L.Y.; Riezman, H.; Lei, Z.; Verma, C.S.; Beuerman, R.W. Synthetic multivalent antifungal peptides effective against fungi. PLoS One, 2014, 9(2), e87730.
[43]
Lee, J.Y.; Yang, S.T.; Lee, S.K.; Jung, H.H.; Shin, S.Y.; Hahm, K.S.; Kim, J.I. Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J., 2008, 275(15), 3911-3920.
[44]
Taylor, K.; McCullough, B.; Clarke, D.J.; Langley, R.J.; Pechenick, T.; Hill, A.; Campopiano, D.J.; Barr, P.E.; Dorin, J.R.; Govan, J.R.W. Covalent dimer species of beta-defensin Defr1 display potent antimicrobial activity against multidrug-resistant bacterial pathogens. Antimicrob. Agents Chemother., 2007, 51(5), 1719-1724.
[45]
Güell, I.; Ferre, R.; Sørensen, K.K.; Badosa, E.; Ng-Choi, I.; Montesinos, E.; Bardají, E.; Feliu, L.; Jensen, K.J.; Planas, M. Multivalent display of the antimicrobial peptides BP100 and BP143. Beilstein J. Org. Chem., 2012, 8, 2106-2117.
[46]
Hernandez-Gordillo, V.; Geisler, I.; Chmielewski, J. Dimeric unnatural polyproline-rich peptides with enhanced antibacterial activity. Bioorg. Med. Chem. Lett., 2014, 24(2), 556-559.
[47]
Dewan, P.C.; Anantharaman, A.; Chauhan, V.S.; Sahal, D. Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. Biochemistry, 2009, 48(24), 5642-5657.
[48]
Otvos, L.; Wade, J.D.; Lin, F.; Condie, B.A.; Hanrieder, J.; Hoffmann, R. Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates. J. Med. Chem., 2005, 48(16), 5349-5359.
[49]
Lorenzón, E.N.; Cespedes, G.F.; Vicente, E.F.; Nogueira, L.G.; Bauab, T.M.; Castro, M.S.; Cilli, E.M. Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob. Agents Chemother., 2012, 56, 3004-3010.
[50]
Mukai, Y.; Matsushita, Y.; Niidome, T.; Hatekeyama, T.; Aoyag, H. Parallel and antiparallel dimers of magainin 2: Their interaction with phospholipid membrane and antibacterial activity. J. Pept. Sci., 2002, 8(10), 570-577.
[51]
Dempsey, C.E.; Ueno, S.; Avison, M.B. Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry, 2003, 42(2), 402-409.
[52]
Lorenzón, E.; Riske, K.; Troiano, G.; Da Hora, G.; Soares, T.; Cilli, E. Effect of dimerization on the mechanism of action of aurein 1.2Biochim. Biophys. Acta (BBA)-. Biomembr., 2016, 1858(6), 1129-1138.
[53]
Jang, W.S.; Kim, C.H.; Kim, K.N.; Park, S.Y.; Lee, J.H.; Son, S.M.; Lee, I.H. Biological activities of synthetic analogs of halocidin, an antimicrobial peptide from the tunicate Halocynthia aurantium. Antimicrob. Agents Chemother., 2003, 47(8), 2481-2486.
[54]
Zhou, L.; Liu, S.; Chen, L.; Li, J.; Ong, L.; Guo, L.; Wohland, T.; Tang, C.; Lakshminarayanan, R.; Mavinahalli, J. The structural parameters for antimicrobial activity, human epithelial cell cytotoxicity and killing mechanism of synthetic monomer and dimer analogues derived from hBD3 C-terminal region. Amino Acids, 2011, 40(1), 123-133.
[55]
Santos-Filho, N.A.; Lorenzon, E.N.; Ramos, M.A.; Santos, C.T.; Piccoli, J.P.; Bauab, T.M.; Fusco-Almeida, A.M.; Cilli, E.M. Synthesis and characterization of an antibacterial and non-toxic dimeric peptide derived from the C-terminal region of Bothropstoxin-I. Toxicon, 2015, 103, 160-168.
[56]
Jamasbi, E.; Batinovic, S.; Sharples, R.A.; Sani, M.A.; Robins-Browne, R.M.; Wade, J.D.; Separovic, F.; Hossain, M.A. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids, 2014.
[57]
Andreu, D.; Albericio, F.; Solé, N.A.; Munson, M.C.; Ferrer, M.; Barany, G. Formation of disulfide bonds in synthetic peptides and proteins; Pept. Synth. Protocol, 1995, pp. 91-169.
[58]
Postma, T.M.; Albericio, F. Disulfide formation strategies in peptide synthesis. Eur. J. Org. Chem., 2014, 2014(17), 3519-3530.
[59]
Lorenzón, E.; Santos-Filho, N.; Ramos, M.; Bauab, T.; Camargo, I.; Cilli, E. C-terminal lysine-linked magainin 2 with increased activity against multidrug-resistant bacteria Prot. Pept. Lett., 2016.
[60]
Cilli, E.M.; Pigossi, F.T.; Crusca, E.; Ros, U.; Martinez, D.; Lanio, M.E.; Alvarez, C.; Schreier, S. Correlations between differences in amino-terminal sequences and different hemolytic activity of sticholysins. Toxicon, 2007, 50(8), 1201-1204.
[61]
Crusca, E.; Rezende, A.; Marchetto, R.; Mendes-Giannini, M.; Fontes, W.; Castro, M.; Cilli, E. Influence of N-terminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide Hylin-a1. Biopolymers, 2011, 96(1), 41-48.
[62]
Jahnsen, R.O.; Sandberg-Schaal, A.; Frimodt-Møller, N.; Nielsen, H.M.; Franzyk, H. End group modification: Efficient tool for improving activity of antimicrobial peptide analogues towards gram-positive bacteria Eur. J. Pharm. Biopharm.,, 2015, 95 (Pt A),40-46
[63]
Karolak-Wojciechowska, J.; Fruziński, A.; Czylkowski, R.; Paluchowska, M.; Mokrosz, M. Spacer conformation in biologically active molecules. Part 2. Structure and conformation of 4-[2-(diphenylmethylamino) ethyl]-1-(2-methoxyphenyl) piperazine and its diphenylmethoxy analog-potential 5-HT 1A receptor ligands. J. Mol. Struct., 2003, 657(1), 7-17.
[64]
Reddy Chichili, V.P.; Kumar, V.; Sivaraman, J. Linkers in the structural biology of protein-protein interactions. Protein Sci., 2013, 22(2), 153-167.
[65]
Larsen, A.N.; Sørensen, K.K.; Johansen, N.T.; Martel, A.; Kirkensgaard, J.J.; Jensen, K.J.; Arleth, L.; Midtgaard, S.R. Dimeric peptides with three different linkers self-assemble with phospholipids to form peptide nanodiscs that stabilize membrane proteins. Soft Matter, 2016, 12(27), 5937-5949.
[66]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[67]
Lee, W.; Lee, D.G. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol., 2014, 69(6), 794-801.
[68]
Lehmann, J.; Retz, M.; Sidhu, S.S.; Suttmann, H.; Sell, M.; Paulsen, F.; Harder, J.; Unteregger, G.; Stöckle, M. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol., 2006, 50(1), 141-147.
[69]
Westerhoff, H.V.; Zasloff, M.; Rosner, J.L.; Hendler, R.W.; De Waal, A.; Vaz Gomes, A.; Jongsma, P.M.; Riethorst, A.; Juretić, D. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur. J. Biochem., 1995, 228(2), 257-264.
[70]
Aboudy, Y.; Mendelson, E.; Shalit, I.; Bessalle, R.; Fridkin, M. Activity of two synthetic amphiphilic peptides and magainin-2 against herpes simplex virus types 1 and 2. Int. J. Pept. Protein Res., 1994, 43(6), 573-582.
[71]
Zasloff, M.; Martin, B.; Chen, H.C. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc. Natl. Acad. Sci. USA, 1988, 85(3), 910-913.
[72]
Han, E.; Lee, H. Effects of PEGylation on the binding interaction of magainin 2 and tachyplesin I with lipid bilayer surface. Langmuir, 2013, 29(46), 14214-14221.
[73]
Unger, T.; Oren, Z.; Shai, Y. The effect of cyclization of magainin 2 and melittin analogues on structure, function, and model membrane interactions: Implication to their mode of action. Biochemistry, 2001, 40(21), 6388-6397.
[74]
Bessalle, R.; Kapitkovsky, A.; Gorea, A.; Shalit, I.; Fridkin, M. All-D-magainin: Chirality, antimicrobial activity and proteolytic resistance. FEBS Lett., 1990, 274(1/2), 151-155.
[75]
Lorenzón, E.N.; Sanches, P.R.; Nogueira, L.G.; Bauab, T.M.; Cilli, E.M. Dimerization of aurein 1.2: Effects in structure, antimicrobial activity and aggregation of Cândida albicans cells. Amino Acids, 2013, 44(6), 1521-1528.
[76]
Lorenzón, E.N.; Piccoli, J.P.; Cilli, E.M. Interaction between the antimicrobial peptide Aurein 1.2 dimer and mannans. Amino Acids, 2014, 46(11), 2627-2631.
[77]
Liu, S.; Zhou, L.; Lakshminarayanan, R.; Beuerman, R. Multivalent antimicrobial peptides as therapeutics: Design principles and structural diversities. Int. J. Pept. Protein Res., 2010, 16(3), 199-213.
[78]
Chen, Y.X.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4), 1398-1406.
[79]
Kim, S.; Kim, S.S.; Lee, B.J. Correlation between the activities of α-helical antimicrobial peptides and hydrophobicities represented as RP HPLC retention times. Peptides, 2005, 26(11), 2050-2056.
[80]
Jiang, Z.Q.; Vasil, A.I.; Gera, L.; Vasil, M.L.; Hodges, R.S. Rational design of alpha-helical antimicrobial peptides to target gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem. Biol. Drug Des., 2011, 77(4), 225-240.
[81]
Thamri, A.; Létourneau, M.; Djoboulian, A.; Chatenet, D.; Déziel, E.; Castonguay, A.; Perreault, J. Peptide modification results in the formation of a dimer with a 60-fold enhanced antimicrobial activity. PLoS One, 2017, 12(3), e0173783.
[82]
Liu, B.; Huang, H.; Yang, Z.; Liu, B.; Gou, S.; Zhong, C.; Han, X.; Zhang, Y.; Ni, J.; Wang, R. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy. Peptides, 2016, 88, 115-125.
[83]
Lorenzon, E.N.; Sanches, P.R.S.; Nogueira, L.G.; Bauab, T.M.; Cilli, E.M. Dimerization of aurein 1.2: Effects in structure, antimicrobial activity and aggregation of Candida albicans cells. Amino Acids, 2013, 44(6), 1521-1528.

© 2025 Bentham Science Publishers | Privacy Policy