[1]
Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999; 401(6755): 788-91.
[2]
Shi J, Luo Z. Research on the Advances of nonnegative matrix factorization and its application in bioinformatics. Comput Eng Sci 2010; 32: 117-23.
[3]
Heger A, Holm L. Sensitive pattern discovery with ‘fuzzy’ alignments of distantly related proteins. Bioinformatics 2003; 19(Suppl. 1): i130-7.
[4]
Jung I, Lee J, Lee SY, Kim D. Application of nonnegative matrix factorization to improve profile-profile alignment features for fold recognition and remote homolog detection. BMC Bioinformatics 2008; 9(1): 298.
[5]
Kim PM, Tidor B. Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Res 2003; 13(7): 1706-18.
[6]
Chagoyen M, Carmona-Saez P, Shatkay H, Carazo JM, Pascual-Montano A. Discovering semantic features in the literature: a foundation for building functional associations. BMC Bioinformatics 2006; 7(1): 41.
[7]
Dai LY, Feng CM, Liu JX, Zheng CH, Yu J, Hou MX. Robust Nonnegative Matrix Factorization via Joint Graph Laplacian and Discriminative Information for Identifying Differentially Expressed Genes. Complexity 2017; 2017(40): 1-11.
[8]
Guan N, Tao D, Luo Z, Yuan B. NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization. IEEE Trans Signal Process 2012; 60(6): 2882-98.
[9]
Cai D, He X, Han J, Huang TS. Graph regularized nonnegative matrix factorization for data representation. Pattern Analysis and Machine Intelligence. IEEE Transactions on 2011; 33(8): 1548-60.
[10]
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9(1): 559.
[11]
Zhang B, Horvath S. A General Framework For Weighted Gene Co-Expression Network Analysis Stat Appl Genet Mol Biol 2005. 4: Article17.
[12]
Plaisier CL, Horvath S, Huertas-Vazquez A, et al. A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 2009; 5(9)e1000642
[13]
DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA. Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One 2011; 6(10)e26683
[14]
Malki K, Tosto MG, Jumabhoy I, et al. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics 2013; 14(16): 1979-90.
[15]
Pei G, Chen L, Zhang W. WGCNA Application to Proteomic and Metabolomic Data Analysis. Methods Enzymol 2017; 585: 135-58.
[16]
Ray S, Bandyopadhyay S. A NMF based approach for integrating multiple data sources to predict HIV-1-human PPIs. BMC Bioinformatics 2016; 17(1): 121.
[17]
Li Y, Liu Z, Li Q, et al. Computational Discovery of Molecular Mechanisms in Wheat Cold Resistance from RNA-seq Data
[18]
Lee DD, Seung HS. Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst 2001; 13: 556-62.
[19]
Song C, Lei P, Wang T. Gene Co-expression Network Analysis Based on WGCNA Algorithm-Theory and Implementation in R Software. Genomics and Applied Biology 2013; 32(1): 135-41.
[20]
Network CGAR. Integrated genomic characterization of oesophageal carcinoma. Nature 2017; 541(7636): 169-75.
[21]
Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145(6): 1215-29.
[22]
Candes EJ, Li X, Ma Y, Wright J. Robust principal component analysis? J Assoc Comput Mach 2011; 58(3): article no. 11.
[23]
Liu JX, Zheng CH, Xu Y. Extracting plants core genes responding to abiotic stresses by penalized matrix decomposition. Comput Biol Med 2012; 42(5): 582-9.
[24]
Liu JX, Xu Y, Zheng CH, Kong H, Lai ZH. RPCA-based tumor
classification using gene exprssion data. IEEE/ACM Trans Comput
Biol Bioinform 2015; 12(4): 964-70.
[25]
Yuanying C. Peng: Fatty acid metabolism and cancer development. Sci Bull 2016; (19): 1473-9.
[26]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[27]
Isomoto H, Kobayashi S, Werneburg NW, et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology 2005; 42(6): 1329-38.
[28]
Zhao PO, Li X, Lu Y, Liu L. Downregulated expression of PHLDA1 protein is associated with a malignant phenotype of cholangiocarcinoma. Oncol Lett 2015; 10(2): 895-900.
[29]
Zhou M, Ouyang J, Takeshi T, Yoshiro M. Effect and mechanism of human serum amyloid A family on tumor metastasis. China J Cancer Prev Treat 2010; 17(21): 1701-4.
[30]
Conte M, Franceschi C, Sandri M, Salvioli S. Perilipin 2 and Age-Related Metabolic Diseases: A New Perspective. Trends Endocrinol Metab 2016; 27(12): 893-903.