Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

In silico Analysis of Different Signal Peptides for Secretory Production of Arginine Deiminase in Escherichia coli

Author(s): Mahboubeh Zarei, Navid Nezafat, Mohammad Hossein Morowvat, Mohsen Ektefaie and Younes Ghasemi*

Volume 13, Issue 3, 2019

Page: [217 - 227] Pages: 11

DOI: 10.2174/1872208313666190101114602

Price: $65

Abstract

Background: Secretory production of recombinant protein in bacterial hosts fulfills several advantages. Selecting an appropriate secretory signal peptide is a critical step in secretory production of different protein. Several patents report the usage of signal peptides for secretory production of recombinant proteins in E. coli. In silico identification of suitable signal peptides is a reliable and cost-effective alternative to experimental approaches.

Objective: This study was aimed to predict best signal peptides for the secretory production of recombinant arginine deiminase in E. coli.

Methods: In this study, 30 different signal peptide sequences were retrieved from database. The signal peptide probability, location of cleavage sites, and n, h and c regions were predicted by SignalP 4.1 and Phobius servers. After purging the 30 predicted secretory signal peptides, TorT, bla, NrfA, TolB, PapC, PldA, Lpp were removed. Several physicochemical properties of the remaining potential SPs were determined by ProtParam, PROSO II, and SOLpro servers for theoretically selecting the best candidates.

Results and Conclusion: Based on physicochemical properties, the signal peptides of OmpC, OmpF, and DsbA were identified respectively as the promising candidates for efficient secretory production of arginine deiminase in E. coli. Although the computational approach has established itself as a basis of modern biotechnology, the experimental study is necessary to validate its results. The criteria used in this study could be applied to other targets for recombination processes.

Keywords: Arginine deiminase, secretory production, signal peptide, In silico, E. Coli, protein.

Graphical Abstract

[1]
Huang CJ, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 2012; 39(3): 383-99.
[2]
Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 2004; 22(11): 1399-408.
[3]
Kane JF, Hartley DL. Formation of recombinant protein inclusion bodies in Escherichia coli. Trends Biotechnol 1988; 6(5): 95-101.
[4]
Mukhopadhyay A. Inclusion bodies and purification of proteins in biologically active forms. Adv Biochem Eng Biotechnol 1997; 56: 61-109.
[5]
de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 2007; 7: 32.
[6]
Kumar S, Jain KK, Bhardwaj KN, Chakraborty S, Kuhad RC. Multiple Genes in a single host: Cost-effective production of bacterial laccase (cotA), pectate lyase (pel), and endoxylanase (xyl) by simultaneous expression and cloning in single vector in E. coli. PLoS One 2015; 10(12)e0144379
[7]
Han KY, Song JA, Ahn KY, Park JS, Seo HS, Lee J. Solubilization of aggregation-prone heterologous proteins by covalent fusion of stress-responsive Escherichia coli protein, SlyD. Protein Eng Des Sel 2007; 20(11): 543-9.
[8]
Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2018; 102(4): 1545-56.
[9]
Leonhartsberger S, Candussio A, Schmid G. Signal peptide for the production of recombinant proteins. US8148494B2. 2012.
[10]
Robinson RR, Liu AY, Horwitz AH, et al. Modular assembly of antibody genes, antibodies prepared thereby and use. US5618920A, 1997.
[11]
Sockolosky JT, Szoka FC. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr Purif 2013; 87(2): 129-35.
[12]
Ghoshoon MB, Berenjian A, Hemmati S, et al. Extracellular production of recombinant L-Asparaginase II in Escherichia coli: Medium optimization using response surface methodology. Int J Pept Res Ther 2015; 21(4): 487.
[13]
Winter J, Neubauer P, Glockshuber R, Rudolph R. Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. Journal of Biotechnology 2000; 84(2): 175-85.
[14]
Manica N, Navid N, Nasim H, Seyyed Soheil R, Mohammad Hossein M, Younes G. In Silico Study of Different Signal Peptides for Secretory Production of Interleukin-11 in Escherichia coli. Curr Proteomics 2017; 14(2): 112-21.
[15]
Forouharmehr A, Nassiri M, Ghovvati S, Javadmanesh A. Evaluation of different signal peptides for secretory production of recombinant bovine pancreatic ribonuclease A in Gram negative bacterial system: an in silico study. Curr Proteomics 2018; 15(1): 24-33.
[16]
Martoglio B, Dobberstein B. Signal sequences: more than just greasy peptides. Trends Cell Biol 1998; 8(10): 410-5.
[17]
Sjöström M, Wold S, Wieslander A, Rilfors L. Signal peptide amino acid sequences in Escherichia coli contain information related to final protein localization. A multivariate data analysis. EMBO J 1987; 6(3): 823-31.
[18]
Tuteja R. Type I signal peptidase: an overview. Arch Biochem Biophys 2005; 441(2): 107-11.
[19]
Zimmermann R, Eyrisch S, Ahmad M, Helms V. Protein translocation across the ER membrane. Biochim Biophys Acta Biomembr 2011; 1808(3): 912-24.
[20]
Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y. A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97(6): 422-41.
[21]
Smith DW, Ganaway RL, Fahrney DE. Arginine deiminase from Mycoplasma arthritidis. Structure-activity relationships among substrates and competitive inhibitors. J Biol Chem 1978; 253(17): 6016-20.
[22]
Szlosarek PW, Steele JP, Nolan L, et al. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1–deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol 2017; 3(1): 58-66.
[23]
Miraki-Moud F, Ghazaly E, Ariza-McNaughton L, et al. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015; 125(26): 4060-8.
[24]
Savaraj N, Wu C, Li YY, et al. Targeting argininosuccinate synthetase negative melanomas using combination of arginine degrading enzyme and cisplatin. Oncotarget 2015; 6(8): 6295-309.
[25]
Abou-Alfa GK, Qin S, Ryoo B-Y, et al. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol 2018; 29(6): 1402-8.
[26]
Beddowes E, Spicer J, Chan PY, et al. Phase 1 dose-escalation study of pegylated arginine deiminase, cisplatin, and pemetrexed in patients with argininosuccinate synthetase 1-deficient thoracic cancers. J Clin Oncol 2017; 35(16): 1778-85.
[27]
Lowery MA, Yu KH, Kelsen DP, et al. A phase 1/1B trial of ADI-PEG 20 plus nab-paclitaxel and gemcitabine in patients with advanced pancreatic adenocarcinoma. Cancer 2017; 123(23): 4556-65.
[28]
Kubo M, Nishitsuji H, Kurihara K, Hayashi T, Masuda T, Kannagi M. Suppression of human immunodeficiency virus type 1 replication by arginine deiminase of Mycoplasma arginini. J Gen Virol 2006; 87(Pt 6): 1589-93.
[29]
Izzo F, Montella M, Orlando AP, et al. Pegylated arginine deiminase lowers hepatitis C viral titers and inhibits nitric oxide synthesis. J Gastroenterol Hepatol 2007; 22(1): 86-91.
[30]
Shirai H, Mokrab Y, Mizuguchi K. The guanidine-group modifying enzymes: structural basis for their diversity and commonality. Proteins 2006; 64(4): 1010-23.
[31]
Misawa S, Aoshima M, Takaku H, Matsumoto M, Hayashi H. High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. J Biotechnol 1994; 36(2): 145-55.
[32]
Clark MA. Method of treatment with modified arginine deiminase. US7323167B2, 2008.
[33]
Song JA, Lee DS, Park JS, Han KY, Lee J. A novel Escherichia coli solubility enhancer protein for fusion expression of aggregation-prone heterologous proteins. Enzyme Microb Technol 2011; 49(2): 124-30.
[34]
Kang YS, Song JA, Han KY, Lee J. Escherichia coli EDA is a novel fusion expression partner to improve solubility of aggregation-prone heterologous proteins. J Biotechnol 2015; 194: 39-47.
[35]
Ahn KY, Lee B, Han KY, Song JA, Lee DS, Lee J. Synthesis of Mycoplasma arginine deiminase in E. coli using stress-responsive proteins. Enzyme Microb Technol 2014; 63: 46-9.
[36]
Wang Y, Li YZ. Cultivation to improve in vivo solubility of overexpressed arginine deiminases in Escherichia coli and the enzyme characteristics. BMC Biotechnol 2014; 14: 53.
[37]
Zarei M, Nezafat N, Morowvat MH, et al. Medium Optimization for Recombinant Soluble Arginine Deiminase Expression in Escherichia coli Using Response Surface Methodology. Curr Pharm Biotechnol 2017; 18(11): 935-41.
[38]
Zarei M, Nezafat N, Rahbar MR, et al. Decreasing the immunogenicity of arginine deiminase enzyme via structure-based computational analysis. J Biomol Struct Dyn 2019; 37(2): 523-36.
[39]
Von HG. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 1983; 133(1): 17-21.
[40]
Consortium U. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017; 45(D1): D158-69.
[41]
Petersen TN, Brunak S, Von HG, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8(10): 785-6.
[42]
Käll L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res 2007; 35(Suppl. 2): W429-32.
[43]
Choo KH, Tan TW, Ranganathan S. A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinformatics 2009; 10(Suppl. 15): S2.
[44]
Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server. Humana Press 2005; pp. 571-607.
[45]
Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 2009; 25(17): 2200-7.
[46]
Smialowski P, Doose G, Torkler P, Kaufmann S, Frishman D. PROSO II--a new method for protein solubility prediction. FEBS J 2012; 279(12): 2192-200.
[47]
Chang CC, Song J, Tey BT, Ramanan RN. Bioinformatics approaches for improved recombinant protein production in Escherichia coli: protein solubility prediction. Brief Bioinform 2014; 15(6): 953-62.
[48]
Berman HM, Westbrook JD, Gabanyi MJ, et al. The protein structure initiative structural genomics knowledgebase. Nucleic Acids Res 2009; 37(Database issue): D365-8.
[49]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[50]
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157(1): 105-32.
[51]
Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem 1980; 88(6): 1895-8.
[52]
Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 1990; 4(2): 155-61.
[53]
Low KO, Mahadi NM, Illias RM. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 2013; 97(9): 3811-26.
[54]
Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A. Signal peptides are allosteric activators of the protein translocase. Nature 2009; 462(7271): 363-7.
[55]
Choi J, Lee S. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2004; 64(5): 625-35.
[56]
Qian ZG, Xia XX, Choi JH, Lee SY. Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli. Biotechnol Bioeng 2008; 101(3): 587-601.
[57]
Champion MM, Williams EA, Kennedy GM, Champion PAD. Direct detection of bacterial protein secretion using whole colony proteomics. Mol Cell Proteomics 2012; 11(9): 596-604.
[58]
Zalucki YM, Power PM, Jennings MP. Selection for efficient translation initiation biases codon usage at second amino acid position in secretory proteins. Nucleic Acids Res 2007; 35(17): 5748-54.
[59]
Karamyshev AL, Karamysheva ZN, Kajava AV, Ksenzenko VN, Nesmeyanova MA. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. J Mol Biol 1998; 277(4): 859-70.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy