[1]
Huang CJ, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 2012; 39(3): 383-99.
[2]
Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 2004; 22(11): 1399-408.
[3]
Kane JF, Hartley DL. Formation of recombinant protein inclusion bodies in Escherichia coli. Trends Biotechnol 1988; 6(5): 95-101.
[4]
Mukhopadhyay A. Inclusion bodies and purification of proteins in biologically active forms. Adv Biochem Eng Biotechnol 1997; 56: 61-109.
[5]
de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 2007; 7: 32.
[6]
Kumar S, Jain KK, Bhardwaj KN, Chakraborty S, Kuhad RC. Multiple Genes in a single host: Cost-effective production of bacterial laccase (cotA), pectate lyase (pel), and endoxylanase (xyl) by simultaneous expression and cloning in single vector in E. coli. PLoS One 2015; 10(12)e0144379
[7]
Han KY, Song JA, Ahn KY, Park JS, Seo HS, Lee J. Solubilization of aggregation-prone heterologous proteins by covalent fusion of stress-responsive Escherichia coli protein, SlyD. Protein Eng Des Sel 2007; 20(11): 543-9.
[8]
Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2018; 102(4): 1545-56.
[9]
Leonhartsberger S, Candussio A, Schmid G. Signal peptide for the production of recombinant proteins. US8148494B2. 2012.
[10]
Robinson RR, Liu AY, Horwitz AH, et al. Modular assembly of antibody genes, antibodies prepared thereby and use. US5618920A, 1997.
[11]
Sockolosky JT, Szoka FC. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr Purif 2013; 87(2): 129-35.
[12]
Ghoshoon MB, Berenjian A, Hemmati S, et al. Extracellular production of recombinant L-Asparaginase II in Escherichia coli: Medium optimization using response surface methodology. Int J Pept Res Ther 2015; 21(4): 487.
[13]
Winter J, Neubauer P, Glockshuber R, Rudolph R. Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. Journal of Biotechnology 2000; 84(2): 175-85.
[14]
Manica N, Navid N, Nasim H, Seyyed Soheil R, Mohammad Hossein M, Younes G. In Silico Study of Different Signal Peptides for Secretory Production of Interleukin-11 in Escherichia coli. Curr Proteomics 2017; 14(2): 112-21.
[15]
Forouharmehr A, Nassiri M, Ghovvati S, Javadmanesh A. Evaluation of different signal peptides for secretory production of recombinant bovine pancreatic ribonuclease A in Gram negative bacterial system: an in silico study. Curr Proteomics 2018; 15(1): 24-33.
[16]
Martoglio B, Dobberstein B. Signal sequences: more than just greasy peptides. Trends Cell Biol 1998; 8(10): 410-5.
[17]
Sjöström M, Wold S, Wieslander A, Rilfors L. Signal peptide amino acid sequences in Escherichia coli contain information related to final protein localization. A multivariate data analysis. EMBO J 1987; 6(3): 823-31.
[18]
Tuteja R. Type I signal peptidase: an overview. Arch Biochem Biophys 2005; 441(2): 107-11.
[19]
Zimmermann R, Eyrisch S, Ahmad M, Helms V. Protein translocation across the ER membrane. Biochim Biophys Acta Biomembr 2011; 1808(3): 912-24.
[20]
Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y. A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97(6): 422-41.
[21]
Smith DW, Ganaway RL, Fahrney DE. Arginine deiminase from Mycoplasma arthritidis. Structure-activity relationships among substrates and competitive inhibitors. J Biol Chem 1978; 253(17): 6016-20.
[22]
Szlosarek PW, Steele JP, Nolan L, et al. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1–deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol 2017; 3(1): 58-66.
[23]
Miraki-Moud F, Ghazaly E, Ariza-McNaughton L, et al. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015; 125(26): 4060-8.
[24]
Savaraj N, Wu C, Li YY, et al. Targeting argininosuccinate synthetase negative melanomas using combination of arginine degrading enzyme and cisplatin. Oncotarget 2015; 6(8): 6295-309.
[25]
Abou-Alfa GK, Qin S, Ryoo B-Y, et al. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol 2018; 29(6): 1402-8.
[26]
Beddowes E, Spicer J, Chan PY, et al. Phase 1 dose-escalation study of pegylated arginine deiminase, cisplatin, and pemetrexed in patients with argininosuccinate synthetase 1-deficient thoracic cancers. J Clin Oncol 2017; 35(16): 1778-85.
[27]
Lowery MA, Yu KH, Kelsen DP, et al. A phase 1/1B trial of ADI-PEG 20 plus nab-paclitaxel and gemcitabine in patients with advanced pancreatic adenocarcinoma. Cancer 2017; 123(23): 4556-65.
[28]
Kubo M, Nishitsuji H, Kurihara K, Hayashi T, Masuda T, Kannagi M. Suppression of human immunodeficiency virus type 1 replication by arginine deiminase of Mycoplasma arginini. J Gen Virol 2006; 87(Pt 6): 1589-93.
[29]
Izzo F, Montella M, Orlando AP, et al. Pegylated arginine deiminase lowers hepatitis C viral titers and inhibits nitric oxide synthesis. J Gastroenterol Hepatol 2007; 22(1): 86-91.
[30]
Shirai H, Mokrab Y, Mizuguchi K. The guanidine-group modifying enzymes: structural basis for their diversity and commonality. Proteins 2006; 64(4): 1010-23.
[31]
Misawa S, Aoshima M, Takaku H, Matsumoto M, Hayashi H. High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. J Biotechnol 1994; 36(2): 145-55.
[32]
Clark MA. Method of treatment with modified arginine deiminase. US7323167B2, 2008.
[33]
Song JA, Lee DS, Park JS, Han KY, Lee J. A novel Escherichia coli solubility enhancer protein for fusion expression of aggregation-prone heterologous proteins. Enzyme Microb Technol 2011; 49(2): 124-30.
[34]
Kang YS, Song JA, Han KY, Lee J. Escherichia coli EDA is a novel fusion expression partner to improve solubility of aggregation-prone heterologous proteins. J Biotechnol 2015; 194: 39-47.
[35]
Ahn KY, Lee B, Han KY, Song JA, Lee DS, Lee J. Synthesis of Mycoplasma arginine deiminase in E. coli using stress-responsive proteins. Enzyme Microb Technol 2014; 63: 46-9.
[36]
Wang Y, Li YZ. Cultivation to improve in vivo solubility of overexpressed arginine deiminases in Escherichia coli and the enzyme characteristics. BMC Biotechnol 2014; 14: 53.
[37]
Zarei M, Nezafat N, Morowvat MH, et al. Medium Optimization for Recombinant Soluble Arginine Deiminase Expression in Escherichia coli Using Response Surface Methodology. Curr Pharm Biotechnol 2017; 18(11): 935-41.
[38]
Zarei M, Nezafat N, Rahbar MR, et al. Decreasing the immunogenicity of arginine deiminase enzyme via structure-based computational analysis. J Biomol Struct Dyn 2019; 37(2): 523-36.
[39]
Von HG. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 1983; 133(1): 17-21.
[40]
Consortium U. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017; 45(D1): D158-69.
[41]
Petersen TN, Brunak S, Von HG, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8(10): 785-6.
[42]
Käll L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res 2007; 35(Suppl. 2): W429-32.
[43]
Choo KH, Tan TW, Ranganathan S. A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinformatics 2009; 10(Suppl. 15): S2.
[44]
Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server. Humana Press 2005; pp. 571-607.
[45]
Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 2009; 25(17): 2200-7.
[46]
Smialowski P, Doose G, Torkler P, Kaufmann S, Frishman D. PROSO II--a new method for protein solubility prediction. FEBS J 2012; 279(12): 2192-200.
[47]
Chang CC, Song J, Tey BT, Ramanan RN. Bioinformatics approaches for improved recombinant protein production in Escherichia coli: protein solubility prediction. Brief Bioinform 2014; 15(6): 953-62.
[48]
Berman HM, Westbrook JD, Gabanyi MJ, et al. The protein structure initiative structural genomics knowledgebase. Nucleic Acids Res 2009; 37(Database issue): D365-8.
[49]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[50]
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157(1): 105-32.
[51]
Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem 1980; 88(6): 1895-8.
[52]
Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 1990; 4(2): 155-61.
[53]
Low KO, Mahadi NM, Illias RM. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 2013; 97(9): 3811-26.
[54]
Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A. Signal peptides are allosteric activators of the protein translocase. Nature 2009; 462(7271): 363-7.
[55]
Choi J, Lee S. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2004; 64(5): 625-35.
[56]
Qian ZG, Xia XX, Choi JH, Lee SY. Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli. Biotechnol Bioeng 2008; 101(3): 587-601.
[57]
Champion MM, Williams EA, Kennedy GM, Champion PAD. Direct detection of bacterial protein secretion using whole colony proteomics. Mol Cell Proteomics 2012; 11(9): 596-604.
[58]
Zalucki YM, Power PM, Jennings MP. Selection for efficient translation initiation biases codon usage at second amino acid position in secretory proteins. Nucleic Acids Res 2007; 35(17): 5748-54.
[59]
Karamyshev AL, Karamysheva ZN, Kajava AV, Ksenzenko VN, Nesmeyanova MA. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. J Mol Biol 1998; 277(4): 859-70.