[1]
Fuller CR, Elliott SJ, Nelson P. Active Control of Vibration in
Structures. In: Fuller CR, Elliott SJ, Nelson PA, Eds. Active Control
of Vibration. Academic Press - Elsevier. 1996; pp. 153-83.
[2]
Elliott SJ. Signal processing for active control. 1st ed. Academic
Press - Elsevier: Cambridge, Massachusetts, USA, 2001.
[3]
Pan X, Yan T, Juniper R. Active control of low-frequency hull-radiated noise. J Sound Vibrat 2008; 313(1-2): 29-45.
[4]
Gardonio P, Elliott SJ, Pinnington RJ. Active isolation of structural vibration on a multiple-degree-of-freedom system, Part I: The dynamics of the system. Inorg Nucl Chem Lett 1997; 207(1): 61-93.
[5]
Gardonio P, Elliott SJ, Pinnington RJ. Active isolation of structural vibration on a multiple-degree-of-freedom system, Part II: Effectiveness of active control strategies. J Sound Vibrat 1997; 207(1): 95-121.
[6]
Beijen MA, Tjepkema D, Dijk JV. Two-sensor control in active vibration isolation using hard mounts. Control Eng Pract 2014; 26(1): 82-90.
[7]
Li Y, He L, Shuai C, Wang C. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration. J Sound Vibrat 2017; 407: 226-39.
[8]
Sun X, Yang B. A new methodology for developing flexure-hinged displacement amplifiers with micro-vibration suppression for a giant magnetostrictive micro drive system. Sens Actuators A Phys 2017; 263: 30-43.
[9]
Sun X, Yang B, Zhao L. Optimal design and experimental analyses of a new micro-vibration control payload-platform. J Sound Vibrat 2016; 374: 43-60.
[10]
Chen X, Shen Z, He Q, Du Q, Liu X. Influence of uncertainty and excitation amplitude on the vibration characteristics of rubber isolators. J Sound Vibrat 2016; 377: 216-25.
[11]
Shahadat MMZ, Mizuno T, Ishino Y, Takasaki M. Active vibration isolation using negative stiffness and displacement cancellation controls: Comparison based on vibration isolation performance. Control Eng Pract 2015; 37: 55-66.
[12]
Shen Y, Peng H, Li X, Yang S. Analytically optimal parameters of dynamic vibration absorber with negative stiffness. Mech Syst Signal Process 2017; 85: 193-203.
[13]
Long X, Jiang H, Meng G. Active vibration control for peripheral milling processes. J Mater Process Technol 2013; 213(5): 660-70.
[14]
Carvalho HMBD, Gomes JDO, Schmidt MA, Brandao VLC. Vibration analysis and energy efficiency in interrupted face milling processes. Proc CIRP 2015. 245-50.
[15]
Kirkham EE. Machine tool vibration isolation system.
US5538373 (1996).
[16]
Allgeyer TL, Kemp JJ, Leighty CA, Noe JJ. Disk drive
mounting system for absorbing shock and vibration in a machining
environment. US6822858 (2004).
[17]
Choy PK, Huang J, Xing X, Yung HY. Active vibration absorber.
US9689453 (2017).
[18]
Okwudire CE, Lee J. Minimization of the residual vibrations of ultra-precision manufacturing machines via optimal placement of vibration isolators. Precis Eng 2013; 37(2): 425-32.
[19]
Niu J, Song K, Lim CW. On active vibration isolation of floating raft system. J Sound Vibrat 2005; 285(1-2): 391-406.
[20]
Choi YT, Wereley NM, Jeon YS. Semi-active vibration isolation using magnetorheological isolators. J Aircr 2005; 42(5): 1244-51.
[21]
Alujević N, Čakmak D, Wolf H, Jokić M. Passive and active vibration isolation systems using inerter. J Sound Vibrat 2018; 418: 163-83.
[22]
Wang X, Zhou J, Xu D, Ouyang H, Duan Y. Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn 2017; 87(1): 633-46.
[23]
Zhou P, Du J, Lü Z. Simultaneous topology optimization of supporting structure and loci of isolators in an active vibration isolation system. Comput Struc 2018; 194: 74-85.
[24]
Hao Z, Cao Q, Wiercigroch M. Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dyn 2016; 6(4): 1-16.
[25]
Gao X, Chen Q, Liu X. Nonlinear dynamics and design for a class of piecewise smooth vibration isolation system. Nonlinear Dyn 2016; 84(3): 1715-26.
[26]
Luo Q, Li D, Jiang J. Analysis and optimization of microvibration isolation for multiple flywheel systems of spacecraft. AIAA J 2016; 54(5): 1-13.
[27]
Parks A, Bodnar A, Marchelek K, Chodzko M. Using of active clamping device for workpiece vibration suppression. J Vib Eng Technol 2015; 3(2): 161-7.
[28]
Nandi A, Neogy S, Bhaduri S. Performance analysis of a non-contact vibration damper made up of a piezoelectric stack and an electromagnet. J Vib Eng Technol 2015; 3(4): 401-18.
[29]
Lim CW. Active control of flexible vibration systems with inclined combined mounts. Adv Vib Eng 2011; 10(3): 239-49.
[30]
Zhang X, Li W. Research and applications of MR elastomers. Recent Pat Mech Eng 2008; 1(3): 161-6.
[31]
Zhao JX, Yu X, Chai K, Yang QC. Vibration isolation performance analysis of double layer vibration isolation system. Chin J Ship Res 2017; 12(6): 101-7.
[32]
Zhou H, Wang G, Zhang Y, Yang J, Zheng Z. Study of the influence of tire belt structure on vibration noise. Recent Pat Mech Eng 2017; 10(4): 270-8.
[33]
Guo C, Yang S, Yin Y, Bao J. Research status on frictional vibration and noise of mechanical brake. Recent Pat Mech Eng 2017; 10(1): 39-50.
[34]
Tan J, Lei W, Wen R, Zhao B, Yang Y. Active vibration
isolation device based on electromagnetic and aerostatic floatation.
US9145945 (2015).
[35]
Otto K, Maeurer M. Damping device for a spindle of a grinding
machine and grinding machine comprising a damping device.
US9694462 (2017).
[36]
Shibayama T, Mayama T, Ukaji T. Vibration isolation device,
arithmetic apparatus, exposure apparatus, and device manufacturing
method. US7686144 (2010).
[37]
Chen CC. Vibration absorption cutter holder. US10016817 (2018).
[38]
Yang Z, Bai Y, Chen X, Chen C, Li C. Composite frequencyadjustable
shock absorber. US9746123 (2017).