Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

General Review Article

Understanding the Role of Gadoxetic Acid in MRI

Author(s): Dorota Rybczynska*, Joanna Pienkowska, Andrzej Frydrychowski, Edyta Szurowska and Anna Jankowska

Volume 16, Issue 5, 2020

Page: [572 - 577] Pages: 6

DOI: 10.2174/1573405615666181224125909

Price: $65

Abstract

Background: Radiological imaging methods used at a large scale in the assessment of hepatic lesions include: Ultrasound, computed tomography and magnetic resonance. To further characterize these lesions, specific contrast agents may be added, thus revealing the vascularity of the lesions.

Discussion: This review focuses on gadoxetic acid, which is a hepatospecific contrast agent used in MRI. The aim of the review is to briefly explain the mechanism of GA enhancement, describe the enhancement patterns of some benign and malignant hepatic lesions and discuss possible advantages of GA over standard contrast agents.

Conclusion: The role of GA in functional MR cholangiography and the idea of accessing liver function by measuring parenchymal enhancement will also be explained.

Keywords: Gadoxetic acid, Primovist, magnetic resonance imaging, hepatic lesions, liver function, hepatospecific.

Graphical Abstract

[1]
Chung YE, Kim KW. Contrast-enhanced ultrasonography: advance and current status in abdominal imaging. Ultrason (Seoul, Korea) 2015; 34(1): 3-18.
[http://dx.doi.org/10.14366/usg.14034]
[2]
Boyum JH, Atwell TD, Schmit GD, et al. Incidence and risk factors for adverse events related to image-guided liver biopsy. Mayo Clin Proc 2016; 91(3): 329-35.
[http://dx.doi.org/10.1016/j.mayocp.2015.11.015]
[3]
Golfieri R, Garzillo G, Ascanio S, Renzulli M. Focal lesions in the cirrhotic liver: their pivotal role in gadoxetic acid-enhanced MRI and recognition by the Western guidelines. Dig Dis 2014; 32(6): 696-704.
[http://dx.doi.org/10.1159/000368002]
[4]
Haimerl M, Wächtler M, Zeman F, et al. Quantitative evaluation of enhancement patterns in focal solid liver lesions with Gd-EOB-DTPA-enhanced MRI. PLoS One 2014; 9(6) e100315
[http://dx.doi.org/10.1371/journal.pone.0100315]
[5]
Ye F, Liu J, Ouyang H. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging and multidetector-row computed tomography for the diagnosis of hepatocellular carcinoma. Medicine (Baltimore) 2015; 94(32) e1157
[6]
Korean Society of Abdominal Radiology KS of A. Diagnosis of hepatocellular carcinoma with gadoxetic acid-enhanced MRI. 2016 consensus recommendations of the Korean society of abdominal radiology. Korean J Radiol 2017; 18(3): 427-43.
[7]
Charny CK, Jarnagin WR, Schwartz LH, et al. Management of 155 patients with benign liver tumours. Br J Surg 200 88(6): 808-13.
[http://dx.doi.org/10.1046/j.0007-1323.2001.01771.x]
[8]
Suh CH, Kim KW, Kim GY, Shin YM, Kim PN, Park SH. The diagnostic value of Gd-EOB-DTPA-MRI for the diagnosis of focal nodular hyperplasia: a systematic review and meta-analysis. Eur Radiol 2015; 25(4): 950-60.
[http://dx.doi.org/10.1007/s00330-014-3499-9]
[9]
Karam AR, Shankar S, Surapaneni P, Kim YH, Hussain S. Focal nodular hyperplasia: Central scar enhancement pattern using gadoxetate disodium. J Magn Reson Imaging 2010; 32(2): 341-4.
[10]
Zech CJ, Grazioli L, Breuer J, Reiser MF, Schoenberg SO. Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Invest Radiol 2008; 43(7): 504-11.
[11]
Grazioli L, Morana G, Federle MP, et al. Focal nodular hyperplasia: morphologic and functional information from MR imaging with Gadobenate dimeglumine. Radiology 2001; 221(3): 731-9.
[12]
The Radiology Assistant Liver - Masses II - Common Tumors 2018. Available from:. http://www.radiologyassistant.nl/en/ p448eef3083354/liver-masses-ii-common-tumors.html
[13]
Stoot JHMB, Coelen RJS, De Jong MC, Dejong CHC. Malignant transformation of hepatocellular adenomas into hepatocellular carcinomas: a systematic review including more than 1600 adenoma cases. HPB (Oxford) 2010; 12(8): 509-22.
[14]
Bieze M, Phoa SSKS, Verheij J, van Lienden KP, van Gulik TM. Risk factors for bleeding in hepatocellular adenoma. Br J Surg 2014; 101(7): 847-55.
[http://dx.doi.org/10.1002/bjs.9493]
[15]
Prasad SR, Wang H, Rosas H, et al. Fat-containing lesions of the liver: radiologic-pathologic correlation. Radiographics 2005; 25(2): 321-31.
[http://dx.doi.org/10.1148/rg.252045083]
[16]
Grieser C, Steffen IG, Kramme I-B, et al. Gadoxetic acid enhanced MRI for differentiation of FNH and HCA: a single centre experience. Eur Radiol 2014; 24(6): 1339-48.
[http://dx.doi.org/10.1007/s00330-014-3144-7]
[17]
McInnes MDF, Hibbert RM, Inácio JR, Schieda N. Focal nodular hyperplasia and hepatocellular adenoma: ac-curacy of gadoxetic acid–enhanced MR Imaging-a system-atic review. Radiology 2015; 277(2): 413-23.
[18]
Park YS, Lee CH, Kim JW, Shin S, Park CM. Differentiation of hepatocellular carcinoma from its various mimickers in liver magnetic resonance imaging: What are the tips when using hepatocyte-specific agents? World J Gastroenterol 2016; 22(1): 284.
[19]
Sainani NI, Catalano OA, Holalkere N-S, Zhu AX, Hahn PF, Sahani DV. Cholangiocarcinoma: current and novel imaging techniques. Radiographics 2008; 28(5): 1263-87.
[20]
Chung YE, Kim M-J, Park YN, et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics 2009; 29(3): 683-700.
[21]
Han JK, Choi BI, Kim AY, et al. Cholangiocarcinoma: pictorial essay of CT and cholangiographic findings. Radiographics 2002; 22(1): 173-87.
[http://dx.doi.org/10.1148/radiographics.22.1.g02ja15173]
[22]
Merkle EM, Zech CJ, Bartolozzi C, et al. Consensus report from the 7th International Forum for liver magnetic resonance imaging. Eur Radiol 2016; 26(3): 674-82.
[23]
Davis GL, Dempster J, Meler JD, et al. Hepatocellular carcinoma: management of an increasingly common problem. Proc (Bayl Univ Med Cent) 21(3): 266-80.
[http://dx.doi.org/10.1080/08998280.2008.11928410]
[24]
Di Martino M, Anzidei M, Zaccagna F, et al. Qualitative analysis of small (≤2 cm) regenerative nodules, dysplastic nodules and well-differentiated HCCs with gadox-etic acid MRI. BMC Med Imaging 2016; 16(1): 62.
[25]
Namasivayam S, Martin DR, Saini S. Imaging of liver metastases: MRI. Cancer Imaging 2007; 7(1): 2-9.
[26]
Löwenthal D, Zeile M, Lim WY, et al. Detection and characterisation of focal liver lesions in colorectal carcinoma patients: comparison of diffusion-weighted and Gd-EOB-DTPA enhanced MR imaging. Eur Radiol 2011; 21(4): 832-40.
[27]
Macera A, Lario C, Petracchini M, et al. Staging of colorectal liver metastases after preoperative chemotherapy. Diffusion-weighted imaging in combination with Gd-EOB-DTPA MRI sequences increases sensitivity and diagnostic ac-curacy. Eur Radiol 2013; 23(3): 739-47.
[28]
Bae KE, Kim SY, Lee SS, et al. Assessment of hepatic function with Gd-EOB-DTPA-enhanced hepatic MRI. Dig Dis 2012; 30(6): 617-22.
[http://dx.doi.org/10.1159/000343092]
[29]
Ünal E, Akata D, Karcaaltincaba M. Liver function assessment by magnetic resonance imaging. Semin Ultrasound CT MRI 2016; 37(6): 549-60.
[30]
Xie S, Sun Y, Wang L, Yang Z, Luo J, Wang W. Assessment of liver function and liver fibrosis with dynamic Gd-EOB-DTPA-enhanced MRI. Acad Radiol 2015; 22(4): 460-6.
[http://dx.doi.org/10.1016/j.acra.2014.11.006]
[31]
Wibmer A, Aliya Q, Steininger R, et al. Liver transplantation: impaired biliary excretion of gadoxate is associated with an inferior 1-year retransplantation-free survival. Invest Radiol 2012; 47(6): 353-8.
[32]
Wibmer A, Prusa AM, Nolz R, Gruenberger T, Schindl M, Ba-Ssalamah A. Liver failure after major liver resection: risk assessment by using preoperative Gadoxetic acid-enhanced 3-T MR imaging. Radiology 2013; 269(3): 777-86.
[http://dx.doi.org/10.1148/radiol.13130210] [PMID: 23942606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy