[1]
Berthiol, F. Reagent and catalyst design for asymmetric hypervalent iodine oxidations. Synthesis, 2015, 47, 587-603.
[2]
Charpentier, J.; Früh, N.; Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem. Rev., 2015, 115, 650-682.
[3]
Ding, Q.; Ye, Y.; Fan, R. Recent advances in phenol dearomatization and its application in complex syntheses. Synthesis, 2013, 45, 1-16.
[4]
Dong, D-Q.; Hao, S-H.; Wang, Z-L.; Chen, C. Hypervalent iodine: A powerful electrophile for asymmetric α-functionalization of carbonyl compounds. Org. Biomol. Chem., 2014, 12, 4278-4289.
[5]
Merritt, E.A.; Olofsson, B. Diaryliodonium salts: A journey from obscurity to fame. Angew. Chem. Int. Ed., 2009, 48, 9052-9070.
[6]
Merritt, E.A.; Olofsson, B. α-Functionalization of carbonyl compounds using hypervalent iodine reagents. Synthesis, 2011, 517-538.
[7]
Pouysegu, L.; Deffieux, D.; Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron, 2010, 66, 2235-2261.
[8]
Romero, R.M.; Woeste, T.H.; Muniz, K. Vicinal difunctionalization of alkenes with iodine(III) reagents and catalysts. Chem. Asian J., 2014, 9, 972-983.
[9]
Satam, V.; Harad, A.; Rajule, R.; Pati, H. 2-Iodoxybenzoic acid (IBX): An efficient hypervalent iodine reagent. Tetrahedron, 2010, 66, 7659-7706.
[10]
Silva, Jr , L.F.; Olofsson, B. Hypervalent iodine reagents in the total synthesis of natural products. Nat. Prod. Rep., 2011, 28, 1722-1754.
[11]
Varvoglis, A. Hypervalent Iodine in Organic Synthesis1st Ed.; Academic Press: London,, 1997.
[12]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, 1-62.
[13]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116, 3328-3435.
[14]
Sun, J.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Hypervalent iodine reagents for heterocycle synthesis and functionalization. Rep. Org. Chem., 2016, 6, 25-45.
[15]
Tian, T.; Zhong, W-H.; Meng, S.; Meng, X-B.; Li, Z-J. Hypervalent iodine mediated para-selective fluorination of anilides. J. Org. Chem., 2013, 78, 728-732.
[16]
Wirth, T. Hypervalent iodine chemistry in synthesis: Scope and new directions. Angew. Chem. Int. Ed., 2005, 44, 3656-3665.
[17]
Xu, D.; Sun, W-W.; Xie, Y.; Liu, J-K.; Liu, B.; Zhou, Y.; Wu, B. Metal-free regioselective hypervalent iodine-mediated C-2 and C-3 difunctionalization of N-substituted indoles. J. Org. Chem., 2016, 81, 11081-11094.
[18]
Ariafard, A. A density functional theory (DFT) mechanistic study of gold(I)-catalyzed alkynylation of the indole and pyrrole substrates, using a hypervalent iodine reagent. ACS Catal., 2014, 4, 2896-2907.
[19]
Caramenti, P.; Nicolai, S.; Waser, J. Indole- and pyrrole-BX. Bench-stable hypervalent iodine reagents for heterocycle umpolung. Chem. - Eur. J., 2017, 23, 14702-14706.
[20]
Najda-Mocarska, E.; Zakaszewska, A.; Janikowska, K.; Makowiec, S. New thiourea organocatalysts and their application for the synthesis of 5-(1H-indol-3-yl)methyl-2,2-dimethyl-1,3-dioxane-4,6-diones a source of chiral 3-indoylmethyl ketenes. Synth. Commun., 2018, 48, 14-25.
[21]
Manna, S.; Antonchick, A.P. Organocatalytic oxidative annulation of benzamide derivatives with alkynes. Angew. Chem. Int. Ed., 2014, 53, 7324-7327.
[22]
Du, Y.; Liu, R.; Linn, G.; Zhao, K. Synthesis of N-substituted indole derivatives PIFA-mediated intramolecular cyclization. Org. Lett., 2006, 8, 5919-5922.
[23]
Yu, W.; Du, Y.; Zhao, K. PIDA-Mediated oxidative C−C bond formation. Novel synthesis of indoles from N-aryl enamines. Org. Lett., 2009, 11, 2417-2420.
[24]
Sun, J.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis of chromeno[2,3-b]indol-11(6H)-one PhI(OAc)2-mediated intramolecular oxidative C(sp2)–N(H2) bond formation. J. Org. Chem., 2015, 80, 1200-1206.
[25]
Xia, H-D.; Zhang, Y-D.; Wang, Y-H.; Zhang, C. Water-soluble hypervalent iodine(III) having an I–N bond. A reagent for the synthesis of indoles. Org. Lett., 2018, 20, 4052-4056.
[26]
Fra, L.; Millán, A.; Souto, J.A.; Muñiz, K. Indole synthesis based on a modified Koser reagent. Angew. Chem. Int. Ed., 2014, 53, 7349-7353.
[27]
Zhao, F.; Liu, X.; Qi, R.; Zhang-Negrerie, D.; Huang, J.; Du, Y.; Zhao, K. Synthesis of 2-(trifluoromethyl)oxazoles from β-monosubstituted enamines via PhI(OCOCF3)2-mediated trifluoroacetoxylation and cyclization. J. Org. Chem., 2011, 76, 10338-10344.
[28]
Hempel, C.; Nachtsheim, B.J. Iodine(III)-promoted synthesis of oxazoles through oxidative cyclization of N -styrylbenzamides. Synlett, 2013, 24, 2119-2123.
[29]
Karade, N.N.; Tiwari, G.B.; Gampawar, S.V. Efficient oxidative conversion of aldehydes to 2-substituted oxazolines and oxazines using (diacetoxyiodo)benzene. Synlett, 2007, 1921-1924.
[30]
Liu, Q.; Zhang, X.; He, Y.; Hussain, M.I.; Hu, W.; Xiong, Y.; Zhu, X. Oxidative rearrangement strategy for synthesis of 2,4,5-trisubstituted oxazoles utilizing hypervalent iodine reagent. Tetrahedron, 2016, 72, 5749-5753.
[31]
Yagyu, T.; Takemoto, Y.; Yoshimura, A.; Zhdankin, V.V.; Saito, A. Iodine(III)-catalyzed formal [2 + 2 + 1] cycloaddition reaction for metal-free construction of oxazoles. Org. Lett., 2017, 19, 2506-2509.
[32]
Saito, A.; Hyodo, N.; Hanzawa, Y. Synthesis of highly substituted oxazoles through iodine(III)-mediated reactions of ketones with nitriles. Molecules, 2012, 17, 11046-11055.
[33]
Yadav; Reddy, B.V.S.; Reddy, C.S.; Krishna. CeCl3⋅7H2O/IBX-promoted oxidation of 3-alkylindoles to 3-hydroxyoxindoles. Tetrahedron Lett., 2007, 48, 2029-2032.
[34]
Lv, J.; Zhang-Negrerie, D.; Deng, J.; Du, Y.; Zhao, K. Metal-free synthesis of 2-oxindoles PhI(OAc)2-mediated oxidative C–C bond formation. J. Org. Chem., 2014, 79, 1111-1119.
[35]
Hepples, C.; Murphy, G.K. Synthesis of 3,3-dichloro-2-oxindoles from isatin-3-p-tosylhydrazones and (dichloroiodo)benzene. Tetrahedron Lett., 2015, 56, 4971-4974.
[36]
Feldman, K.S.; Vidulova, D.B. Use of Stang’s reagent, PhI(CN)OTf, to promote Pummerer-like oxidative cyclization of 2-(phenylthio)indoles. Tetrahedron Lett., 2004, 45, 5035-5037.
[37]
Sun, X.; Zhao, X-J.; Wu, B. Metal-free hypervalent-iodine-promoted C3 difluorination and C2 oxidation of N-substituted indoles. Asian J. Org. Chem., 2017, 6, 690-693.
[38]
Li, X.; Du, Y.; Liang, Z.; Li, X.; Pan, Y.; Zhao, K. Simple conversion of enamines to 2H-azirines and their rearrangements under thermal conditions. Org. Lett., 2009, 11, 2643-2646.
[39]
Sun, X.; Lyu, Y.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Formation of functionalized 2H-azirines through PhIO-mediated trifluoroethoxylation and azirination of enamines. Org. Lett., 2013, 15, 6222-6225.
[40]
Ton, T.M.U.; Tejo, C.; Tiong, D.L.Y.; Chan, P.W.H. Copper(II) triflate catalyzed amination and aziridination of 2-alkyl substituted 1,3-dicarbonyl compounds. J. Am. Chem. Soc., 2012, 134, 7344-7350.
[41]
Kiyokawa, K.; Kosaka, T.; Minakata, S. Metal-free aziridination of styrene derivatives with iminoiodinane catalyzed by a combination of iodine and ammonium iodide. Org. Lett., 2013, 15, 4858-4861.
[42]
Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y. Oxidative biaryl coupling reaction of phenol ether derivatives using a hypervalent iodine(III) reagent. J. Org. Chem., 1998, 63, 7698-7706.
[43]
Li, X.; Yang, L.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Construction of 1,4-benzodiazepine skeleton from 2-(arylamino)benzamides through PhI(OAc)2-mediated oxidative C–N bond formation. J. Org. Chem., 2014, 79, 955-962.
[44]
Guo, X.; Zhang-Negrerie, D.; Du, Y. Iodine(III)-mediated construction of the dibenzoxazepinone skeleton from 2-(aryloxy)benzamides through oxidative C–N formation. RSC Adv, 2015, 5, 94732-94736.
[45]
Shang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Intramolecular metal-free oxidative aryl–aryl coupling: An unusual hypervalent-iodine-mediated rearrangement of 2-substituted N-phenylbenzamides. Angew. Chem. Int. Ed., 2014, 53, 6216-6219.
[46]
Cho, S.H.; Yoon, J.; Chang, S. Intramolecular oxidative C-N bond formation for the synthesis of carbazoles: Comparison of reactivity between the copper-catalyzed and metal-free conditions. J. Am. Chem. Soc., 2011, 133, 5996-6005.
[47]
Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. A synthetic approach to carbazoles using electrochemically generated hypervalent iodine oxidant. Tetrahedron, 2010, 66, 9779-9784.
[48]
Samanta, R.; Kulikov, K.; Strohmann, C.; Antonchick, A.P. Metal-free electrocyclization at ambient temperature: Synthesis of 1-arylcarbazoles. Synthesis, 2012, 44, 2325-2332.
[49]
Shi, H.; Guo, T.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis of substituted tetrahydron-1H-carbazol-1-one and analogs PhI(OCOCF3)2-mediated oxidative C-C bond formation. Tetrahedron, 2014, 70, 2753-2760.
[50]
Rao, D.N. Rasheed.; Vishwakarma, R.A.; Das, P. Hypervalent iodine(III) catalyzed oxidative C-N bond formation in water: Synthesis of benzimidazole-fused heterocycles. RSC Adv, 2014, 4, 25600-25604.
[51]
Sen, C.; Ghosh, S.C. Transition-metal-free regioselective alkylation of quinoline N-oxides oxidative alkyl migration and C-C Bond Cleavage of tert-/sec-Alcohols. Adv. Synth. Catal., 2018, 360, 905-910.
[52]
Zhang, D.; Gao, F.; Nian, Y.; Zhou, Y.; Jiang, H.; Liu, H. Palladium-catalyzed picolinamide-directed coupling of C(sp2)-H and C(sp2)-H: A straightforward approach to quinolinone and pyridone scaffolds. Chem. Commun., 2015, 51, 7509-7511.
[53]
Carreira, E.M.; Fessard, T.C. Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chem. Rev., 2014, 114, 8257-8322.
[54]
Shawali, A.S.; Farghaly, T.A. Reactions of hydrazonoyl halides with heterocyclic thiones. Convenient methodology for heteroannulation, synthesis of spiroheterocycles and heterocyclic ring transformation. ARKIVOC, 2008, 2008, 18-64.
[55]
Joshi, K.C.; Joshi, R. Isatin: a versatile molecule for the synthesis of novel spiroheterocycles. J. Indian Chem. Soc., 1999, 76, 643-649.
[56]
Liu, Y.; Zhang, X.; Zeng, R.; Zhang, Y.; Dai, Q.-S.; Leng, H.-J.; Gou, X.-J.; Li, J.-L. Recent advances in the synthesis of spiroheterocycles N-heterocyclic carbene organocatalysis. Molecules, 2017, 22, 1882/1-1882/23.
[57]
Majumdar, K.C. Regioselective synthesis of bioactive heterocycles by radial cyclization. J. Indian Chem. Soc., 2008, 85, 347-364.
[58]
Ziarani, G.M.; Moradi, R.; Lashgari, N. Synthesis of spiro-fused heterocyclic scaffolds through multicomponent reactions involving isatin. ARKIVOC, 2016, 1-81.
[59]
Bariwal, J.; Voskressensky, L.G.; Van der Eycken, E.V. Recent advances in spirocyclization of indole derivatives. Chem. Soc. Rev., 2018, 47, 3831-3848.
[60]
Pankaj, K.; Leena, K.; Sean, J.T.; Abdullah, M.A.; Siva, S.P. Microwave assisted synthesis of spiro heterocyclic systems: A review. Curr. Org. Chem., 2018, 22, 67-84.
[61]
Cohen, N.; Banner, B.L.; Blount, J.F.; Weber, G.; Tsai, M.; Saucy, G. Synthesis of novel spiro heterocycles. 2-Amino-7-oxa-3-thia-1-azaspiro[5.5]undec-1-enes. J. Org. Chem., 1974, 39, 1824-1833.
[62]
Behera, R.K.; Behera, A.K.; Pradhan, R.; Pati, A.; Patra, M. Studies on spiroheterocycles, part III: Synthesis of diazaspiroundecanetetraone derivatives containing biologically active heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184, 753-765.
[63]
Arya, K.; Rajesh, U.C.; Rawat, D.S. Proline confined FAU zeolite: heterogeneous hybrid catalyst for the synthesis of spiroheterocycles via a Mannich type reaction. Green Chem., 2012, 14, 3344-3351.
[64]
Padmavathi, V.; Jagan, M.R.B.; Baliah, A.; Padmaja, A.; Bhaskar, R.D. Synthesis of some novel spiro heterocycles- Part II. ARKIVOC, 2005, 2005, 1-13.
[65]
Quideau, S.; Pouységu, L.; Peixoto, P.A.; Deffieux, D. Phenol dearo-matization with hypervalent iodine reagents in: Hypervalent Iodine Chemistry; Wirth, T., Ed.; Springer: Berlin, 2016, vol. 373, pp. 25-74.
[66]
Zheng, Z.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci. China Chem., 2014, 57, 189-214.
[67]
Ficht, S.; Muelbaier, M.; Giannis, A. Development of new and efficient polymer-supported hypervalent iodine reagents. Tetrahedron, 2001, 57, 4863-4866.
[68]
Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Versatile hypervalent-iodine(III)-catalyzed oxidations with m-chloroper-benzoic acid as a cooxidant. Angew. Chem. Int. Ed., 2005, 44, 6193-6196.
[69]
Dohi, T.; Uchiyama, T.; Yamashita, D.; Washimi, N.; Kita, Y. Efficient phenolic oxidations using μ-oxo-bridged phenyliodine trifluoroacetate. Tetrahedron Lett., 2011, 52, 2212-2215.
[70]
Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S.B.; Kita, Y. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols. Angew. Chem. Int. Ed., 2008, 47, 3787-3790.
[71]
Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. Asymmetric dearomatizing spiro-lactonization of naphthols catalyzed by spirobiindane-based chiral hypervalent iodine species. J. Am. Chem. Soc., 2013, 135, 4558-4566.
[72]
Dohi, T.; Sasa, H.; Miyazaki, K.; Fujitake, M.; Takenaga, N.; Kita, Y. Chiral atropisomeric 8,8′-diiodobinaphthalene for asymmetric dearomatizing spirolactonizations in hypervalent iodine oxidations. J. Org. Chem., 2017, 82, 11954-11960.
[73]
Uyanik, M.; Yasui, T.; Ishihara, K. Enantioselective Kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine(III) species. Angew. Chem. Int. Ed., 2010, 49, 2175-2177.
[74]
Uyanik, M.; Yasui, T.; Ishihara, K. Chiral hypervalent organoiodine-catalyzed enantioselective oxidative spirolactonization of naphthol deri-vatives. J. Org. Chem., 2017, 82, 11946-11953.
[75]
Murray, S.J.; Ibrahim, H. Asymmetric Kita spirolactonisation catalysed by anti-dimethanoanthracene-based iodoarenes. Chem. Commun., 2015, 51, 2376-2379.
[76]
Bekkaye, M.; Masson, G. Synthesis of new axially chiral iodoarenes. Synthesis, 2016, 48, 302-312.
[77]
Hempel, C.; Maichle‐Mössmer, C.; Pericàs Miquel, A.; Nachtsheim, B.J. Modular synthesis of triazole-based chiral iodoarenes for enantioselective spirocyclizations. Adv. Synth. Catal., 2017, 359, 2931-2941.
[78]
Ye, Y.; Zhang, L.; Fan, R. Application of dearomatization strategy on the synthesis of furoquinolinone and angelicin derivatives. Org. Lett., 2012, 14, 2114-2117.
[79]
Volp, K.A.; Harned, A.M. Chiral aryl iodide catalysts for the enantioselective synthesis of para-quinols. Chem. Commun., 2013, 49, 3001-3003.
[80]
Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. Enantioselective synthesis of masked benzoquinones using designer chiral hypervalent organoiodine(III) catalysis. ACS Catal., 2017, 7, 872-876.
[81]
Wipf, P.; Jung, J-K. Total synthesis of palmarumycin CP1 and (±)-Deoxypreussomerin A. J. Org. Chem., 1998, 63, 3530-3531.
[82]
Wipf, P.; Lynch, S.M.; Birmingham, A.; Tamayo, G.; Jimenez, A.; Campos, N.; Powis, G. Natural product based inhibitors of the thioredoxin-thioredoxin reductase system. Org. Biomol. Chem., 2004, 2, 1651-1658.
[83]
Ngatimin, M.; Frey, R.; Andrews, C.; Lupton, D.W.; Hutt, O.E. Iodobenzene catalysed synthesis of spirofurans and benzopyrans by oxidative cyclisation of vinylogous esters. Chem. Commun., 2011, 47, 11778-11780.
[84]
Martins, L.J.; Ferreira, B.R.V.; Almeida, W.P.; Lancellotti, M.; Coelho, F. An easy access to halogenated and non-halogenated spiro-hexadienones. Tetrahedron Lett., 2014, 55, 5264-5267.
[85]
Zhang, H.; Shen, J.; Cheng, G.; Feng, Y.; Cui, X. One-pot synthesis of benzo[b][1,4]oxazins intramolecular trapping iminoenol. Org. Lett., 2018, 20, 664-667.
[86]
Braun, N.A.; Ousmer, M.; Bray, J.D.; Bouchu, D.; Peters, K.; Peters, E-M.; Ciufolini, M.A. New oxidative transformations of phenolic and indolic oxazolines: An avenue to useful azaspirocyclic building blocks. J. Org. Chem., 2000, 65, 4397-4408.
[87]
Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. Synthesis of spiro-fused nitrogen heterocyclic compounds via N-methoxy-N-acylnitrenium ions using phenyliodine(III) bis(trifluoroacetate) in trifluoroethanol. Heterocycles, 2003, 59, 149-160.
[88]
Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. Synthesis of spirodienones by intramolecular ipso-cyclization of N-methoxy-(4-halogenophenyl)amides using [hydroxy(tosyloxy)iodo]benzene in trifluoroethanol. J. Org. Chem., 2003, 68, 5429-5432.
[89]
Liang, H.; Ciufolini, M.A. Oxidative spirocyclization of phenolic sulfonamides: scope and applications. Chem. Eur. J., 2010, 16, 13262-13270.
[90]
Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. First hypervalent iodine(iii)-catalyzed C-N bond forming reaction: catalytic spirocyclization of amides to N-fused spirolactams. Chem. Commun., 2007, 1224-1226.
[91]
Dohi, T.; Takenaga, N.; Fukushima, K-i.; Uchiyama, T.; Kato, D.; Motoo, S.; Fujioka, H.; Kita, Y. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem. Commun., 2010, 46, 7697-7699.
[92]
Dohi, T.; Mochizuki, E.; Yamashita, D.; Miyazaki, K.; Kita, Y. Efficient oxidative spirolactamization by μ-oxo bridged heterocyclic hypervalent iodine compound. Heterocycles, 2014, 88, 245-260.
[93]
Honda, T. Development of an efficient synthetic strategy for bioactive alkaloids possessing a spirocyclic ring system. Pure Appl. Chem., 2010, 82, 1773-1783.
[94]
Deng, Y-X.; Xie, J-P.; Zhang, W-W.; Yin, P.; Yu, J.; He, L. Oxidative amidation of aromatic ethers catalyzed by Rhodium acetate. Chem. Eur. J., 2012, 18, 1077-1082.
[95]
Saito, E.; Matsumoto, Y.; Nakamura, A.; Namera, Y.; Nakada, M. Synthesis and reaction of ortho-benzoquinone monohemiaminals. Org. Lett., 2018, 20, 692-695.
[96]
Zhou, Y.; Li, D.; Tang, S.; Sun, H.; Huang, J.; Zhu, Q.PhI. (OAc)2-mediated dearomative C-N coupling: Facile construction of the spiro[indoline-3,2′-pyrrolidine] skeleton. Org. Biomol. Chem., 2018, 16, 2039-2042.
[97]
Liang, J.; Chen, J.; Du, F.; Zeng, X.; Li, L.; Zhang, H. Oxidative carbon−carbon bond formation in the synthesis of bioactive spiro β-lactams. Org. Lett., 2009, 11, 2820-2823.
[98]
Fujioka, H.; Komatsu, H.; Nakamura, T.; Miyoshi, A.; Hata, K.; Ganesh, J.; Murai, K.; Kita, Y. Organic synthesis using a hypervalent iodine reagent: unexpected and novel domino reaction leading to spiro cyclohexadienone lactones. Chem. Commun., 2010, 46, 4133-4135.
[99]
Yu, Z.; Ju, X.; Wang, J.; Yu, W. Iodobenzene-mediated intramolecular oxidative coupling of substituted 4-hydroxyphenyl-N-phenylbenzamides for the synthesis of spirooxindoles. Synthesis, 2011, 2011, 860-866.
[100]
Chabaud, L.; Hromjakova, T.; Rambla, M.; Retailleau, P.; Guillou, C. Hypervalent iodine-mediated oxidative cyclisation of p-hydroxy acetanilides to 1,2-dispirodienones. Chem. Commun., 2013, 49, 11542-11544.
[101]
Shang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Intramolecular metal-free oxidative aryl-aryl coupling: An unusual hypervalent-iodine-mediated rearrangement of 2-Substituted N-phenylbenzamides. Angew. Chem. Int. Ed., 2014, 53, 6216-6219.
[102]
Zhang, D-Y.; Xu, L.; Wu, H.; Gong, L-Z. Chiral iodine-catalyzed dearomatizative spirocyclization for the enantioselective construction of an all-carbon stereogenic center. Chem. Eur. J., 2015, 21, 10314-10317.
[103]
Jin, C-Y.; Du, J-Y.; Zeng, C.; Zhao, X-H.; Cao, Y-X.; Zhang, X-Z.; Lu, X-Y.; Fan, C-A. Hypervalent iodine(III)-mediated oxidative dearomatizing cyclization of arylamines. Adv. Synth. Catal., 2014, 356, 2437-2444.
[104]
Hempel, C.; Weckenmann, N.M.; Maichle-Moessmer, C.; Nachtsheim, B.J. A hypervalent iodine-mediated spirocyclization of 2-(4-hydroxybenzamido)acrylates - unexpected formation of δ-spirolactones. Org. Biomol. Chem., 2012, 10, 9325-9329.
[105]
Tohma, H.; Harayama, Y.; Hashizume, M.; Iwata, M.; Kiyono, Y.; Egi, M.; Kita, Y. The first total synthesis of Discorhabdin A. J. Am. Chem. Soc., 2003, 125, 11235-11240.
[106]
Dohi, T.; Kato, D.; Hyodo, R.; Yamashita, D.; Shiro, M.; Kita, Y. Discovery of stabilized bisiodonium salts as intermediates in the carbon-carbon bond formation of alkynes. Angew. Chem. Int. Ed., 2011, 50, 3784-3787.
[107]
Dohi, T.; Nakae, T.; Ishikado, Y.; Kato, D.; Kita, Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org. Biomol. Chem., 2011, 9, 6899-6902.
[108]
Zhou, Y.; Zhang, X.; Zhang, Y.; Ruan, L.; Zhang, J.; Zhang-Negrerie, D.; Du, Y. Iodocyclization of N-arylpropynamides mediated by hypervalent iodine reagent: Divergent synthesis of iodinated quinolin-2-ones and spiro[4,5]trienones. Org. Lett., 2017, 19, 150-153.
[109]
Arisawa, M.; Ramesh, N.G.; Nakajima, M.; Tohma, H.; Kita, Y. Hypervalent iodine(III)-induced intramolecular cyclization of α-(aryl)alkyl-β-dicarbonyl compounds: A convenient synthesis of benzannulated and spirobenzannulated compounds. J. Org. Chem., 2001, 66, 59-65.
[110]
Gomes, L.F.R.; Veiros, L.F.; Maulide, N.; Afonso, C.A.M. Diazo- and transition-metal-free C-H insertion: A direct synthesis of β-lactams. Chem. Eur. J., 2014, 21, 1449-1453.
[111]
Wang, K.; Fu, X.; Liu, J.; Liang, Y.; Dong, D. PIFA-mediated oxidative cyclization of 1-carbamoyl-1-oximylcycloalkanes: Synthesis of spiro-fused pyrazolin-5-one N-oxides. Org. Lett., 2009, 11, 1015-1018.
[112]
Mao, L.; Li, Y.; Xiong, T.; Sun, K.; Zhang, Q. Synthesis of tetramic acid derivatives via intramolecular sp3 C–H amination mediated by hypervalent iodine(III) reagents/Brønsted acids. J. Org. Chem., 2013, 78, 733-737.
[113]
Zhang, Z.; Zhang, Y.; Huang, G.; Zhang, G. Organoiodine reagent-promoted intermolecular oxidative amination: synthesis of cyclopropyl spirooxindoles. Org. Chem. Front., 2017, 4, 1372-1375.
[114]
Koag, M.; Lee, S. Discovery of hypoiodite-mediated aminyl radical cyclization lacking a nitrogen radical-stabilizing group: Application to synthesis of an oxazaspiroketal-containing cephalostatin analog. Org. Lett., 2011, 13, 4766-4769.
[115]
Basavaiah, D.; Lingam, H.; Babu, T.H. Baylis-Hillman acetates in organic synthesis: A simple two-step strategy for oxindole-spiro-α-arylidene-γ-butyrolactone framework. Tetrahedron, 2018, 74, 2306-2313.
[116]
Chavan, S.S.; Rupanawar, B.D.; Kamble, R.B.; Shelke, A.M.; Suryavanshi, G. Metal-free annulation of β-acylamino ketones: Facile access to spirooxazolines and oxazolines via oxidative C-O bond formation. Org. Chem. Front., 2018, 5, 544-548.
[117]
Sun, Y.; Gan, J.; Fan, R. Facile construction of oxa-aza spirobicycles via a tandem carbon-hydrogen bond oxidation. Adv. Synth. Catal., 2011, 353, 1735-1740.
[118]
Wang, J.; Yuan, Y.; Xiong, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Phenyliodine bis(trifluoroacetate)-mediated oxidative C–C bond formation: Synthesis of 3-hydroxy-2-oxindoles and spirooxindoles from anilides. Org. Lett., 2012, 14, 2210-2213.
[119]
Wu, H.; He, Y-P.; Xu, L.; Zhang, D-Y.; Gong, L-Z. Asymmetric organocatalytic direct C(sp2)-H/C(sp3)-H oxidative cross-coupling by chiral iodine reagents. Angew. Chem. Int. Ed., 2014, 53, 3466-3469.
[120]
Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. Chiral aryliodine-mediated enantioselective organocatalytic spirocyclization: Synthesis of spirofurooxindoles via cascade oxidative C–O and C–C bond formation. Org. Lett., 2016, 18, 5580-5583.
[121]
Hu, B.; Cao, Y.; Zhang, B.; Zhang-Negrerie, D.; Du, Y. Formation of phenyliodonio-substituted spirofurooxindole trifluoroacetates from N-substituted 3-oxopentanediamides via phenyliodine bis(trifluoroacetate)-mediated oxidative cascade reactions. Adv. Synth. Catal., 2017, 359, 2542-2548.
[122]
Sun, J.; Li, G.; Zhang, G.; Cong, Y.; An, X.; Zhang-Negrerie, D.; Du, Y. Cascade formation of C3-unsymmetric spirooxindoles via PhI(OAc)2-mediated oxidative C−C/C−N bond formation. Adv. Synth. Catal., 2018, 360, 2476-2481.
[123]
Sun, D.; Zhao, X.; Zhang, B.; Cong, Y.; Wan, X.; Bao, M.; Zhao, X.; Li, B.; Zhang-Negrerie, D.; Du, Y. Synthesis of spirofurooxindoles via phenyliodine(III) bis(trifluoroacetate) (PIFA)-mediated cascade oxidative C−O and C−C bond formation. Adv. Synth. Catal., 2018, 360, 1634-1638.
[124]
Zhang, X.; Yang, C.; Zhang-Negrerie, D.; Du, Y. Hypervalent-iodine-mediated cascade annulation of diarylalkynes forming spiro heterocycles under metal-free conditions. Chem. Eur. J., 2015, 21, 5193-5198.
[125]
Zhang, X.; Hou, W.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. Hypervalent iodine-mediated intramolecular trans-aminocarboxylation and oxoamino-carboxylation of alkynes: Divergent cascade annulations of isocoumarins under metal-free conditions. Org. Lett., 2015, 17, 5252-5255.
[126]
Zhang, B.; Zhang, X.; Hu, B.; Sun, D.; Wang, S.; Zhang-Negrerie, D.; Du, Y.PhI. (OCOCF3)2-mediated construction of a 2-spiropseudoindoxyl skeleton via cascade annulation of 2-sulfonamido-N-phenylpropiolamide derivatives. Org. Lett., 2017, 19, 902-905.
[127]
Laevens, B.A.; Tao, J.; Murphy, G.K. Iodide-mediated synthesis of spirooxindolo dihydrofurans from iodonium ylides and 3-alkylidene-2-oxindoles. J. Org. Chem., 2017, 82, 11903-11908.