Abstract
Surfactant Aided Lewis Acids (LASCs) make an appearance as one of the efficient and substantial heterogeneous catalysts. Recently, various LASCs have been used as green and heterogeneous catalysts in organic synthesis due to their high water stability, recyclability, cost-effective nature and their ability to create stable colloidal dispersions. In the present review, we have discussed a variety of carbon-carbon bond forming, ring opening, addition and multi-component reactions for the synthesis of various biologically important heterocyclic compounds that have been successfully catalyzed by LASCs. In most cases, the catalytic activity of LASCs was found to be better in water in comparison to other organic solvents, which attracts special attention towards the present review.
Keywords: Heterogeneous catalyst, Lewis acid, multi-component-reactions, organic synthesis, surfactants, water.
Graphical Abstract
[http://dx.doi.org/10.1246/cl.1991.2187]
[http://dx.doi.org/10.1016/S0040-4039(00)91691-5]
[http://dx.doi.org/10.1016/S0040-4039(97)00854-X]
[http://dx.doi.org/10.1021/ja001420r]
[http://dx.doi.org/10.1039/b000319k]
[http://dx.doi.org/10.1021/bi9922188] [PMID: 10821682]
(b) Suzuki, T.; Fukazawa, N.; San-nohe, K.; Sato, W.; Yano, O.; Tsuruo, T. Structure-activity relationship of newly synthesized quinoline derivatives for reversal of multidrug resistance in cancer. J. Med. Chem., 1997, 40(13), 2047-2052.
[http://dx.doi.org/10.1021/jm960869l] [PMID: 9207946]
(c) Klingenstein, R.; Melnyk, P.; Leliveld, S.R.; Ryckebusch, A.; Korth, C. Similar structure-activity relationships of quinoline derivatives for antiprion and antimalarial effects. J. Med. Chem., 2006, 49(17), 5300-5308.
[http://dx.doi.org/10.1021/jm0602763] [PMID: 16913719]
[http://dx.doi.org/10.1002/adsc.200600527]
[http://dx.doi.org/10.1016/j.tet.2007.11.055]
[http://dx.doi.org/10.1016/j.tetlet.2006.08.053]
(b) Sun, W.; Cama, L.D.; Birzin, E.T.; Warrier, S.; Locco, L.; Mosley, R.; Hammond, M.L.; Rohrer, S.P. 6H-benzo[c]chromen-6-one derivatives as selective ERbeta agonists. Bioorg. Med. Chem. Lett., 2006, 16(6), 1468-1472.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.057] [PMID: 16412638]
(c) Stachulski, A.V.; Berry, N.G.; Lilian Low, A.C.; Moores, S.L.; Row, E.; Warhurst, D.C.; Adagu, I.S.; Rossignol, J.F. Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo. J. Med. Chem., 2006, 49(4), 1450-1454.
[http://dx.doi.org/10.1021/jm050973f] [PMID: 16480281]
(d) Gesson, J.P.; Fonteneau, N.; Mondon, M.; Charbit, S. 7- Carboxy-flavone derivatives preparation method and therapeutic use. US patent 6, 039B2 2005.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.001]
[http://dx.doi.org/10.1021/sc4000913]
(b) Amin, A.H.; Mehta, D.R.; Samarth, S. Biological activity in the quinazolone series. Prog. Drug Res., 1970, 14, 218-225.
(c) Partyka, R.A.; Crenshaw, R.R. 1,3,4-oxadiazole amides. U.S. Patent, 1997, US4001238A. 1997.
(d) Vardan, S.; Mookherjee, S.; Eich, R. Effects of tiodazosin, a new antihypertensive, hemodynamics, and clinical variables. Clin. Pharm. Ther., 1983, 34, 290-296.
[http://dx.doi.org/10.1016/j.bmc.2006.09.065] [PMID: 17079148]
(b) Alagarsamy, V.; Pathak, U.S. Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg. Med. Chem., 2007, 15(10), 3457-3462.
[http://dx.doi.org/10.1016/j.bmc.2007.03.007] [PMID: 17391966]
(c) Murugan, V.; Kulkarni, M.; Anand, R.M.; Kumar, E.P.; Suresh, B.; Reddy, V.M. Synthesis of 2-[bis-(2-chloroethyl)amino methyl]-6,8-dinitro-1-(4-substituted phenyl)- 1H-quinazolin-4-one derivatives as possible antineoplastic agents. Asian J. Chem., 2006, 18, 900-906.
(d) Godfrey, A.A.A. Preparation of quinazolin-4-ones via cyclization of N-(cyanophenyl) acetamide derivatives. Chem. Abstr., 2005, 142 198095
(e) Selvam, P.; Girija, K.; Nagarajan, G.; De Clerco, E. Synthesis, antibacterial and anti-HIV activities of 3-(5-amino-6-(2-3-dichloro-phenyl)-(1,2,4)triazin-3-yl)-6,8-dibromo-2-substituted-3H-quinozo-lin-4-one. Indian J. Pharm. Sci., 2005, 67, 484-487.
[http://dx.doi.org/10.1016/j.jiec.2013.11.037]
[http://dx.doi.org/10.1016/j.bmcl.2005.11.025] [PMID: 16309903]
(b) Dell, A.; Williams, D.H.; Morris, H.R.; Smith, G.A.; Feeney, J.; Roberts, G.C.K. Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc., 1975, 97(9), 2497-2502.
[http://dx.doi.org/10.1021/ja00842a029] [PMID: 1133418]
(c) Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis agents. J. Med. Chem., 2005, 48(6), 2019-2025.
[http://dx.doi.org/10.1021/jm049952w] [PMID: 15771444]
(d) Aguirre, G.; Cerecetto, H.; Di Maio, R.; González, M.; Alfaro, M.E.M.; Jaso, A.; Zarranz, B.; Ortega, M.A.; Aldana, I.; Monge-Vega, A.; Quinoxaline, N. N′-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi. Structure-activity relationships. Bioorg. Med. Chem. Lett., 2004, 14(14), 3835-3839.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.088] [PMID: 15203172]
(e) Gali-Muhtasib, H.U.; Diab-Assaf, M.; Haddadin, M.J. Quinoxaline 1,4-dioxides induce G2/M cell cycle arrest and apoptosis in human colon cancer cells. Cancer Chemother. Pharmacol., 2005, 55(4), 369-378.
[http://dx.doi.org/10.1007/s00280-004-0907-x] [PMID: 15538569]
(f) Toshima, K.; Ozawa, T.; Kimura, T.; Matsumura, S. The significant effect of the carbohydrate structures on the DNA photocleavage of the quinoxaline-carbohydrate hybrids. Bioorg. Med. Chem. Lett., 2004, 14(11), 2777-2779.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.065] [PMID: 15125931]
[http://dx.doi.org/10.1080/00397910802406737]
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
(b) Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
(c) Ramos, L.M.; Guido, B.C.; Nobrega, C.C.; Corrêa, J.R.; Silva, R.G.; de Oliveira, H.C.; Gomes, A.F.; Gozzo, F.C.; Neto, B.A. The Biginelli reaction with an imidazolium-tagged recyclable iron catalyst: Kinetics, mechanism, and antitumoral activity. Chemistry, 2013, 19(13), 4156-4168.
[http://dx.doi.org/10.1002/chem.201204314] [PMID: 23460474]
[http://dx.doi.org/10.1016/j.molcata.2014.04.031]
[http://dx.doi.org/10.1039/C4RA03194F]
[http://dx.doi.org/10.1016/j.bmcl.2013.02.108] [PMID: 23535330]
(b) Pi, Z.; Sutton, J.; Lloyd, J. 2-Aminothiazole based P2Y1 antagonists as novel antiplatelet agents. Bioorg. Med. Chem. Lett., 2013, 23, 4206-4209.
(c) Mjambili, F.; Njoroge, M.; Naran, K. Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorg. Med. Chem. Lett., 2014, 24, 560-564.
[http://dx.doi.org/10.1080/17415993.2017.1400033]
[http://dx.doi.org/10.1007/s00204-009-0416-0] [PMID: 19340413]
[http://dx.doi.org/10.1016/0040-4020(82)85013-8]
[http://dx.doi.org/10.1021/cr00022a004]
(b) Lubineau, A.; Ange, J.; Queneau, Y. Water-promoted organic reactions. Synthesis, 1994, 8, 741-760.
[http://dx.doi.org/10.1055/s-1994-25562]
(b) Mukaiyama, T.; Banno, K.; Narasaka, K. New cross-aldol reactions. Reactions of silylenol ethers with carbonyl compounds activated by titanium tetrachloride. J. Am. Chem. Soc., 1974, 96, 7503-7509.
(c) Mukaiyama, T. The directed aldol reaction. Org. React., 1982, 28, 203-326.
[http://dx.doi.org/10.1016/S0040-4039(98)01081-8]
[http://dx.doi.org/10.1039/a904439f]
[http://dx.doi.org/10.1016/S0040-4039(00)00257-4]
[http://dx.doi.org/10.1002/cctc.201402029]
[http://dx.doi.org/10.1021/cr00022a010]
[http://dx.doi.org/10.1016/S0020-1693(99)00354-0]
[http://dx.doi.org/10.1016/j.jallcom.2007.04.161]
[http://dx.doi.org/10.1016/S0040-4039(00)00319-1]
[http://dx.doi.org/10.1016/j.molcata.2007.04.035]
[http://dx.doi.org/10.2174/157017809787003115]
[http://dx.doi.org/10.1002/1615-4169(20010226)343:2<174:AID-ADSC174>3.0.CO;2-S]
[http://dx.doi.org/10.1039/c3gc41032c]
[http://dx.doi.org/10.1016/j.molcata.2014.04.031]
[http://dx.doi.org/10.1039/b000319k]