Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

A Metabonomics Approach to Drug Toxicology in Liver Disease and its Application in Traditional Chinese Medicine

Author(s): Guangyue Su, Haifeng Wang*, Jiao Bai, Gang Chen and Yuehu Pei

Volume 20, Issue 4, 2019

Page: [292 - 300] Pages: 9

DOI: 10.2174/1389200220666181231124439

Price: $65

Abstract

Background: The progression of liver disease causes metabolic transformation in vivo and thus affects corresponding endogenous small molecular compounds. Metabonomics is a powerful technology which is able to assess global low-molecular-weight endogenous metabolites in a biological system. This review is intended to provide an overview of a metabonomics approach to the drug toxicology of diseases of the liver.

Methods: The regulation of, and relationship between, endogenous metabolites and diseases of the liver is discussed in detail. Furthermore, the metabolic pathways involved in drug interventions of liver diseases are reviewed. Evaluation of the protective mechanisms of traditional Chinese medicine in liver diseases using metabonomics is also reviewed. Examples of applications of metabolite profiling concerning biomarker discovery are highlighted. In addition, new developments and future prospects are described.

Results: Metabonomics can measure changes in metabolism relating to different stages of liver disease, so metabolic differences can provide a basis for the diagnosis, treatment and prognosis of various diseases.

Conclusion: Metabonomics has great advantages in all aspects of the therapy of liver diseases, with good prospects for clinical application.

Keywords: Metabonomics, drug toxicology, liver diseases, traditional chinese medicine, metabolic pathways, biomarkers.

Graphical Abstract

[1]
Luo, W-J.; Cheng, T-Y.; Wong, K-I.; Fang, W-h.; Liao, K-M.; Hsieh, Y-T.; Su, K-Y. Novel therapeutic drug identification and gene correlation for fatty liver disease using high-content screening: Proof of concept. Eur. J. Pharm. Sci., 2018, 121, 106-117.
[2]
Attia, M.S.; Youssef, A.O.; Khan, Z.A.; Abou-Omar, M.N. Alpha fetoprotein assessment by using a nano optical sensor thin film binuclear Pt-2-aminobenzimidazole-Bipyridine for early diagnosis of liver cancer. Talanta, 2018, 186, 36-43.
[3]
Hong, S.K.; Yi, N-J.; Chang, H.; Ahn, S-W.; Kim, H-S.; Yoon, K.C.; Kim, H.; Park, S.O.; Jin, U.S.; Minn, K.W.; Lee, K-W.; Suh, K-S. The rate of hepatic artery complications is higher in pediatric liver transplant recipients with metabolic liver diseases than with biliary atresia. J. Pediatr. Surg., 2018, 53(8), 1516-1522.
[4]
Zhu, C.; Liang, Q-L.; Wang, Y-M.; Luo, G-A. Integrated development of metabonomics and its new progress. Chin. J. Anal. Chem., 2010, 38(7), 1060-1068.
[5]
Colet, J-M. Metabonomics in the preclinical and environmental toxicity field. Drug Discov. Today. Technol., 2015, 13, 3-10.
[6]
Li, N.; Song, Y.; Tang, H.; Wang, Y. Recent developments in sample preparation and data pre-treatment in metabonomics research. Arch. Biochem. Biophys., 2016, 589, 4-9.
[7]
Wilson, I.D.; Michopoulos, F.; Theodoridis, G. 3.17 - Sampling and Sample Preparation for LC-MS-Based Metabonomics/Metabolomics of Samples of Mammalian Origin A2 - Pawliszyn, Janusz. InComprehensive Sampling and Sample Preparation; Academic Press: Oxford, 2012, pp. 339-357.
[8]
Warrack, B.M.; Hnatyshyn, S.; Ott, K-H.; Reily, M.D.; Sanders, M.; Zhang, H.; Drexler, D.M. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B, 2009, 877(5), 547-552.
[9]
Xia, J-F.; Liang, Q-L.; Hu, P.; Wang, Y-M.; Luo, G-A. Recent trends in strategies and methodologies for metabonomics. Chin. J. Anal. Chem., 2009, 37(1), 136-143.
[10]
Coen, M. A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology, 2010, 278(3), 326-340.
[11]
Li, X.; Zhang, F.; Wang, D.; Li, Z.; Qin, X.; Du, G. NMR-based metabonomic and quantitative real-time PCR in the profiling of metabolic changes in carbon tetrachloride-induced rat liver injury. J. Pharm. Biomed. Anal., 2014, 89, 42-49.
[12]
Webb-Robertson, B-J.M.; Lowry, D.F.; Jarman, K.H.; Harbo, S.J.; Meng, Q.R.; Fuciarelli, A.F.; Pounds, J.G.; Lee, K.M. A Study of spectral integration and normalization in NMR-based metabonomic analyses. J. Pharm. Biomed. Anal., 2005, 39(3), 830-836.
[13]
Zhang, M.; Sun, B.; Zhang, Q.; Gao, R.; Liu, Q.; Dong, F.; Fang, H.; Peng, S.; Li, F.; Yan, X. Establishment and optimization of NMR-based cell metabonomics study protocols for neonatal Sprague-Dawley rat cardiomyocytes. Anal., 2017, 517, 50-52.
[14]
Li, Y-Q.; Liu, Y-F.; Song, D-D.; Zhou, Y-P.; Wang, L.; Xu, S.; Cui, Y-F. Particle swarm optimization-based protocol for partial least-squares discriminant analysis: Application to 1H nuclear magnetic resonance analysis of lung cancer metabonomics. Chemom. Intell. Lab. Syst., 2014, 135, 192-200.
[15]
Goodpaster, A.M.; Kennedy, M.A. Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies. Chemom. Intell. Lab. Syst., 2011, 109(2), 162-170.
[16]
Ramadan, Z.; Jacobs, D.; Grigorov, M.; Kochhar, S. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta, 2006, 68(5), 1683-1691.
[17]
Gou, X.; Tao, Q.; Feng, Q.; Peng, J.; Sun, S.; Cao, H.; Zheng, N.; Zhang, Y.; Hu, Y.; Liu, P. Urinary metabonomics characterization of liver fibrosis induced by CCl4 in rats and intervention effects of Xia Yu Xue Decoction. J. Pharm. Biomed. Anal., 2013, 74, 62-65.
[18]
Su, G.; Wang, H.; Gao, Y.; Chen, G.; Pei, Y.; Bai, J. 1H-NMR-based metabonomics of the protective effect of coptis chinensis and berberine on cinnabar-induced hepatotoxicity and nephrotoxicity in rats. Molecules, 2017, 22(11), 1855.
[19]
Su, G.; Chen, G.; An, X.; Wang, H.; Pei, Y-H. Metabolic profiling analysis of the alleviation effect of treatment with baicalin on cinnabar induced toxicity in rats urine and serum. Front. Pharmacol., 2017, 8, 271.
[20]
Zhao, Y-Y.; Cheng, X-L.; Vaziri, N.D.; Liu, S.; Lin, R-C. UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clin. Biochem., 2014, 47(15), 16-26.
[21]
Carretero, A.; Lopez-Riera, M.; Saez, E.; Blazquez, T.; Conde, I.; Zaragoza, A.; Jover, R.; Lahoz, A. SAT-425- new circulating metabonomic and mirnomic biomarkers to predict steatosis, inflammation and fibrosis severity in non-alcoholic fatty liver disease. J. Hepatol., 2016, 64(2)(Suppl.), S714-S715.
[22]
Mattes, W.; Davis, K.; Fabian, E.; Greenhaw, J.; Herold, M.; Looser, R.; Mellert, W.; Groeters, S.; Marxfeld, H.; Moeller, N.; Montoya-Parra, G.; Prokoudine, A.; Van Ravenzwaay, B.; Strauss, V.; Walk, T.; Kamp, H. Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma. Toxicol. Lett., 2014, 230(3), 467-478.
[23]
Jingshu, C.; Yuan, L.; Yanan, T.; Chang, H.; Defa, L.; Qing, Z.; Xi, M. Interaction between microbes and host intestinal health: Modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr. Protein Pept. Sci., 2015, 16(7), 592-603.
[24]
Chen, X.; Eslamfam, S.; Fang, L.; Qiao, S.; Ma, X. Maintenance of gastrointestinal glucose homeostasis by the gut-brain axis. Curr. Protein Pept. Sci., 2017, 18(6), 541-547.
[25]
Duan, J.; Chung, H.; Troy, E.; Kasper, D.L. Microbial colonization drives expansion of IL-1 receptor 1-expressing and il-17-producing γ/δ T cells. Cell Host Microbe, 2010, 7(2), 140-150.
[26]
Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; Taniguchi, T.; Takeda, K.; Hori, S.; Ivanov, I.I.; Umesaki, Y.; Itoh, K.; Honda, K. Induction of colonic regulatory T cells by indigenous <em>Clostridium</em> species. Science, 2011, 331(6015), 337-341.
[27]
Chu, H.; Williams, B.; Schnabl, B. Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res., 2018, 2(1), 43-51.
[28]
Haque, T.R.; Barritt, A.S. Intestinal microbiota in liver disease. Best Pract. Res. Clin. Gastroenterol., 2016, 30(1), 133-142.
[29]
Zhang, H-L.; Yu, L-X.; Yang, W.; Tang, L.; Lin, Y.; Wu, H.; Zhai, B.; Tan, Y-X.; Shan, L.; Liu, Q.; Chen, H-Y.; Dai, R-Y.; Qiu, B-J.; He, Y-Q.; Wang, C.; Zheng, L-Y.; Li, Y-Q.; Wu, F-Q.; Li, Z.; Yan, H-X.; Wang, H-Y. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J. Hepatol., 2012, 57(4), 803-812.
[30]
Uronis, J.M.; Mühlbauer, M.; Herfarth, H.H.; Rubinas, T.C.; Jones, G.S.; Jobin, C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One, 2009, 4(6), e6026.
[31]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[32]
Corbin, K.D.; Zeisel, S.H. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol., 2012, 28(2), 159-165.
[33]
Craciun, S.; Balskus, E.P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl. Acad. Sci. USA, 2012, 109(52), 21307-21312.
[34]
Romano, K.A.; Vivas, E.I.; Amador-Noguez, D.; Rey, F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio, 2015, 6(2), e02481.
[35]
Spencer, M.D.; Hamp, T.J.; Reid, R.W.; Fischer, L.M.; Zeisel, S.H.; Fodor, A.A. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology, 2011, 140(3), 976-986.
[36]
Al-Waiz, M.; Mikov, M.; Mitchell, S.C.; Smith, R.L. The exogenous origin of trimethylamine in the mouse. Metabolism, 1992, 41(2), 135-136.
[37]
Hernandez-Alonso, P.; Canueto, D.; Giardina, S.; Salas-Salvado, J.; Canellas, N.; Correig, X.; Bullo, M. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects. J. Nutr. Biochem., 2017, 45, 48-53.
[38]
Awwad, H.M.; Geisel, J.; Obeid, R. Determination of trimethylamine, trimethylamine N-oxide, and taurine in human plasma and urine by UHPLC-MS/MS technique. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1038, 12-18.
[39]
Létoffé, S.; Audrain, B.; Bernier, S.P.; Delepierre, M.; Ghigo, J-M. Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH. MBio, 2014, 5(1), e00944.
[40]
Plauth, M.; Schütz, T. Branched-chain amino acids in liver disease: New aspects of long known phenomena. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(1), 61-66.
[41]
Les, I.; Doval, E.; García-Martínez, R.; Planas, M.; Cárdenas, G.; Gómez, P.; Flavià, M.; Jacas, C.; Mínguez, B.; Vergara, M.; Soriano, G.; Vila, C.; Esteban, R.; Córdoba, J. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study. Am. J. Gastroenterol., 2011, 106(6), 1081-1088.
[42]
Kawaguchi, T.; Izumi, N.; Charlton, M.R.; Sata, M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology, 2011, 54(3), 1063-1070.
[43]
Bjerring, P.N.; Hauerberg, J.; Frederiksen, H.-J.; Nielsen, H.B.; Clemmesen, J.O.; Larsen, F.S. The effect of fractionated plasma separation and adsorption on cerebral amino acid metabolism and oxidative metabolism during acute liver failure. J. Hepatol., 2012. 57 4), 774-779.
[44]
Rössle, M.; Luft, M.; Herz, R.; Klein, B.; Lehmann, M.; Gerok, W. Amino acid, ammonia and neurotransmitter concentrations in hepatic encephalopathy: serial analysis in plasma and cerebrospinal fluid during treatment with an adapted amino acid solution. Klin. Wochenschr., 1984, 62(18), 867-875.
[45]
Romero-Gómez, M.; Ramos-Guerrero, R.; Grande, L.; De Terán, L.C.; Corpas, R.; Camacho, I.; Bautista, J.D. Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J. Hepatol., 2004, 41(1), 49-54.
[46]
Garlick, P.J. The role of leucine in the regulation of protein metabolism. J. Nutr., 2005, 135(6)(Suppl.), 1553S-1556S.
[47]
Nair, K.S.; Short, K.R. Hormonal and signaling role of branched-chain amino acids. J. Nutr., 2005, 135(6)(Suppl.), 1547S-1552S.
[48]
Tomiya, T.; Inoue, Y.; Yanase, M.; Arai, M.; Ikeda, H.; Tejima, K.; Nagashima, K.; Nishikawa, T.; Fujiwara, K. Leucine stimulates the secretion of hepatocyte growth factor by hepatic stellate cells. Biochem. Biophys. Res. Commun., 2002, 297(5), 1108-1111.
[49]
Holecek, M.; Tilser, I.; Skopec, F.; Sprongl, L. Leucine metabolism in rats with cirrhosis. J. Hepatol., 1996, 24(2), 209-216.
[50]
Shimomura, Y.; Honda, T.; Shiraki, M.; Murakami, T.; Sato, J.; Kobayashi, H.; Mawatari, K.; Obayashi, M.; Harris, R.A. Branched-chain amino acid catabolism in exercise and liver disease. J. Nutr., 2006, 136(1)(Suppl.), 250S-253S.
[51]
Baldissera, M.D.; Rech, V.C.; Grings, M.; Kolling, J.; Da Silva, A.S.; Gressler, L.T.; Souza, C.D.F.; Vaucher, R.A.; Schwertz, C.I.; Mendes, R.E.; Leipnitz, G.; Wyse, A.T.S.; Stefani, L.M.; Monteiro, S.G. Relationship between pathological findings and enzymes of the energy metabolism in liver of rats infected by Trypanosoma evansi. Parasitol. Int., 2015, 64(6), 547-552.
[52]
Fu, Q.; Huang, X.; Shu, B.; Xue, M.; Zhang, P.; Wang, T.; Liu, L.; Jiang, Z.; Zhang, L. Inhibition of mitochondrial respiratory chain is involved in triptolide-induced liver injury. Fitoterapia, 2011, 82(8), 1241-1248.
[53]
Xu, W.; Wang, H.; Chen, G.; Li, W.; Xiang, R.; Zhang, X.; Pei, Y. A metabolic profiling analysis of the acute toxicological effects of the realgar (As2S2) combined with other herbs in Niuhuang Jiedu Tablet using 1H NMR spectroscopy. J. Ethnopharmacol., 2014, 153(3), 771-781.
[54]
Guo, P.; Li, Y.; Eslamfam, S.; Ding, W.; Ma, X. Discovery of novel genes mediating glucose and lipid metabolisms. Curr. Protein Pept. Sci., 2017, 18(6), 609-618.
[55]
Schwabe, R.F.; Maher, J.J. Lipids in liver disease: Looking beyond steatosis. Gastroenterology, 2012, 142(1), 8-11.
[56]
Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human fatty liver disease: Old questions and new insights. Science, 2011, 332(6037), 1519-1523.
[57]
Thiele, C.; Spandl, J. Cell biology of lipid droplets. Curr. Opin. Cell Biol., 2008, 20(4), 378-385.
[58]
Teratani, T.; Tomita, K.; Suzuki, T.; Oshikawa, T.; Yokoyama, H.; Shimamura, K.; Tominaga, S.; Hiroi, S.; Irie, R.; Okada, Y.; Kurihara, C.; Ebinuma, H.; Saito, H.; Hokari, R.; Sugiyama, K.; Kanai, T.; Miura, S.; Hibi, T. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology, 2012, 142(1), 152-164.e10.
[59]
Moustafa, T.; Fickert, P.; Magnes, C.; Guelly, C.; Thueringer, A.; Frank, S.; Kratky, D.; Sattler, W.; Reicher, H.; Sinner, F.; Gumhold, J.; Silbert, D.; Fauler, G.; Höfler, G.; Lass, A.; Zechner, R.; Trauner, M. Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury. Gastroenterology, 2012, 142(1), 140-151.e12.
[60]
Hemmes, B.; De Wert, L.A.; Brink, P.R.G.; Oomens, C.W.J.; Bader, D.L.; Poeze, M. Cytokine IL1alpha and lactate as markers for tissue damage in spineboard immobilisation. A prospective, randomised open-label crossover trial. J. Mech. Behav. Biomed. Mater., 2017, 75, 82-88.
[61]
Carter, E.A.; Khalid, M.A.; Burke, J.F.; Tompkins, R.G. Absence of change in hepatic lactate metabolism after burn injury. Burns, 1993, 19(6), 475-478.
[62]
Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-Arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr. Protein Pept. Sci., 2017, 18(6), 599-608.
[63]
Chen, C-L.; Fei, Z.; Carter, E.A.; Lu, X-M.; Hu, R-H.; Young, V.R.; Tompkins, R.G.; Yu, Y-M. Metabolic fate of extrahepatic arginine in liver after burn injury. Metabolism, 2003, 52(10), 1232-1239.
[64]
Liu, X-W.; Tang, C-L.; Zheng, H.; Wu, J-X.; Wu, F.; Mo, Y-Y.; Liu, X.; Zhu, H-J.; Yin, C-L.; Cheng, B.; Ruan, J-X.; Song, F-M.; Chen, Z-N.; Song, H.; Guo, H-W.; Liang, Y-H.; Su, Z-H. Investigation of the hepatoprotective effect of Corydalis saxicola bunting on carbon tetrachloride-induced liver fibrosis in rats by 1H-NMR-based metabonomics and network pharmacology approaches. J. Pharm. Biomed. Anal., 2018, 159, 252-261.
[65]
Binukumar, B.K.; Bal, A.; Kandimalla, R.; Sunkaria, A.; Gill, K.D. Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos. Toxicology, 2010, 270(2-3), 77-84.
[66]
Serviddio, G.; Bellanti, F.; Giudetti, A.M.; Gnoni, G.V.; Capitanio, N.; Tamborra, R.; Romano, A.D.; Quinto, M.; Blonda, M.; Vendemiale, G.; Altomare, E. Mitochondrial oxidative stress and respiratory chain dysfunction account for liver toxicity during amiodarone but not dronedarone administration. Free Radic. Biol. Med., 2011, 51(12), 2234-2242.
[67]
Hussein, O.; Grosovski, M.; Lasri, E.; Svalb, S.; Ravid, U.; Assy, N. Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats. World J. Gastroenterol., 2007, 13(3), 361-368.
[68]
Martínez-Reyes, I.; Diebold, L.P.; Kong, H.; Schieber, M.; Huang, H.; Hensley, C.T.; Mehta, M.M.; Wang, T.; Santos, J.H.; Woychik, R.; Dufour, E.; Spelbrink, J.N.; Weinberg, S.E.; Zhao, Y.; DeBerardinis, R.J.; Chandel, N.S. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol. Cell, 2016, 61(2), 199-209.
[69]
Kucejova, B.; Sunny, N.E.; Nguyen, A.D.; Hallac, R.; Fu, X.; Peña-Llopis, S.; Mason, R.P.; Deberardinis, R.J.; Xie, X.J.; Debose-Boyd, R.; Kodibagkar, V.D.; Burgess, S.C.; Brugarolas, J. Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Oncogene, 2011, 30(18), 2147-2160.
[70]
Sunny, N.E.; Parks, E.J.; Browning, J.D.; Burgess, S.C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab., 2011, 14(6), 804-810.
[71]
Sprague, C.L.; Phillips, L.A.; Young, K.M.; Elfarra, A.A. Species and tissue differences in the toxicity of 3-butene-1,2-diol in male Sprague-Dawley rats and B6C3F1 mice. Toxicol. Sci., 2004, 80(1), 3-13.
[72]
Phipps, A.N.; Stewart, J.; Wright, B.; Wilson, I.D. Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica, 1998, 28(5), 527-537.
[73]
Zira, A.; Kostidis, S.; Theocharis, S.; Sigala, F.; Engelsen, S.B.; Andreadou, I.; Mikros, E. 1H NMR-based metabonomics approach in a rat model of acute liver injury and regeneration induced by CCl4 administration. Toxicology, 2013, 303, 115-124.
[74]
Al-Mukhaini, N.; Ba-Omar, T.; Eltayeb, E.; Al-Shihi, A.; Al-Riyami, N.; Al-Belushi, J.; Al-Adawi, K. Liver and kidney toxicity induced by Afzal smokeless tobacco product in Oman. Tissue Cell, 2017, 49(2 Pt B), 307-314.
[75]
Jia, H-M.; Yu, M.; Ma, L-Y.; Zhang, H-W.; Zou, Z-M. Chaihu-Shu-Gan-San regulates phospholipids and bile acid metabolism against hepatic injury induced by chronic unpredictable stress in rat. J. Chromatogr. B, 2017, 1064, 14-21.
[76]
Ji, P.; Wei, Y.; Sun, H.; Xue, W.; Hua, Y.; Li, P.; Zhang, W.; Zhang, L.; Zhao, H.; Li, J. Metabolomics research on the hepatoprotective effect of Angelica sinensis polysaccharides through gas chromatography-mass spectrometry. J. Chromatogr. B, 2014, 973, 45-54.
[77]
Liang, Y-H.; Tang, C-L.; Lu, S-Y.; Cheng, B.; Wu, F.; Chen, Z-N.; Song, F.; Ruan, J-X.; Zhang, H-Y.; Song, H.; Zheng, H.; Su, Z-H. Serum metabonomics study of the hepatoprotective effect of Corydalis saxicola bunting on carbon tetrachloride-induced acute hepatotoxicity in rats by 1H NMR analysis. J. Pharm. Biomed. Anal., 2016, 129, 70-79.
[78]
Song, Y-N.; Zhang, G-B.; Lu, Y-Y.; Chen, Q-L.; Yang, L.; Wang, Z-T.; Liu, P.; Su, S-B. Huangqi decoction alleviates dimethylnitrosamine-induced liver fibrosis: An analysis of bile acids metabolic mechanism. J. Ethnopharmacol., 2016, 189, 148-156.
[79]
Man, S.; Fan, W.; Gao, W.; Li, Y.; Wang, Y.; Liu, Z.; Li, H. Anti-fibrosis and anti-cirrhosis effects of Rhizoma paridis saponins on diethylnitrosamine induced rats. J. Ethnopharmacol., 2014, 151(1), 407-412.
[80]
Feng, Y-L.; Lei, P.; Tian, T.; Yin, L.; Chen, D-Q.; Chen, H.; Mei, Q.; Zhao, Y-Y.; Lin, R-C. Diuretic activity of some fractions of the epidermis of Poria cocos. J. Ethnopharmacol., 2013, 150(3), 1114-1118.
[81]
Zhao, Y-Y.; Li, H-T.; Feng, Y-L.; Bai, X.; Lin, R-C. Urinary metabonomic study of the surface layer of Poria cocos as an effective treatment for chronic renal injury in rats. J. Ethnopharmacol., 2013, 148(2), 403-410.
[82]
Bao, Y.; Wang, S.; Yang, X.; Li, T.; Xia, Y.; Meng, X. Metabolomic study of the intervention effects of Shuihonghuazi Formula, a traditional Chinese medicinal formulae, on Hepatocellular Carcinoma (HCC) rats using performance HPLC/ESI-TOF-MS. J. Ethnopharmacol., 2017, 198, 468-478.
[83]
Zhang, Y.; Li, H.; Hu, T.; Li, H.; Jin, G.; Zhang, Y. Metabonomic profiling in study hepatoprotective effect of polysaccharides from Flammulina velutipes on carbon tetrachloride-induced acute liver injury rats using GC-MS. Int. J. Biol. Macromol., 2018, 110, 285-293.
[84]
Sun, C.; Teng, Y.; Li, G.; Yoshioka, S.; Yokota, J.; Miyamura, M.; Fang, H.; Zhang, Y. Metabonomics study of the protective effects of Lonicera japonica extract on acute liver injury in dimethylnitrosamine treated rats. J. Pharm. Biomed. Anal., 2010, 53(1), 98-102.
[85]
Wu, F.; Zheng, H.; Yang, Z-T.; Cheng, B.; Wu, J-X.; Liu, X-W.; Tang, C-L.; Lu, S-Y.; Chen, Z-N.; Song, F-M.; Ruan, J-X.; Zhang, H-Y.; Liang, Y-H.; Song, H.; Su, Z-H. Urinary metabonomics study of the hepatoprotective effects of total alkaloids from Corydalis saxicola bunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using 1H NMR analysis. J. Pharm. Biomed. Anal., 2017, 140, 199-209.
[86]
Hua, Y.; Xue, W.; Zhang, M.; Wei, Y.; Ji, P. Metabonomics study on the hepatoprotective effect of polysaccharides from different preparations of Angelica sinensis. J. Ethnopharmacol., 2014, 151(3), 1090-1099.
[87]
Wang, H.; Su, G.; Chen, G.; Bai, J.; Pei, Y. 1H NMR-based metabonomics of the protective effect of Curcuma longa and curcumin on cinnabar-induced hepatotoxicity and nephrotoxicity in rats. J. Funct. Foods, 2015, 17, 459-467.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy