[1]
K.A. McKay, L. Bassham, M.S. Turan, and N. Mouha, "Report on Lightweight Cryptography", ed: National Institute of Standards
and Technology, March 2017 p. 27
[2]
A.R. Sfar, E. Natalizio, Y. Challal, and Z. Chtourou, "A roadmap for security challenges in internet of things", Digit. Commun. Netw., vol. 4, no. 2, pp. 118-137, April 2018.
[3]
C. Esposito, X. Su, S.A. Aljawarneh, and C. Choi, "Securing collaborative deep learning in industrial applications within adversarial scenarios", IEEE Trans. Industr. Inform., vol. 14, pp. 4972-4981, 2018.
[4]
S. Aljawarneh, M. Aldwairi, and M.B. Yassein, "Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model", J. Comput. Sci., vol. 25, pp. 152-160, March 2018.
[5]
J. Cynthia, H. Parveen Sultana, M.N. Saroja, and J. Senthil, "Security
Protocols for IoT Ubiquitous Computing and Computing Security
of IoT, N. Jeyanthi, A. Abraham, and H. McHeick, Eds: Cham: Springer International Publishing, 2019, pp. 1-28.
[6]
A. Manzoor, "Securing device connectivity in the industrial internet of things (IoT)" Connectivity Frameworks for Smart Devices: The Internet of Things from a Distributed Computing Perspective., Z. Mahmood, ed: Cham: Springer International Publishing, 2016, pp. 3-22.
[7]
M. Qasaimeh, R.S. Al-Qassas, and S. Tedmori, "Software randomness analysis and evaluation of lightweight ciphers: The prospective for IoT security", Multimedia Tools Appl., vol. 77, pp. 18415-18449, July 2018.
[8]
G. Leander, C. Paar, A. Poschmann, and K. Schramm, "New Lightweight DES Variants", 14th International Workshop on Fast Software Encryption, pp. 196-210 Berlin, Heidelberg 2007.
[9]
S. Panasenko, and S. Smagin, "Lightweight cryptography: Underlying principles and approaches", International Journal of Computer Theory and Engineering, vol. 3, pp. 516-520, 2011.
[10]
E. Akanksha, "Efficient Framework to secure communication in
IoT using novel finite field encryption", Cham, pp. 1-11, 2019.
[11]
S. Singh, P.K. Sharma, S.Y. Moon, and J.H. Park, "Advanced
lightweight encryption algorithms for IoT devices: Survey, challenges
and solutions", J. Amb. Intel. Hum. Comp., pp. 1-8, May 2017.
[12]
A. Bhattacharjya, X. Zhong, J. Wang, and X. Li, "Security Challenges and Concerns of Internet of Things (IoT)" Cyber-Physical Systems: Architecture, Security and Application., S. Guo and D. Zeng, Eds.: Cham: Springer International Publishing, 2019, pp. 153-185.
[13]
H. Noura, A. Chehab, L. Sleem, M. Noura, R. Couturier, and M.M. Mansour, "One round cipher algorithm for multimedia IoT devices", Multimedia Tools and Appl., vol. 77, pp. 18383-18413, July 2018.
[14]
M. Katagi, and S. Moriai, "lightweight cryptography for the internet of things", Sony Corp., pp. 7-10, October 2008.
[15]
I. Lawrence, E. Bassham, A.L. Rukhin, J. Soto, J.R. Nechvatal, M.E. Smid, E.B. Barker, S.D. Leigh, M. Levenson, M. Vangel, D.L. Banks, and N.A. Heckert, "SP 800-22 Rev. 1a. a statistical
test suite for random and pseudorandom number generators for
cryptographic applications", National Institute of Standards Technology, April 2010.
[16]
Q. Malik, and S.A-Q. Raad, "comparative randomness analysis of DES variants", Recent Pat. Comput. Sci., vol. 10, pp. 230-237, 2017.
[17]
Ü. Çavuşoğlu, S. Kaçar, A. Zengin, and I. Pehlivan, "A novel hybrid encryption algorithm based on chaos and S-AES algorithm", Nonlinear Dyn., vol. 92, pp. 1745-1759, June 2018.
[18]
A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, and M. Levenson, "Statistical test suite for random and pseudorandom number generators for cryptographic applications", National Institute of
Standards Technology, May 2001.
[19]
A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, and M.J.B. Robshaw, "PRESENT: An ultra-lightweight block cipher" 9th International Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2007), P. Pascal and V. Ingrid, Eds., ed
Springer, pp. 450-466. Berlin Heidelberg 2007.
[20]
J. Patil, G. Bansod, and K.S. Kant, "DoT: A new ultra-lightweight sp network encryption design for resource-constrained environment" Singapore, 2019, pp. 249-257.
[21]
J. Soto, "Randomness testing of the AES candidate algorithms", NIST, 1999.
[22]
C. Duta, B-C. Mocanu, F-A. Vladescu, and L. Gheorghe, "Randomness evaluation framework of cryptographic algorithms", Int. J. Cryptograp. Info. Secur., vol. 4, pp. 31-49, 2014.
[23]
L. Chew, N. Chew, I. Norshahil, M. Shah, N. Azura, N. Abdullah, N. Hidayah, A. Zawawi, H.A. Rani, and A.A. Zakaria, "Randomness analysis on speck family of lightweight block cipher", Int. J. Cryptol. Res., vol. 5, pp. 44-60, 2015.
[24]
M.M. Alani, "Testing randomness in ciphertext of block-ciphers using dieHard tests", Int. J. Comput. Sci. Netw. Secur., vol. 10, pp. 53-57, 2010.
[25]
J. Kilian, and P. Rogaway, "How to protect DES against exhaustive key search (an analysis of DESX)", J. Cryptol., vol. 14, pp. 17-35, 2001.
[26]
T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, "A survey of lightweight-cryptography implementations", IEEE Des. Test Comput., vol. 24, pp. 522-533, 2007.
[27]
"NIST, "FIPS PUB 46-3: Data Encryption Standard (DES)", ed: Federal Information Processing Standards Publication, 1999.
[28]
F.S. Hossain, and M.L. Ali, "A novel byte-substitution architecture for the AES cryptosystem", PLoS One, vol. 10, p. e0138457, 2015.
[29]
R. Ramasamy, and A.P. Muniyandi, "Computing the modular inverse of a polynomial function over GF(2P) using bit wise operation", Int. J. Netw. Secur., vol. 10, pp. 107-113, 2010.
[30]
T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, "The
128-bit blockcipher CLEFIA"Fast Software Encryption, A. Biryukov, ed. Springer:, pp. 181-195. Berlin, Heidelberg, 2007.
[31]
J. Daemen, and V. Rijmen, "AES proposal: Rijndael", 1999,
[32]
F. Sulak, "Statistical analysis of block ciphers and hash functions", Middle East Technical University, Department of Cryptography, 2011.