Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Screening of Extremophile Microalgae Isolated from High Background Radiation Areas as Source of Bioactive Materials

Author(s): Fatemeh Heidari, Zeinab Shariatmadari* and Hossein Riahi

Volume 16, Issue 4, 2020

Page: [407 - 414] Pages: 8

DOI: 10.2174/1573407215666181219104518

Price: $65

Abstract

Background: Microalgae are the source of various compounds with high potentials for being used in different industries. The production of such compounds can be raised under extreme conditions. In the present study, four cyanobacteria and one coccoid green alga were examined which were isolated from hot springs in high background radiation areas in Ramsar, a city in the north of Iran.

Methods: Cadmium adsorption from aqueous solution, response towards cadmium stress, antioxidant activity, total phenolic compound and drought tolerance were investigated in these microalgae.

Results: The results showed that these extremophile microalgae contain valuable biological compounds which can be useful in remediation of heavy metals from contaminated water and soils and pharmaceutical applications. The unicellular cyanobacterium, Chroococidiopsis thermalis IBRC-M50002, was the best strain with the highest biological activity in various testes such as cadmium adsorption (225 mg g-1), cadmium tolerance stress (100 mg ml-1), antioxidant activity (IC50= 18 μg mg-1) and total phenol content (100 μg ml-1). The coccoid green algae Grasiella emersonii IBRC-M50001, also exhibited significant antioxidant activity (IC50=10 μg mg-1) and total phenol compound (116 μg ml-1), but its cadmium adsorption, tolerance at cadmium stress and desiccation were lower than Chroococidiopsis thermalis.

Conclusion: HBRAs microalgae, isolated from extreme conditions, are useful microorganisms for the production of bioactive substances and natural antioxidants. In other words, they exhibited high capacity to be used in pharmaceutical, industrial and commercial applications.

Keywords: Antioxidant activity, cadmium adsorption, extremophile microalgae, High Background Radiation Areas (HBRAs), radioisotopes, cyanobacteria.

Graphical Abstract

[1]
García-Balboa, C.; Baselga-Cervera, B.; García-Sanchez, A.; Igual, J.M.; Lopez-Rodas, V.; Costas, E. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments. Aquat. Toxicol., 2013, 144-145, 116-123.
[http://dx.doi.org/10.1016/j.aquatox.2013.10.003] [PMID: 24177214]
[2]
Kumar, R.; Patel, D.D.; Bansal, D.D.; Mishra, S.; Mohammed, A.; Arora, R.; Sharma, A.; Kumar Sharma, R. Extremophiles: Sustainable resource of natural compounds-extremolytes In: Sustainable Biotechnology; O.V., Singh.; S.P, Harvey., Eds.; Springer Science Business Media B.V, 2010.
[3]
Kiaei, E.; Soltani, N.; Mazaheri Assadi, M.; Khavarinejad, R.A.; Dezfulian, M. Screening of cyanobacterial strains as a smart choice for biodiesel. J. Appl. Environ. Bioscience, 2015, 5(8), 236-245.
[4]
von Alvensleben, N.; Stookey, K.; Magnusson, M.; Heimann, K. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica. PLoS One, 2013, 8(5) e63569
[http://dx.doi.org/10.1371/journal.pone.0063569] [PMID: 23667639]
[5]
Sohrabi, M. In: ; World high level natural radiation and/or radon-prone areas with special regard to dwellings: Radiation doses and health effects, Proceedings of 4th international conference on high levels of natural radiation Ministry of Public Health, Beijing (China).. International Health Exchange Center; Ministry of Public Health, Lab. of Industrial Hygiene: Beijing, China, 1996; pp. 57-68.
[6]
Heidari, F.; Riahi, H.; Aghamiri, M.R.; Shariatmadari, Z.; Zakeri, F. Isolation of an efficient biosorbent of radionuclides (238U &226Ra): Green algae from high background radiation areas in Iran. J. Appl. Phycol., 2017, 29(6), 2887-2898.
[http://dx.doi.org/10.1007/s10811-017-1151-1]
[7]
Sohrabi, M. World high background natural radiation areas: Need to protect public from radiation exposure. Radiat. Meas., 2013, 50, 166-171.
[http://dx.doi.org/10.1016/j.radmeas.2012.03.011]
[8]
Zakeri, F.; Noghabi, K.A.; Sadeghizadeh, M.; Kardan, M.R.; Masoomi, F.; Farshidpour, M.R.; Atarilar, A. Serratia sp. ZF03: An efficient radium biosorbent isolated from hot-spring waters in high background radiation areas. Bioresour. Technol., 2010, 101(23), 9163-9170.
[http://dx.doi.org/10.1016/j.biortech.2010.07.032] [PMID: 20675128]
[9]
Heidari, F.; Riahi, H.; Aghamiri, M.R.; Zakeri, F.; Shariatmadari, Z.; Hauer, T. 226Ra, 238U and Cd adsorption kinetics and binding capacity of two cyanobacterial strains isolated from highly radioactive springs and optimal conditions for maximal removal effects in contaminated water. Int. J. Phytoremediat., 2018, 20(4), 369-377.
[http://dx.doi.org/10.1080/15226514.2017.1393392] [PMID: 29584468]
[10]
Rivasseau, C.; Farhi, E.; Ariane, A.; Coute, A.; Gromova, M.; Dgs, C.; Boisson, A.M.; Feret, A.S.; Compagnon, E.; Bligny, R. An extremely radioresistant green eukaryote for radionuclide biodecontamination in the nuclear industry. Environ. Eng. Sci., 2013, 6(4), 1230-1239.
[11]
Fydrych, A.; Moir, R.D.; Huang, C.; Shi, Y.; Rogers, J.T.; Huang, X. Amyloid-targeted metal chelation, anti-oxidative stress, and anti- inflammation as potential alzheimers therapies. Current Bio Com, 2008, 4(3), 140-149.
[http://dx.doi.org/10.2174/157340708786305989]
[12]
Singhania, M.; Ravichander, P.; Swaroop, S.; Selvakumar, J.N.; Vaithilingam, M.; Chandrasekaran, S.D. Anti-bacterial and anti-oxidant property of Streptomyces laurentii VITMPS isolated from marine soil. Current Bio Com, 2017, 13(1), 78-81.
[http://dx.doi.org/10.2174/1573407212666160606130704]
[13]
Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev., 1971, 35(2), 171-205.
[http://dx.doi.org/10.1128/MMBR.35.2.171-205.1971] [PMID: 4998365]
[14]
Bischoff, H.W.; Bold, H.C. Phycological studies IV In: Some soil algae from enchanted rock and related algal species; University of Texas: Austin, 1963; 6318, pp. 1-95.
[15]
Shariatmadari, Z.; Riahi, H.; Abdi, M.; Seyed Hashtroudi, M.; Ghassempour, A.R. Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. J. Appl. Phycol., 2015, 27(6), 2279-2287.
[http://dx.doi.org/10.1007/s10811-014-0512-2]
[16]
Komárek, J.; Anagnostidis, K. Cyanoprokaryota 2. Oscillatoriales In: Süsswasserflora von Mitteleuropa; Büdel, B.; Krienitz, L.; Gärtner, G.; Schagerl, M., Eds.; Elsevier/Spektrum: Heidelberg, 2005; 19, pp. 2-759.
[17]
Masoudzadeh, N.; Zakeri, F.; Lotfabad, Tb.; Sharafi, H.; Masoomi, F.; Zahiri, H.S.; Ahmadian, G.; Noghabi, K.A. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. J. Hazard. Mater., 2011, 197, 190-198.
[http://dx.doi.org/10.1016/j.jhazmat.2011.09.075] [PMID: 21983169]
[18]
Sushanth, V.R.; Rajashekhar, M. Antioxidant and antimicrobial activities in the four species of marine microalgae isolated from Arabian sea of Karnataka coast. Indian J. Geo-Mar. Sci., 2015, 44(1), 69-75.
[19]
Katoh, H.; Furukawa, J.; Tomita-Yokotani, K.; Nishi, Y. Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. Biochim. Biophys. Acta, 2012, 1817(8), 1499-1505.
[http://dx.doi.org/10.1016/j.bbabio.2012.02.039] [PMID: 22417797]
[20]
D’alessandro, E.B.; Nelson, R.; Filho, A. Concepts and studies on lipid and pigments of microalgae: A review. Renew. Sustain. Energy Rev., 2016, 58, 832-841.
[http://dx.doi.org/10.1016/j.rser.2015.12.162]
[21]
Babaoğlu Aydaş, S.; Ozturk, S.; Aslım, B. Phenylalanine Ammonia Lyase (PAL) enzyme activity and antioxidant properties of some cyanobacteria isolates. Food Chem., 2013, 136(1), 164-169.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.119] [PMID: 23017408]
[22]
Mohamed, Z.A. Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna. Water Res., 2001, 35(18), 4405-4409.
[http://dx.doi.org/10.1016/S0043-1354(01)00160-9] [PMID: 11763042]
[23]
Miazek, K.; Iwanek, W.; Remacle, C.; Richel, A.; Goffin, D. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis. Int. J. Mol. Sci., 2015, 16(10), 23929-23969.
[http://dx.doi.org/10.3390/ijms161023929] [PMID: 26473834]
[24]
Nishikawa, K.; Yamakoshi, Y.; Uemura, I.; Tominaga, N. Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol. Ecol., 2003, 44(2), 253-259.
[http://dx.doi.org/10.1016/S0168-6496(03)00049-7] [PMID: 19719642]
[25]
Alterio, V.; Langella, E.; De Simone, G.; Monti, S.M. Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii. Mar. Drugs, 2015, 13(4), 1688-1697.
[http://dx.doi.org/10.3390/md13041688] [PMID: 25815892]
[26]
Huertas, M.J.; López-Maury, L.; Giner-Lamia, J.; Sánchez-Riego, A.M.; Florencio, F.J. Metals in cyanobacteria: Analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life (Basel), 2014, 4(4), 865-886.
[http://dx.doi.org/10.3390/life4040865] [PMID: 25501581]
[27]
Cassier-Chauvat, C.; Chauvat, F. Responses to oxidative and heavy metal stresses in cyanobacteria: Recent advances. Int. J. Mol. Sci., 2014, 16(1), 871-886.
[http://dx.doi.org/10.3390/ijms16010871] [PMID: 25561236]
[28]
Kumar, R.; Elumalai, S.; Pabbi, S. Evaluation of antioxidant activity and total phenolic content in cyanobacteria isolated from different regions of India. Int. J. Sci. Res. (Ahmedabad), 2015, 4(1), 17-20.
[29]
Li, H.B.; Cheng, K.W.; Wong, C.C.; Fan, K.W.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem., 2007, 102(3), 771-776.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.022]
[30]
Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow Colin, J. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol., 2006, 18(3-5), 445-450.
[http://dx.doi.org/10.1007/s10811-006-9048-4]
[31]
Hossain, M.F.; Ratnayake, R.R.; Meerajini, K.; Wasantha Kumara, K.L. Antioxidant properties in some selected cyanobacteria isolated from fresh water bodies of Sri Lanka. Food Sci. Nutr., 2016, 4(5), 753-758.
[http://dx.doi.org/10.1002/fsn3.340] [PMID: 27625779]
[32]
Rangsayator, N.; Upatham, E.S.; Kruatrachue, M.; Pokethitiyook, P.; Lanza, G.R. Phytoremediation potential of Spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmium. Environ. Pollut., 2002, 119(1), 45-53.
[http://dx.doi.org/10.1016/S0269-7491(01)00324-4] [PMID: 12125728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy