[1]
Krasuski RA, Bashore TM. Congenital heart disease epidemiology in the United States: Blindly feeling for the charging elephant. Circulation 2016; 134(2): 110-3.
[2]
Moons P, Bovijn L, Budts W, Belmans A, Gewillig M. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 2010; 122(22): 2264-72.
[3]
van der Bom T, Bouma BJ, Meijboom FJ, Zwinderman AH, Mulder BJ. The prevalence of adult congenital heart disease, results from a systematic review and evidence based calculation. Am Heart J 2012; 164(4): 568-75.
[4]
Davlouros PA, Karatza AA, Gatzoulis MA, Shore DF. Timing and type of surgery for severe pulmonary regurgitation after repair of tetralogy of Fallot. Int J Cardiol 2004; 97(Suppl. 1): 91-101.
[5]
Bonhoeffer P, Boudjemline Y, Saliba Z, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 2000; 356(9239): 1403-5.
[6]
Baumgartner H, Bonhoeffer P, De Groot NM, et al. ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 2010; 31(23): 2915-57.
[7]
Stout KK, Daniels CJ, Aboulhosn JA, et al. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019; 139(14): e637-97.
[8]
Ferraz Cavalcanti PE, Sa MP, Santos CA, et al. Pulmonary valve replacement after operative repair of tetralogy of Fallot: Meta-analysis and meta-regression of 3,118 patients from 48 studies. J Am Coll Cardiol 2013; 62(23): 2227-43.
[9]
Quail MA, Frigiola A, Giardini A, et al. Impact of pulmonary valve replacement in tetralogy of Fallot with pulmonary regurgitation: A comparison of intervention and nonintervention. Ann Thorac Surg 2012; 94(5): 1619-26.
[10]
Oosterhof T, van Straten A, Vliegen HW, et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 2007; 116(5): 545-51.
[11]
Alvarez-Fuente M, Garrido-Lestache E, Fernandez-Pineda L, et al. Timing of pulmonary valve replacement: How much can the right ventricle dilate before it looses its remodeling potential? Pediatr Cardiol 2016; 37(3): 601-5.
[12]
Geva T. Repaired tetralogy of Fallot: The roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson 2011; 13: 9.
[13]
Henkens IR, van Straten A, Hazekamp MG, et al. Preoperative determinants of recovery time in adult Fallot patients after late pulmonary valve replacement. Int J Cardiol 2007; 121(1): 123-4.
[14]
Lee C, Kim YM, Lee CH, et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: Implications for optimal timing of pulmonary valve replacement. J Am Coll Cardiol 2012; 60(11): 1005-14.
[15]
Bokma JP, Geva T, Sleeper LA, et al. A propensity score-adjusted analysis of clinical outcomes after pulmonary valve replacement in tetralogy of Fallot. Heart 2018; 104(9): 738-44.
[16]
Tanase D, Ewert P, Georgiev S, et al. Tricuspid regurgitation does not impact right ventricular remodeling after percutaneous pulmonary valve implantation. JACC Cardiovasc Interv 2017; 10(7): 701-8.
[17]
Boudjemline Y. Percutaneous pulmonary valve implantation: What
have we learned over the years? EuroIntervention 2017; 13(AA): AA60-7.
[18]
Frigiola A, Tsang V, Bull C, et al. Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: Is age a predictor of outcome? Circulation 2008; 118(14)(Suppl.): S182-90.
[19]
Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol 2005; 95(6): 779-82.
[20]
Buechel ER, Dave HH, Kellenberger CJ, et al. Remodelling of the right ventricle after early pulmonary valve replacement in children with repaired tetralogy of Fallot: Assessment by cardiovascular magnetic resonance. Eur Heart J 2005; 26(24): 2721-7.
[21]
Henkens IR, van Straten A, Schalij MJ, et al. Predicting outcome of pulmonary valve replacement in adult tetralogy of Fallot patients. Ann Thorac Surg 2007; 83(3): 907-11.
[22]
Frigiola A, Redington AN, Cullen S, Vogel M. Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of Fallot. Circulation 2004; 110(11)(Suppl. 1): II153-7.
[23]
van Straten A, Vliegen HW, Lamb HJ, et al. Time course of diastolic and systolic function improvement after pulmonary valve replacement in adult patients with tetralogy of Fallot. J Am Coll Cardiol 2005; 46(8): 1559-64.
[24]
Gengsakul A, Harris L, Bradley TJ, et al. The impact of pulmonary valve replacement after tetralogy of Fallot repair: A matched comparison. Eur J Cardiothorac Surg 2007; 32(3): 462-8.
[25]
Morray BH, McElhinney DB, Cheatham JP, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation: A multicenter experience. Circ Cardiovasc Interv 2013; 6(5): 535-42.
[26]
Peters M, Krings G, Koster M, Molenschot M, Freund MW, Breur JM. Effective radiation dosage of three-dimensional rotational angiography in children. Europace 2015; 17(4): 611-6.
[27]
Holzer RJ, Hijazi ZM. Transcatheter pulmonary valve replacement: State of the art. Catheter Cardiovasc Interv 2016; 87(1): 117-28.
[28]
Georgiev S, Tanase D, Ewert P, et al. Percutaneous pulmonary valve implantation in patients with dysfunction of a “native” right ventricular outflow tract - Mid-term results. Int J Cardiol 2018; 258: 31-5.
[29]
Morgan GJ, Sadeghi S, Salem MM, et al. SAPIEN valve for percutaneous transcatheter pulmonary valve replacement without “pre-stenting”: A multi-institutional experience. Catheter Cardiovasc Interv 2018. [Epub ahead of print].
[30]
Malekzadeh-Milani S, Ladouceur M, Patel M, et al. Incidence and predictors of Melody(R) valve endocarditis: A prospective study. Arch Cardiovasc Dis 2015; 108(2): 97-106.
[31]
McElhinney DB, Hellenbrand WE, Zahn EM, et al. Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation 2010; 122(5): 507-16.
[32]
Lurz P, Nordmeyer J, Giardini A, et al. Early versus late functional outcome after successful percutaneous pulmonary valve implantation: Are the acute effects of altered right ventricular loading all we can expect? J Am Coll Cardiol 2011; 57(6): 724-31.
[33]
Asoh K, Walsh M, Hickey E, et al. Percutaneous pulmonary valve implantation within bioprosthetic valves. Eur Heart J 2010; 31(11): 1404-9.
[34]
Butera G, Milanesi O, Spadoni I, et al. Melody transcatheter pulmonary valve implantation. Results from the registry of the Italian Society of Pediatric Cardiology. Catheter Cardiovasc Interv 2013; 81(2): 310-6.
[35]
Eicken A, Ewert P, Hager A, et al. Percutaneous pulmonary valve implantation: two-centre experience with more than 100 patients. Eur Heart J 2011; 32(10): 1260-5.
[36]
Lurz P, Puranik R, Nordmeyer J, et al. Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: Contribution of septal motion and interventricular mechanical delay. Eur Heart J 2009; 30(18): 2266-74.
[37]
Bonhoeffer P, Boudjemline Y, Qureshi SA, et al. Percutaneous insertion of the pulmonary valve. J Am Coll Cardiol 2002; 39(10): 1664-9.
[38]
Khambadkone S, Coats L, Taylor A, et al. Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 2005; 112(8): 1189-97.
[39]
Khambadkone S, Bonhoeffer P. Percutaneous pulmonary valve implantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2006; 23-8.
[40]
Vezmar M, Chaturvedi R, Lee KJ, et al. Percutaneous pulmonary valve implantation in the young 2-year follow-up. JACC Cardiovasc Interv 2010; 3(4): 439-48.
[41]
Plymen CM, Bolger AP, Lurz P, et al. Electrical remodeling following percutaneous pulmonary valve implantation. Am J Cardiol 2011; 107(2): 309-14.
[42]
Nordmeyer J, Coats L, Bonhoeffer P. Current experience with percutaneous pulmonary valve implantation. Semin Thorac Cardiovasc Surg 2006; 18(2): 122-5.
[43]
Lurz P, Gaudin R, Taylor AM, Bonhoeffer P. Percutaneous pulmonary valve implantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2009; 112-7.
[44]
Virk SA, Liou K, Chandrakumar D, Gupta S, Cao C. Percutaneous pulmonary valve implantation: A systematic review of clinical outcomes. Int J Cardiol 2015; 201: 487-9.
[45]
Cheatham JP, Hellenbrand WE, Zahn EM, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation 2015; 131(22): 1960-70.
[46]
Bensemlali M, Malekzadeh-Milani S, Mostefa-Kara M, Bonnet D, Boudjemline Y. Percutaneous pulmonary Melody(R) valve implantation in small conduits. Arch Cardiovasc Dis 2017; 110(10): 517-24.
[47]
Vergales JE, Wanchek T, Novicoff W, Kron IL, Lim DS. Cost-analysis of percutaneous pulmonary valve implantation compared to surgical pulmonary valve replacement. Catheter Cardiovasc Interv 2013; 82(7): 1147-53.
[48]
Andresen B, Mishra V, Lewandowska M, et al. In-hospital cost comparison between percutaneous pulmonary valve implantation and surgery. Eur J Cardiothorac Surg 2017; 51(4): 747-53.
[49]
Fraisse A, Aldebert P, Malekzadeh-Milani S, et al. Melody (R) transcatheter pulmonary valve implantation: Results from a French registry. Arch Cardiovasc Dis 2014; 107(11): 607-14.
[50]
Mauri L, Frigiola A, Butera G. Emergency surgery for extrinsic coronary compression after percutaneous pulmonary valve implantation. Cardiol Young 2013; 23(3): 463-5.
[51]
Kostolny M, Tsang V, Nordmeyer J, et al. Rescue surgery following percutaneous pulmonary valve implantation. Eur J Cardiothorac Surg 2008; 33(4): 607-12.
[52]
Divekar AA, Lee JJ, Tymchak WJ, Rutledge JM. Percutaneous coronary intervention for extrinsic coronary compression after pulmonary valve replacement. Catheter Cardiovasc Interv 2006; 67(3): 482-4.
[53]
Torres AJ, McElhinney DB, Anderson BR, et al. Aortic root distortion and aortic insufficiency during balloon angioplasty of the right ventricular outflow tract prior to transcatheter pulmonary valve replacement. J Interv Cardiol 2016; 29(2): 197-207.
[54]
Caimi A, Sturla F, Pluchinotta FR, et al. Prediction of stenting related adverse events through patient-specific finite element modelling. J Biomech 2018; 79: 135-46.
[55]
Lindsay I, Aboulhosn J, Salem M, Levi D. Aortic root compression during transcatheter pulmonary valve replacement. Catheter Cardiovasc Interv 2016; 88(5): 814-21.
[56]
Nordmeyer J, Khambadkone S, Coats L, et al. Risk stratification, systematic classification, and anticipatory management strategies for stent fracture after percutaneous pulmonary valve implantation. Circulation 2007; 115(11): 1392-7.
[57]
Bishnoi RN, Jones TK, Kreutzer J, Ringel RE. NuMED Covered Cheatham-Platinum Stent for the treatment or prevention of right ventricular outflow tract conduit disruption during transcatheter pulmonary valve replacement. Catheter Cardiovasc Interv 2015; 85(3): 421-7.
[58]
Kenny D, Hijazi ZM, Kar S, et al. Percutaneous implantation of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position: early phase 1 results from an international multicenter clinical trial. J Am Coll Cardiol 2011; 58(21): 2248-56.
[59]
Suradi HS, Hijazi ZM. Percutaneous pulmonary valve implantation. Glob Cardiol Sci Pract 2015; 2015(2): 23.
[60]
Khambadkone S. Percutaneous pulmonary valve implantation. Ann Pediatr Cardiol 2012; 5(1): 53-60.
[61]
Van Dijck I, Budts W, Cools B, et al. Infective endocarditis of a transcatheter pulmonary valve in comparison with surgical implants. Heart 2015; 101(10): 788-93.
[62]
Malekzadeh-Milani S, Ladouceur M, Iserin L, Bonnet D, Boudjemline Y. Incidence and outcomes of right-sided endocarditis in patients with congenital heart disease after surgical or transcatheter pulmonary valve implantation. J Thorac Cardiovasc Surg 2014; 148(5): 2253-9.
[63]
O’Donnell C, Holloway R, Tilton E, Stirling J, Finucane K, Wilson N. Infective endocarditis following Melody valve implantation: comparison with a surgical cohort. Cardiol Young 2017; 27(2): 294-301.
[64]
McElhinney DB, Sondergaard L, Armstrong AK, et al. Endocarditis after transcatheter pulmonary valve replacement. J Am Coll Cardiol 2018; 72(22): 2717-28.
[65]
Wilson WM, Benson LN, Osten MD, Shah A, Horlick EM. Transcatheter pulmonary valve replacement with the edwards sapien system: The Toronto experience. JACC Cardiovasc Interv 2015; 8(14): 1819-27.
[66]
Kenny D, Rhodes JF, Fleming GA, et al. 3-year outcomes of the edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position from the COMPASSION multicenter clinical trial. JACC Cardiovasc Interv 2018; 11(19): 1920-9.
[67]
Patel M, Malekzadeh-Milani S, Ladouceur M, Iserin L, Boudjemline Y. Percutaneous pulmonary valve endocarditis: Incidence, prevention and management. Arch Cardiovasc Dis 2014; 107(11): 615-24.
[68]
Hascoet S, Jalal Z, Baruteau A, et al. Stenting in paediatric and adult congenital heart diseases: A French multicentre study in the current era. Arch Cardiovasc Dis 2015; 108(12): 650-60.
[69]
Vollroth M, Daehnert I, Kostelka M, Wagner R. First case of blood-culture proven Staphylococcus aureus endocarditis of a Sapien(R) XT valve after percutaneous pulmonary valve implantation. Eur J Cardiothorac Surg 2015; 48(6): e124-5.
[70]
Hascoet S, Mauri L, Claude C, et al. Infective endocarditis risk after percutaneous pulmonary valve implantation with the melody and sapien valves. JACC Cardiovasc Interv 2017; 10(5): 510-7.
[71]
Haas NA, Bach S, Vcasna R, et al. The risk of bacterial endocarditis after percutaneous and surgical biological pulmonary valve implantation. Int J Cardiol 2018; 268: 55-60.
[72]
Uebing A, Rigby ML. The problem of infective endocarditis after transcatheter pulmonary valve implantation. Heart 2015; 101(10): 749-51.
[73]
Jalal Z, Galmiche L, Lebeaux D, et al. Selective propensity of bovine jugular vein material to bacterial adhesions: An in-vitro study. Int J Cardiol 2015; 198: 201-5.
[74]
Malekzadeh-Milani S, Houeijeh A, Jalal Z, et al. French national survey on infective endocarditis and the Melody valve in percutaneous pulmonary valve implantation. Arch Cardiovasc Dis 2018; 111(8-9): 497-506.
[75]
Sharma A, Cote AT, Hosking MCK, Harris KC. A systematic review of infective endocarditis in patients with bovine jugular vein valves compared with other valve types. JACC Cardiovasc Interv 2017; 10(14): 1449-58.
[76]
Buber J, Bergersen L, Lock JE, et al. Bloodstream infections occurring in patients with percutaneously implanted bioprosthetic pulmonary valve: A single-center experience. Circ Cardiovasc Interv 2013; 6(3): 301-10.
[77]
Pagourelias ED, Daraban AM, Mada RO, et al. Right ventricular remodelling after transcatheter pulmonary valve implantation. Catheter Cardiovasc Interv 2017; 90(3): 407-17.
[78]
Yu HK, Li SJ, Ip JJ, Lam WW, Wong SJ, Cheung YF. Right ventricular mechanics in adults after surgical repair of tetralogy of fallot: Insights from three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 2014; 27(4): 423-9.
[79]
Focardi M, Cameli M, Carbone SF, et al. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging 2015; 16(1): 47-52.
[80]
Kempny A, Fernandez-Jimenez R, Orwat S, et al. Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson 2012; 14: 32.
[81]
van der Zwaan HB, Helbing WA, McGhie JS, et al. Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: Validation with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2010; 23(2): 134-40.
[82]
Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017; 19(1): 75.
[83]
Zile MR, Gregg D. Is biventricular fibrosis the mediator of late complications in tetralogy of fallot? JACC Cardiovasc Imaging 2016; 9(1): 11-3.
[84]
Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M. Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging 2010; 3(6): 727-34.
[85]
Plymen CM, Sado DM, Taylor AM, et al. Diffuse myocardial fibrosis in the systemic right ventricle of patients late after Mustard or Senning surgery: An equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2013; 14(10): 963-8.
[86]
Chen CA, Dusenbery SM, Valente AM, Powell AJ, Geva T. Myocardial ECV fraction assessed by CMR is associated with type of hemodynamic load and arrhythmia in repaired tetralogy of fallot. JACC Cardiovasc Imaging 2016; 9(1): 1-10.
[87]
Markl M, Schnell S, Barker AJ. 4D flow imaging: Current status to future clinical applications. Curr Cardiol Rep 2014; 16(5): 481.
[88]
Kamphuis VP, Westenberg JJM, van der Palen RLF, et al. Unravelling cardiovascular disease using four dimensional flow cardiovascular magnetic resonance. Int J Cardiovasc Imaging 2017; 33(7): 1069-81.
[89]
Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 2015; 17: 72.
[90]
DeCampli WM, Argueta-Morales IR, Divo E, Kassab AJ. Computational fluid dynamics in congenital heart disease. Cardiol Young 2012; 22(6): 800-8.
[91]
Morris PD, Narracott A, von Tengg-Kobligk H, et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 2016; 102(1): 18-28.
[92]
Slesnick TC. Role of computational modelling in planning and executing interventional procedures for congenital heart disease. Can J Cardiol 2017; 33(9): 1159-70.
[93]
Goubergrits L, Riesenkampff E, Yevtushenko P, et al. MRI-based computational fluid dynamics for diagnosis and treatment prediction: Clinical validation study in patients with coarctation of aorta. J Magn Reson Imaging 2015; 41(4): 909-16.
[94]
Aldoss O, Fonseca BM, Truong UT, et al. Diagnostic utility of three-dimensional rotational angiography in congenital cardiac catheterization. Pediatr Cardiol 2016; 37(7): 1211-21.
[95]
Truong UT, Fagan TE, Deterding R, Ing RJ, Fonseca BM. Use of rotational angiography in assessing relationship of the airway to vasculature during cardiac catheterization. Catheter Cardiovasc Interv 2015; 86(6): 1068-77.
[96]
Pockett CR, Moore JW, El-Said HG. Three dimensional rotational angiography for assessment of coronary arteries during melody valve implantation: Introducing a technique that may improve outcomes. Neth Heart J 2017; 25(2): 82-90.
[97]
Haddad L, Waller BR, Johnson J, et al. Radiation protocol for three-dimensional rotational angiography to limit procedural radiation exposure in the pediatric cardiac catheterization lab. Congenit Heart Dis 2016; 11(6): 637-46.
[98]
Goreczny S, Moszura T, Dryzek P, et al. Three-dimensional image fusion guidance of percutaneous pulmonary valve implantation to reduce radiation exposure and contrast dose: A comparison with traditional two-dimensional and three-dimensional rotational angiographic guidance. Neth Heart J 2017; 25(2): 91-9.
[99]
Valverde I, Sarnago F, Prieto R, Zunzunegui JL. Three-dimensional printing in vitro simulation of percutaneous pulmonary valve implantation in large right ventricular outflow tract. Eur Heart J 2017; 38(16): 1262-3.
[100]
Poterucha JT, Foley TA, Taggart NW. Percutaneous pulmonary valve implantation in a native outflow tract: 3-dimensional DynaCT rotational angiographic reconstruction and 3-dimensional printed model. JACC Cardiovasc Interv 2014; 7(10): e151-2.
[101]
Zahn EM, Chang JC, Armer D, Garg R. First human implant of the Alterra Adaptive Prestent(TM): A new self-expanding device designed to remodel the right ventricular outflow tract. Catheter Cardiovasc Interv 2018; 91(6): 1125-9.
[102]
Bergersen L, Benson LN, Gillespie MJ, et al. Harmony feasibility trial: Acute and short-term outcomes with a self-expanding transcatheter pulmonary valve. JACC Cardiovasc Interv 2017; 10(17): 1763-73.
[103]
Garay F, Pan X, Zhang YJ, Wang C, Springmuller D. Early experience with the Venus pvalve for percutaneous pulmonary valve implantation in native outflow tract. Neth Heart J 2017; 25(2): 76-81.
[104]
Kim GB, Song MK, Bae EJ, et al. Successful feasibility human trial of a new self-expandable percutaneous pulmonary valve (pulsta valve) implantation using knitted nitinol wire backbone and trileaflet alpha-gal-free porcine pericardial valve in the native right ventricular outflow tract. Circ Cardiovasc Interv 2018; 11(6)e006494
[105]
Kim GB, Kwon BS, Lim HG. First in human experience of a new self-expandable percutaneous pulmonary valve implantation using knitted nitinol-wire and tri-leaflet porcine pericardial valve in the native right ventricular outflow tract. Catheter Cardiovasc Interv 2017; 89(5): 906-9.
[106]
Jalal Z, Thambo JB, Boudjemline Y. The future of transcatheter pulmonary valvulation. Arch Cardiovasc Dis 2014; 107(11): 635-42.
[107]
Boudjemline Y, Agnoletti G, Bonnet D, Sidi D, Bonhoeffer P. Percutaneous pulmonary valve replacement in a large right ventricular outflow tract: An experimental study. J Am Coll Cardiol 2004; 43(6): 1082-7.
[108]
Promphan W, Prachasilchai P, Siripornpitak S, Qureshi SA, Layangool T. Percutaneous pulmonary valve implantation with the Venus P-valve: clinical experience and early results. Cardiol Young 2016; 26(4): 698-710.
[109]
Rockefeller T, Shahanavaz S, Zajarias A, Balzer D. Transcatheter implantation of SAPIEN 3 valve in native right ventricular outflow tract for severe pulmonary regurgitation following tetralogy of fallot repair. Catheter Cardiovasc Interv 2016; 88(1): E28-33.
[110]
Sosnowski C, Matella T, Fogg L, et al. Hybrid pulmonary artery plication followed by transcatheter pulmonary valve replacement: Comparison with surgical PVR. Catheter Cardiovasc Interv 2016; 88(5): 804-10.
[111]
Cebotari S, Tudorache I, Ciubotaru A, et al. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: Early report. Circulation 2011; 124(11)(Suppl.): S115-23.
[112]
Sarikouch S, Horke A, Tudorache I, et al. Decellularized fresh homografts for pulmonary valve replacement: A decade of clinical experience. Eur J Cardiothorac Surg 2016; 50(2): 281-90.
[113]
d’Udekem Y. Decellularized homografts: In fashion or really superior? Eur J Cardiothorac Surg 2016; 50(2): 291-2.
[114]
Voges I, Brasen JH, Entenmann A, et al. Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. Eur J Cardiothorac Surg 2013; 44(4): e272-9.
[115]
Spriestersbach H, Prudlo A, Bartosch M, et al. First percutaneous implantation of a completely tissue-engineered self-expanding pulmonary heart valve prosthesis using a newly developed delivery system: A feasibility study in sheep. Cardiovasc Interv Ther 2017; 32(1): 36-47.
[116]
Shah RR, Poommipanit P, Law MA, Amin Z. Anchor balloon, buddy wire, and wire and sheath techniques to deploy percutaneous pulmonary valves in tetralogy of fallot patients. Catheter Cardiovasc Interv 2018; 92(5): 915-20.
[117]
Tarzia P, Conforti E, Giamberti A, et al. Percutaneous management of failed bioprosthetic pulmonary valves in patients with congenital heart defects. J Cardiovasc Med (Hagerstown) 2017; 18(6): 430-5.