[1]
Laszewski, A.E.; Osipov, V.Y.; Vul, A.Y.; Ber, B.Y.; Smirnov, A.B.; Melekhin, V.G.; Adriaenssens, G.J.; Iakoubovskii, K. Optical properties of nanodimond layer. Phys. Solid State, 2001, 43, 145-150.
[2]
Lifshitz, Y. Dimond like carbon-Present Status. Diamond Related Materials, 1999, 8, 1659-1676.
[3]
Finkenrath, H. The moss rule and influence of doping on optical dielectric constant of semiconductor-I. Infrared Phys., 1988, 28, 327-332.
[4]
García-Suárez, V.M.; García-Fuente, A.; Carrascal, D.J.; Burzurí, E.; Koole, M.; Van der Zant, H.S.J.; El Abbassi, M.; Calame, M.; Ferrer, J. Spin signatures in the electrical response of graphene nanogaps. Nanoscale, 2018, 10, 18169-18177.
[5]
Wang, Z.; Li, Q.; Chen, Y.; Cui, B.; Li, Y.; Besenbacher, F.; Dong, M. The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater., 2018, 10, 703-712.
[6]
Wang, Z.; Li, Q.; Xu, H.; Petersen, C.; Yang, Q.; Cheng, D.; Cao, D.; Besenbacher, F.; Lauritsen, J.V.; Helveg, S.; Dong, M. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy, 2018, 49, 634-643.
[7]
Ravindra, N.M.; Auluck, S.; Shrivastav, V.K. On the Penn gap in semiconductors. Phys. Status Solidi (b)., 1979, 93, Kl55.
[8]
Kumar, A.; Ravindra, N.M.; Rath, R. Opto electronic properties of alkali halides. J. Phys. Chem. Solids, 1979, 40, 1141-1142.
[9]
Gupta, V.P.; Ravindra, N.M. Comments on moss formula. Phys. Status Solidi (b)., 1980, 100, 715.
[10]
Kumar, V.; Singh, J.K. Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phy., 2010, 48, 571-574.
[11]
Lu, H.; Meng, X. Correlation between bandgap, dielectric constant, young modulus and melting temperature of GaN nanocrystals and their size and shape dependence. Sci. Rep., 2015, 5, 16939.
[12]
Batsanov, S.S. On the size-effect in the dielectric permittivity of solids. J. Phys. Chem. Solids, 2016, 91, 90-92.
[13]
Singh, M.; Goyal, M.; Devlal, K. Size and shape effects on the band gap of semiconductor compound Nanomaterials. Jtusci, 2018, 12, 470-475.
[14]
Arora, N.; Joshi, D.P. Band gap dependence of semiconducting nano-wires on cross-sectional shape and size. Indian J. Phys., 2017, 91, 1493-1501.
[15]
Sun, Q.; Chang, T.B.K.; Li, S.; Sun, X.W.; Lau, S.P.; Chen, T.P. Band gap expansion of nanometric semiconductor. Mater. Phys. Mech., 2001, 4, 129-133.
[16]
Nanda, K.K. simple classical approach for the melting temperature of inert-gas nanoparticles. Chem. Phys. Lett., 2006, 419, 195-200.
[17]
Jiang, Q.; Li, J.C.; Chi, B.Q. Size-dependent cohesive energy of nanocrystals. Chem. Phys. Lett., 2002, 366, 551-554.
[18]
Qi, W.H.; Wang, M.P.; Xu, G.Y. The particle size dependence of cohesive energy of metallic nanoparticles. Chem. Phys. Lett., 2003, 372, 632-634.
[19]
Qi, W.H. Size effect on melting temperature of nanosolids. Physica B, 2005, 368, 46-50.
[20]
Kittle, C. Quantum theory of solids, 2nd revised edition; Wiley India Pvt. Ltd., 2015.
[21]
Ravindra, N.M.; Ganapathy, P.; Choi, J. Energy gap–refractive index relations in semiconductors – An overview. Infrared Phys. Technol., 2007, 50, 21-29.
[22]
Qi, W.H.; Wang, M.P. Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys., 2004, 88, 280-284.
[23]
Qi, W.H.; Huang, B.Y.; Wang, M.P.; Yin, Z.M.; Li, J. Shape factor for non-cylindrical nanowires. Phys. B, 2008, 403, 2386-2389.
[24]
Li, H.L.; Cheng, M.S.; Xi, P.C.; Wu, M.L.; Hong, J.G. Size dependent phonon frequency of semiconductor nanocrystals. J. Phys. Condens. Matter, 2004, 16, 267-272.
[25]
Akiyama, T.; Freeman, A.J.; Nakamura, K.; Ito, T. Electronic structures and optical properties of GaN and ZnO nanowires first principles. J. Phys. Confer. Ser., 2008, 100 052056
[26]
Carter, D.J.; Gale, J.D.; Delley, B.; Stampfl, C. Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles. Phys. Rev. B., 2008, 77 115349
[27]
Xiang, H.J.; Wei, S.H.; Juarez, L.F.; Silva, D.; Jingbo, L. Strain relaxation and band-gap tenability in ternary InGaN nanowires. Phys. Rev. B., 2008, 78, 193301-193304.
[28]
Carter, D.J.; Puckeridge, M.; Delley, B.; Stampfl, C. Quantum confinement effects in gallium nitride nanostructures: ab initio investigations. Nanotechnology, 2009, 20 425401
[29]
Molina-Sánchez, A.; García-Cristóbal, A. Anisotropic optical response of GaN and AlN nanowires. J. Phys. Condens. Matter, 2012, 24 295301
[30]
Zhang, J. Small-scale effect on the piezoelectric potential of gallium nitride nanowires. Appl. Phys. Lett., 2014, 104 253110
[31]
Li, J.; Wang, L.W. Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys. Rev. B., 2005, 72, 125325-1253215.