Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Metal and Non-Metal Catalysts in the Synthesis of Five-Membered S-Heterocycles

Author(s): Navjeet Kaur*

Volume 16, Issue 2, 2019

Page: [258 - 275] Pages: 18

DOI: 10.2174/1570179416666181207144430

Price: $65

Abstract

Background: A wide variety of biological activities are exhibited by N, O and S containing heterocycles and recently, many reports appeared for the synthesis of these heterocycles. The synthesis of heterocycles with the help of metal and non-metal catalyst has become a highly rewarding and important method in organic synthesis. This review article concentrated on the synthesis of S-heterocylces in the presence of metal and non-metal catalyst. The synthesis of five-membered S-heterocycles is described here.

Objective: There is a need for the development of rapid, efficient and versatile strategy for the synthesis of heterocyclic rings. Metal, non-metal and organocatalysis involving methods have gained prominence because traditional conditions have disadvantages such as long reaction times, harsh conditions and limited substrate scope.

Conclusion: The metal-, non-metal-, and organocatalyst assisted organic synthesis is a highly dynamic research field. For ßthe chemoselective and efficient synthesis of heterocyclic molecules, this protocol has emerged as a powerful route. Various methodologies in the past few years have been pointed out to pursue more sustainable, efficient and environmentally benign procedures and products. Among these processes, the development of new protocols (catalysis), which avoided the use of toxic reagents, are the focus of intense research.

Keywords: Heterocycles, sulfur, synthesis, metal, non-metal, catalyst.

Graphical Abstract

[1]
(a) Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone in heterocyclic chemistry. Chem. Rev., 2004, 104, 2777-2812.
(b) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., 2015, 57, 478-564.
[2]
(a) Martins, M.A.P.; Cunico, W.; Pereira, C.M.P.; Flores, A.F.C.; Bonacorso, H.G.; Zanatta, N. 4-Alkoxy-1, 1, 1-trichloro-3-alken-2-ones: Preparation and applications in heterocyclic synthesis. Curr. Org. Synth., 2004, 1, 391-403.
(b) Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114, 2942-2977.
(c) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
[3]
(a) Domling, A. Recent developments in isocyanide based multi-component reactions in applied chemistry. Chem. Rev., 2006, 106, 17-89.
(b) Vellaisamy, K.; Li, G.; Ko, C.N.; Zhong, H.J.; Fatima, S.; Kwan, H.Y.; Wong, C.Y.; Kwong, W.J.; Tan, W.; Leung, C.H.; Ma, D.L. Cell imaging of dopamine receptor using agonist labeling iridium(III) complex. Chem. Sci., 2018, 9, 1119-1125.
(c) Lu, L.; Chan, D.S.H.; Kwong, D.W.J.; He, H.Z.; Leung, C.H.; Ma, D.L. Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem. Sci., 2014, 5, 4561-4568.
(d) Hori, Y.; Otomura, N.; Nishida, A.; Nishiura, M.; Umeno, M.; Suetake, I.; Kikuchi, K. Synthetic-molecule/protein hybrid probe with fluorogenic switch for live-cell imaging of DNA methylation. J. Am. Chem. Soc., 2018, 140, 1686-1690.
[4]
(a) Kaur, N. Benign approaches for the microwave-assisted synthesis of five-membered 1,2-N,N-heterocycles. J. Heterocycl. Chem., 2015, 52, 953-973.
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14, 531-556.
(c) Kaur, N. Photochemical reactions: Synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14, 972-998.
(d) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46, 983-1020.
[5]
(a) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
(b) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: Solid-phase synthesis. Synth. Commun., 2014, 44, 1173-1211.
(c) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44, 1019-1042.
(d) Kaur, N. Microwave-assisted synthesis of five membered O-heterocycles. Synth. Commun., 2014, 44, 3483-3508.
(e) Kaur, N. Microwave-assisted synthesis of five membered O,N-heterocycles. Synth. Commun., 2014, 44, 3509-3537.
(f) Kaur, N. Microwave-assisted synthesis of five membered O,N,N-heterocycles. Synth. Commun., 2014, 44, 3229-3247.
[6]
(a) Kaur, N. Metal catalysts: applications in higher membered N-heterocycles synthesis. J. Iran. Chem. Soc., 2015, 12, 9-45.
(b) Kaur, N. Insight into microwave-assisted synthesis of benzo derivatives of five membered N,N-heterocycles. Synth. Commun., 2015, 45, 1269-1300.
(c) Kaur, N. Synthesis of fused five-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45, 1379-1410.
(d) Kaur, N. Microwave-assisted synthesis of seven membered S-heterocycles. Synth. Commun., 2014, 44, 3201-3228.
(e) Kaur, N. Six membered N-heterocycles: microwave-assisted synthesis. Synth. Commun., 2015, 45, 1-34.
(f) Kaur, N. Polycyclic six membered N-heterocycles: microwave-assisted synthesis. Synth. Commun., 2015, 45, 35-69.
[7]
(a) Kaur, N. Microwave-assisted synthesis: fused five membered N-heterocycles. Synth. Commun., 2015, 45, 789-823.
(b) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45, 151-172.
(c) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45, 173-201.
(d) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45, 273-299.
(e) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45, 300-330.
(f) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44, 1375-1413.
[8]
(a) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45, 909-943.
(b) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45, 432-457.
(c) Kaur, N. Microwave-assisted synthesis of five membered S-heterocycles. J. Iran. Chem. Soc, 2014, 11, 523-564.
(d) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45, 1145-1182.
(e) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45, 1493-1519.
(f) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N,N-heterocycles. Synth. Commun., 2015, 45, 1599-1631.
(g) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: Applications of microwaves. Synth. Commun., 2015, 45, 1711-1742.
(h) Kaur, N. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun., 2018, 48, 1551-1587.
(i)Kaur, N. Green synthesis of three to five-membered O-heterocycles using ionic liquids. Synth. Commun., 2018, 48, 1588-1613.
(j)Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S-heterocycles. Synth. Commun., 2018, 48, 1715-1738.
(k)Kaur, N. Photochemical mediated reactions in five-membered O-heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
(l)Kaur, N. Ruthenium catalyzed synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2018, 99, 82-107.
[9]
(a) Patil, N.T.; Yamamoto, Y. Coinage metal-assisted synthesis of heterocycles. Chem. Rev., 2008, 108, 3395-3442.
(b) Wang, H.; Feng, Z.; Signore, S.J.D.; Rodal, A.A.; Xu, B. Active probes for imaging membrane dynamics of live cells with high spatial and temporal resolution over extended time scales and areas. J. Am. Chem. Soc., 2018, 140, 3505-3509.
(c) Wang, W.; Wu, C.; Yang, C.; Li, G.; Han, Q-B.; Li, S.; Lee, S.M-Y.; Leung, C-H.; Ma, D-L. A dual-functional luminescent probe for imaging H2S in living zebrafish and discrimination hypoxic cells from normoxic cells. Sens. Actuators B Chem., 2018, 255, 1953-1959.
(d) Liu, J.B.; Yang, C.; Ko, C.N.; Kasipandi, V.; Yang, B.; Lee, M.Y.; Leung, C.H.; Ma, D.L. A long lifetime iridium(III) complex as a sensitive luminescent probe for bisulfite detection in living zebrafish. Sens. Actuators B Chem., 2017, 243, 971-976.
[10]
(a) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45, 403-431.
(b) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45, 539-568.
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44, 2577-2614.
(d) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44, 2615-2644.
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered O-heterocycles. Synth. Commun., 2014, 44, 2739-2755.
[11]
Alberico, D.; Scott, M.E.; Lautens, M. Aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107, 174-238.
[12]
Dick, A.R.; Sanford, M.S. Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds. Tetrahedron, 2006, 62, 2439-2463.
[13]
(a) Kaur, N. Palladium catalysts: Synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., 2015, 57, 1-78.
(b) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O,O-heterocycles. Synth. Commun., 2014, 44, 3082-3111.
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44, 3047-3081.
(d) Nakamura, Y.Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev., 2004, 104, 2127-2198.
(e) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4, 122-154.
(f) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15, 940-971.
(g) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48, 2457-2474.
[14]
Zeni, G.; Larock, R.C. Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chem. Rev., 2006, 106, 4644-4680.
[15]
Jimenez-Gonzalez, L.; Garcia-Munoz, S.; Alvarez-Corral, M.; Munoz-Dorado, M.; Rodriguez-Garcia, I. Silver-catalyzed asymmetric synthesis of 2,3-dihydrobenzofurans: A new chiral synthesis of pterocarpans. Chem. Eur. J., 2006, 12, 8762-8779.
[16]
Li, Z.; He, C. Recent advances in silver-catalyzed nitrene, carbene, and silylene-transfer reactions. Eur. J. Org. Chem., 2006, 4313-4322.
[17]
Darabi, H.R.; Aghapoor, K.; Tajbakhsh, M. Extension of the Willgerodt-Kindler reaction: Protected carbonyl compounds as efficient substrates for this reaction. Tetrahedron Lett., 2004, 45, 4167-4169.
[18]
Lebrini, M.; Bentiss, F.; Lagrenee, M. Rapid synthesis of 2,5-disubtituted 1,3,4-thiadiazoles under microwave irradiation. J. Heterocycl. Chem., 2005, 42, 991-994.
[19]
Hu, Y.; Wei, P.; Huang, H.; Han, S.Q.; Ouyang, P.K. Microwave-assisted Gewald synthesis of 2-aminothiophenes using functional ionic liquid as soluble support. Heterocycles, 2006, 68, 375-380.
[20]
Syamala, M. Recent progress in three-component reactions. An update. Org. Prep. Proced. Int., 2009, 41, 1-68.
[21]
Gewald, K. Zur reaktion von α-oxo-mercaptanen mit nitrilen. Angew. Chem., 1961, 73, 114-114.
[22]
Smith, K.; Musson, A.; DeBoos, G.A. A novel method for the nitration of simple aromatic compounds. J. Org. Chem., 1998, 63, 8448-8454.
[23]
Gareau, Y.; Beauchemin, A. Free radical reaction of diisopropyl xanthogen disulfide with unsaturated systems. Heterocycles, 1998, 48, 2003-2017.
[24]
(a) Sridhar, M.; Rao, R.M.; Baba, N.H.K.; Kumbhare, R.M. Microwave accelerated Gewald reaction: Synthesis of 2-aminothiophenes. Tetrahedron Lett., 2007, 48, 3171-3172.
(b) Das, A.; Kulkarni, A.; Torok, B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem., 2012, 14, 17-37.
[25]
Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R.; Wade, J.L.; Robidoux, A.; Margolese, R.G.; James, J.; Lippman, S.M.; Runowicz, C.D.; Ganz, P.A.; Reis, S.E.; McCaskill-Stevens, W.; Ford, L.G.; Jordan, V.C.; Wolmark, N. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP study of tamoxifen and raloxifene (STAR) P-2 trial. J. Am. Med. Assoc., 2006, 295, 2727-2741.
[26]
Jones, C.D.; Jevnikar, M.G.; Pike, A.J.; Peters, M.K.; Black, L.J.; Thompson, A.R.; Falcone, J.F.; Clemens, J.A. Antiestrogens. 2. Structure-activity studies in a series of 3-aroyl-2-arylbenzo[b]thiophene derivatives leading to [6-hydroxy-2-(4-hydroxyphenyl)benzo[b]thien-3-yl]-[4-[2-(1-piperidinyl)ethox-y]phenyl]methanone hydrochloride (LY 156758), a remarkably effective estrogen antagonist with only minimal intrinsic estrogenicity. J. Med. Chem., 1984, 27, 1057-1066.
[27]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7, 442-495.
[28]
Huang, W.; Li, J.; Tang, J.; Liu, H.; Shen, J.; Jiang, H. Microwave-assisted synthesis of 2-amino-thiophene-3-carboxylic derivatives under solvent-free conditions. Synth. Commun., 2005, 35, 1351-1357.
[29]
Fadda, A.A.; Bondock, S.; Rabie, R.; Etman, H.A. Cyanoacetamide derivatives as synthons in heterocyclic synthesis. Turk. J. Chem., 2008, 32, 259-286.
[30]
Ding, Q.P.; Liu, X.J.; Cao, B.P.; Zong, Z.Z.; Peng, Y.Y. Aqueous C-S cross-coupling: Synthesis of 2-iminobenzo-1,3-oxathioles via CuCl2·H2O-catalyzed tandem reaction of 2-iodophenols with isothiocyanates. Tetrahedron Lett., 2011, 52, 1964-1967.
[31]
Salvador, J.A.R.; Pinto, R.M.A.; Silvestreb, S.M. Recent advances of bismuth(III) salts in organic chemistry: Application to the synthesis of heterocycles of pharmaceutical interest. Curr. Org. Synth., 2009, 6, 426-470.
[32]
Yadav, J.S.; Reddy, B.V.S.; Eeshwaraiah, B.; Gupta, M.K. Bi(OTf)3/[bmim]BF4 as novel and reusable catalytic system for the synthesis of furan, pyrrole and thiophene derivatives. Tetrahedron Lett., 2004, 45, 5873-5876.
[33]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108, 2015-2050.
[34]
Hosomi, A.; Hayashi, S.; Hoashi, K.; Kohra, S.; Tominaga, Y. Unprecedented reaction of a thiocarbonyl ylide with carbonyl compounds: A novel synthesis of 1,3-oxathiolanes. J. Chem. Soc. Chem. Commun., 1987, 1442-1443.
[35]
Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112, 6104-6155.
[36]
(a) Alper, H.; Hamel, N. Regiospecific synthesis of α-methylene-β-lactams by a homogeneous palladium catalyzed ring expansion-carbonylation reaction. Tetrahedron Lett., 1987, 28, 3237-3240.
(b) Khumtaveeporn, K.; Alper, H. Transition metal mediated carbonylative ring expansion of heterocyclic compounds. Acc. Chem. Res., 1995, 28, 414-422.
[37]
Howaradl, K.H. Transition metal mediated carbonylative ring expansion of heterocyclic compounds. Acc. Chem. Res., 1995, 28, 414-422.
[38]
Yu, H.; Zhang, M.; Li, Y. Copper-catalyzed synthesis of benzo[b]thiophenes and benzothiazoles using thiocarboxylic acids as a coupling partner. J. Org. Chem., 2013, 78, 8898-8903.
[39]
Kondo, T.; Mitsudo, T.A. Metal-catalyzed carbon-sulfur bond formation. Chem. Rev., 2000, 100, 3205-3220.
[40]
Geng, Y.; Fechtenkötter, A.; Mullen, K. Star-like substituted hexaarylbenzenes: synthesis and mesomorphic properties. J. Mater. Chem., 2001, 11, 1634-1641.
[41]
Kobayashi, K.; Shirasaka, T.; Sato, A.; Horn, E.; Furukawa, N. Self-assembly of a radially functionalized hexagonal molecule: hexakis(4-hydroxyphenyl)benzene. Angew. Chem. Int. Ed., 1999, 38, 3483-3486.
[42]
Kotha, S.; Brahmachary, E.; Lahiri, K. Transition metal catalyzed [2+2+2] cycloaddition and application in organic synthesis. Eur. J. Org. Chem., 2005, 4741-4767.
[43]
Guilarte, V.; Fernandez-Rodriguez, M.A.; Garcia-Garcia, P.; Hernando, E.; Sanz, R. A practical, one-pot synthesis of highly substituted thiophenes and benzo[b]thiophenes from bromoenynes and o-alkynylbromobenzenes. Org. Lett., 2011, 13, 5100-5103.
[44]
Sun, L.L.; Deng, C.L.; Tang, R.Y.; Zhang, X.G. CuI/TMEDA-catalyzed annulation of 2-bromo alkynylbenzenes with Na2S: synthesis of benzo[b]thiophenes. J. Org. Chem., 2011, 76, 7546-7550.
[45]
Ball, C.J.; Willis, M.C. Cascade palladium- and copper-catalyzed aromatic heterocycle synthesis: The emergence of general precursors. Eur. J. Org. Chem., 2013, 425-441.
[46]
Iyer, R.P.; Egan, W.; Regan, J.B.; Beaucage, S.L. 3H-1,2-Benzodithiole-3-one 1,1-dioxide as an improved sulfurizing reagent in the solid-phase synthesis of oligodeoxyribonucleoside phosphorothioates. J. Am. Chem. Soc., 1990, 112, 1253-1254.
[47]
Soria-Castro, S.M.; Penenory, A.B. Efficient Cu-catalyzed base-free C-S coupling under conventional and microwave heating. A simple access to S-heterocycles and sulfides. Beilstein J. Org. Chem., 2013, 9, 467-475.
[48]
You, W.; Yan, X.; Liao, Q.; Xi, C. Cu-catalyzed double S-alkenylation of potassium sulfide: A highly efficient method for the synthesis of various thiophenes. Org. Lett., 2010, 12, 3930-3933.
[49]
Mishra, R.; Jha, K.K.; Kumar, S.; Tomer, I. Synthesis, properties and biological activity of thiophene: a review. Der Pharma Chem., 2011, 3, 38-54.
[50]
Larock, R.C.; Yue, D. Synthesis of benzo[b]thiophenes by electrophilic cyclization. Tetrahedron Lett., 2001, 42, 6011-6013.
[51]
Larock, R.C.; Yue, D. Synthesis of 2,3-disubstituted benzo[b]thiophenes via palladium-catalyzed coupling and electrophilic cyclization of terminal acetylenes. J. Org. Chem., 2002, 67, 1905-1909.
[52]
Kirsch, G.; Hesse, S.; Comel, A. Synthesis of five- and six-membered heterocycles through palladium-catalyzed reactions. Curr. Org. Synth., 2004, 1, 47-63.
[53]
Mehta, S.; Larock, R.C. Iodine/palladium approaches to the synthesis of polyheterocyclic compounds. J. Org. Chem., 2010, 75, 1652-1658.
[54]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16, 4467-4470.
[55]
Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G. Recent developments in the synthesis of five- and six-membered heterocycles using molecular iodine. Chem. Eur. J, 2012, 18, 5460-5489.
[56]
Li, C.L.; Zhang, X.G.; Fang, R.Y.; Zhong, P.; Li, J.H. Copper-catalyzed thiolation annulations of 1,4-dihalides with sulfides leading to 2-trifluoromethyl benzothiophenes and benzothiazoles. J. Org. Chem., 2010, 75, 7037-7040.
[57]
Newman, S.G.; Aureggi, V.; Bryan, C.S.; Lautens, M. Intramolecular cross-coupling of gem-dibromoolefins: A mild approach to 2-bromo benzofused heterocycles. Chem. Commun., 2009, 35, 5236-5238.
[58]
Qin, X.; Cong, X.; Zhao, D.; You, J.; Lan, J. One-pot synthesis of benzofused heteroaryl azolesvia tandem C-heteroatom coupling/C-H activationof azoles. Chem. Commun., 2011, 47, 5611-5613.
[59]
Zhou, W.; Chen, W.; Wang, L. A highly efficient one-pot reaction of 2-(gem-dibromovinyl)phenols(thiophenols) with K4Fe(CN)6 to 2-cyanobenzo-furans(thiophenes). Org. Biomol. Chem., 2012, 10, 4172-4178.
[60]
Zeng, F.; Alper, H. Palladium-catalyzed Domino C-S coupling/carbonylation reactions: an efficient synthesis of 2-carbonylbenzo[b]thiophene derivatives. Org. Lett., 2011, 13, 2868-2871.
[61]
Kitamura, T.; Lee, C.H.; Taniguchi, Y.; Fujiwara, Y.; Sano, Y.; Matsumoto, M. Transformation of liquid-crystalline diaryldiacetylenes to liquid-crystalline 2,5-diarylthiophenes. Mol. Cryst. Liq. Cryst., 1997, 293, 239-245.
[62]
Polshettiwar, V.; Varma, R.S. Greener and rapid access to bio-active heterocycles: one-pot solvent-free synthesis of 1, 3, 4-oxadiazoles and 1, 3, 4-thiadiazoles. Tetrahedron Lett., 2008, 49, 879-883.
[63]
Morita, N.; Krause, N. The first gold-catalyzed C-S bond formation: cycloisomerization of α-thioallenes to 2,5-dihydrothiophenes. Angew. Chem. Int. Ed., 2006, 45, 1897-1899.
[64]
Li, Z.; Brouwer, C.; He, C. Gold-catalyzed organic transformations. Chem. Rev., 2008, 108, 3239-3265.
[65]
Davies, P.W.; Albrecht, S.J.C. Gold- or platinum-catalyzed synthesis of sulfur heterocycles: access to sulfur ylides without using sacrificial functionality. Angew. Chem. Int. Ed., 2009, 48, 8372-8375.
[66]
Davies, P.W. Alkynes as “masked” ylides under noble-metal catalysis. Pure Appl. Chem., 2010, 82, 1537-1544.
[67]
Morita, N.; Krause, N. Erste gold katalysierte C-S-bindungsknüpfung: cycloisomerisierung von α-thioallenen zu 2,5-dihydrothiophenen. Angew. Chem., 2006, 118, 1930-1933.
[68]
Krause, N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, B.; Gockel, A.H.R.; Morita, N.; Volz, F. Golden opportunities in catalysis. Pure Appl. Chem., 2008, 80, 1063-1069.
[69]
Arcadi, A. Alternative synthetic methods through new developments in catalysis by gold. Chem. Rev., 2008, 108, 3266-3325.
[70]
Nakamura, I.; Sato, T.; Yamamoto, Y. Gold-catalyzed intramolecular carbothiolation of alkynes: Synthesis of 2,3-disubstituted benzothiophenes from (alpha-alkoxy alkyl) (ortho-alkynyl phenyl) sulfides. Angew. Chem. Int. Ed., 2006, 45, 4473-4475.
[71]
Davies, P.W.; Albrecht, S.J.C. Alkynes as masked ylides: gold-catalyzed intermolecular reactions of propargylic carboxylates with sulfides. Chem. Commun., 2008, 238-240.
[72]
Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Chirality transfer in gold-catalyzed carbothiolation of o-alkynylphenyl 1-arylethyl sulfides. Org. Lett., 2008, 10, 2649-2651.
[73]
Lee, K.C.; Moon, B.S.; Lee, J.H.; Chung, K.H.; Katzenellenbogen, J.A.; Chi, D.Y. Synthesis and binding affinities of fluoroalkylated raloxifenes. Bioorg. Med. Chem., 2003, 11, 3649-3658.
[74]
Pradhan, T.K.; Ghosh, S.C.; De, A. Certain applications of heteroatom directed ortho-metalation in sulfur heterocycles. ARKIVOC, 2003, 9, 158-173.
[75]
Katritzky, A.R.; Denisenko, S.N.; Oniciu, D.C.; Ghiviriga, I. Syntheses of β,β-diarylvinyl phenyl ketones by benzotriazole-mediated tandem coupling-elimination. J. Org. Chem., 1998, 63, 3450-3453.
[76]
Kamila, S.; Mukherjee, C.; Mondal, S.S.; De, A. Application of directed metallation in synthesis. Part 3: studies in the synthesis of (±)-semivioxanthin and its analogues. Tetrahedron, 2003, 59, 1339-1348.
[77]
Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Gold-catalyzed cyclization of (ortho-alkynylphenylthio)silanes: intramolecular capture of the vinyl-Au intermediate by the silicon electrophile. Org. Lett., 2007, 9, 4081-4083.
[78]
(a) Amijs, C.H.M.; Ferrer, C.; Echavarren, A.M. Gold(I)-catalyzed arylation of 1,6-enynes: different site reactivity of cyclopropyl gold carbenes. Chem. Commun., 2007, 698-700.
(b) Du, X.W.; Song, F.J.; Lu, Y.H.; Chen, H.Y.; Liu, Y.H. A general and efficient synthesis of substituted furans and dihydrofurans via gold-catalyzed cyclization of (Z)-2-en-4-yn-1-ols. Tetrahedron, 2009, 65, 1839-1845.
(c) Aponick, A.; Li, C.Y.; Malinge, J.; Marques, E.F. An extremely facile synthesis of furans, pyrroles, and thiophenes by the dehydrative cyclization of propargyl alcohols. Org. Lett., 2009, 11, 4624-4627.
(d) Huang, H.; Zhou, Y.; Liu, H. Recent advances in the gold-catalyzed additions to C-C multiple bonds. Beilstein J. Org. Chem., 2011, 7, 897-936.
(e) Toullec, P.Y.; Genin, E.; Leseurre, L.; Genet, J.P.; Michelet, V. Room-temperature AuI-catalyzed C-C bond formation through a tandem Friedel-Crafts-type addition/carbocyclization reaction. Angew. Chem. Int. Ed., 2006, 45, 7427-7430.
[79]
Dewan, M.; Kumar, A.; Saxena, A.; De, A.; Mozumdar, S. Molecular iodine in [bmim][BF4]: A highly efficient green catalytic system for one-pot synthesis of 1, 3-oxathiolan-5-one. Tetrahedron Lett., 2010, 51, 6108-6110.
[80]
Jolivert-Fouchet, S.; Fabis, F.; Rault, S. First direct synthesis of pyrrolo [1,2-a]thieno [3,2-e]- or [2,3-e][1,4]diazepines, thiophene analogues of pyrrolo [2,1-c][1,4]benzodiazepines. Tetrahedron Lett., 1998, 39, 5369-5372.
[81]
Correa, A.; Tellitu, I.; Dominguez, E.; Moreno, I.; Martin, R.S. An efficient, PIFA mediated approach to benzo-, naphtho-, and heterocycle-fused pyrrolo [2,1-c][1,4]diazepines. An advantageous access to the antitumor antibiotic DC-81. J. Org. Chem., 2005, 70, 2256-2264.
[82]
Almena, J.; Foubelo, F.; Yus, M. Reductive opening of phenyl substituted thiacycloalkanes: new way for sulphur-containing organolithium compounds. Tetrahedron, 1997, 53, 5563-5572.
[83]
Yus, M. Ring opening of heterocycles by an arene-catalyzed lithiation. Pure Appl. Chem., 2003, 75, 1453-1475.
[84]
Garcia-Fortanet, J.; Buchwald, S.L. Asymmetric palladium-catalyzed intramolecular alpha-arylation of aldehydes. Angew. Chem. Int. Ed., 2008, 47, 8108-8111.
[85]
(a) Krasovskiy, A.; Tishkov, A.; del Amo, V.; Mayr, H.; Knochel, P. Transition-metal-free homocoupling of organomagnesium compounds. Angew. Chem. Int. Ed., 2006, 45, 5010-5014.
(b) Samanta, R.; Antonchick, A.P. Palladium-catalyzed double C-H activation directed by sulfoxides in the synthesis of dibenzothiophenes. Angew. Chem. Int. Ed., 2011, 50, 5217-5220.
(c) Gulevich, A.V.; Gevorgyan, V. Synthesis of fused heterocycles via Pd-catalyzed multiple aromatic C-H activation reactions. Chem. Heterocycl. Compd., 2012, 48, 17-20.
[86]
Mohanakrishnan, A.K.; Amaladass, P. Synthesis of 1,3-diaryl benzo[c]thiophenes. Tetrahedron Lett., 2005, 46, 4225-4229.
[87]
Polshettiwar, V.; Kaushik, M.P. Recent advances in thionating reagents for the synthesis of organosulfur compounds. J. Sulfur Chem., 2006, 27, 353-386.
[88]
Filippi, J.J.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.M. Solvent-free thionation of γ-lactones under microwave irradiation. Tetrahedron Lett., 2003, 44, 6647-6650.
[89]
Choudhury, P.K.; Almena, J.; Foubelo, F.; Yus, M. New homologation of 2-hydroxy and 2-mercapto benzylic alcohols. Tetrahedron, 1997, 53, 17373-17382.
[90]
Zhang, M.; Buchwald, S.L. A nickel(0)-catalyzed process for the transformation of enynes to bicyclic cyclopentenones. J. Org. Chem., 1996, 61, 4498-4499.
[91]
Wender, P.A.; Smith, T.E. Transition metal-catalyzed intramolecular [4 + 2] cycloadditions: initial studies on stereochemistry and on steroid and vitamin D analog syntheses. J. Org. Chem., 1995, 60, 2962-2963.
[92]
Tamao, K.; Kobayashi, K.; Ito, Y. Nickel(0)-promoted cyclization of enynes with isocyanides: a new route to polycyclic cyclopentenone skeletons. J. Am. Chem. Soc., 1988, 110, 1286-1288.
[93]
(a) Zuo, G.; Louie, J. Selectivity in nickel-catalyzed rearrangements of cyclopropylen-ynes. J. Am. Chem. Soc., 2005, 127, 5798-5799.
(b) Louie, J. Ni-NHC mediated catalysis in N-Heterocyclic carbenes in synthesis (ed S. P. Nolan), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany,, 2006. doi: 10.1002/9783527609451.ch7.
[94]
Cravino, A.; Zerza, G.; Neugebauer, H.; Maggini, M.; Bucella, S.; Menna, E.; Svensson, M.; Andersson, M.R.; Brabec, C.J.; Sariciftci, N.S. Electrochemical and photophysical properties of a novel polythiophene with pendant fulleropyrrolidine moieties: Toward “double cable” polymers for optoelectronic devices. J. Phys. Chem. B, 2002, 106, 70-76.
[95]
Goto, H.; Okamoto, Y.; Yashima, E. Solvent-induced chiroptical changes in supramolecular assemblies of an optically active, regioregular polythiophene. Macromolecules, 2002, 35, 4590-4601.
[96]
Tovar, J.D.; Swager, T.M. Poly(naphthodithiophene)s: Robust, conductive electrochromics via tandem cyclization-polymerizations. Adv. Mater., 2001, 13, 1775-1780.
[97]
Turksoy, F.; Wallis, J.D.; Tunca, U.; Ozturk, T. An in depth study of the formation of new tetrathiafulvalene derivatives from 1,8-diketones. Tetrahedron, 2003, 59, 8107-8116.
[98]
Brettle, R.; Dunmur, D.A.; Marson, C.M.; Pinol, M.; Toriyama, K. New liquid-crystalline compounds based on thiophene. Chem. Lett., 1992, 613-616.
[99]
Clark, J.H.; Cork, D.G.; Gibbs, H.W. The synthesis of 1,4-diketones via fluoride-catalyzed Michael addition and supported-permanganate-promoted nef transformation. J. Chem. Soc., Perkin Trans. 1, 1983, 2253-2258.
[100]
Bochatay, V.N.; Boissarie, P.J.; Murphy, J.A.; Suckling, C.J.; Lang, S. Mechanistic exploration of the palladium-catalyzed process for the synthesis of benzoxazoles and benzothiazoles. J. Org. Chem., 2013, 78, 1471-1477.
[101]
Beracierta, A.P.; Whiting, D.A. Stereoselective total syntheses of the (±)-di-O-methyl ethers of agatharesinol, sesquirin-A, and hinokiresinol, and of (±)-tri-O-methylsequirin-E, characteristic norlignans of coniferae. J. Chem. Soc., Perkin Trans. 1, 1978, 1257-1263.
[102]
Stetter, H. Catalyzed addition of aldehydes to activated double bonds- a new synthetic approach. Angew. Chem. Int. Ed. Engl., 1976, 15, 639-647.
[103]
Jesberger, M.; Davis, T.P.; Barner, L. Applications of Lawesson’s reagent in organic and organometallic syntheses. Synthesis, 2003, 13, 1929-1958.
[104]
Thomsen, I.; Clausen, K.; Scheibye, S.; Lawesson, S.O. Thiation with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide: N-methyl-thiopyrrolidone. Org. Synth., 1984, 62, 158-158.
[105]
Shridhar, D.R.; Jogibhukta, M.; Rao, P.S.; Handa, V.K. An improved method for the preparation of 2,5-disubstituted thiophenes. Synthesis, 1982, 12, 1061-1062.
[106]
Campaigne, E.; Foye, W.O. The synthesis of 2,5-diarylthiophenes. J. Org. Chem., 1952, 17, 1405-1412.
[107]
Sonpatki, V.M.; Herbert, M.R.; Sandvoss, L.M.; Seed, A.J. Troublesome alkoxythiophenes. A highly efficient synthesis via cyclization of gamma-keto esters. J. Org. Chem., 2001, 66, 7283-7286.
[108]
Herbert, M.R.; Sonpatki, V.M.; Jakli, A.; Seed, A. A study of antiferroelectric liquid crystals using the pyroelectric technique. J. Mol. Cryst. Liq. Cryst, 2001, 365, 181-194.
[109]
Singh, B.; Guru, S.K.; Kour, S.; Jain, S.K.; Sharma, R.; Sharma, P.R.; Singh, S.K.; Bhushan, S.; Bharate, S.B.; Vishwakarma, R.A. Synthesis, antiproliferative and apoptosis-inducing activity of thiazolo [5,4-d]pyrimidines. Eur. J. Med. Chem., 2013, 70, 864-874.
[110]
Hassner, A.; Alexanian, V. Direct room temperature esterification of carboxylic acids. Tetrahedron Lett., 1978, 19, 4475-4478.
[111]
Kiryanov, A.A.; Sampson, P.; Seed, A.J. Synthesis of 2-alkoxy-substituted thiophenes, 1,3-thiazoles, and related S-heterocycles via Lawesson’s reagent-mediated cyclization under microwave irradiation: Applications for liquid crystal synthesis. J. Org. Chem., 2001, 66, 7925-7929.
[112]
Lu, J.; Vodnala, S.K.; Gustavsson, A.L.; Gustafsson, T.N.; Sjoberg, B.; Johansson, H.A.; Kumar, S.; Tjernberg, A.; Engman, L.; Rottenberg, M.E.; Holmgren, A. Ebsulfur is a benzisothiazolone cytocidal inhibitor targeting the trypanothione reductase of Trypanosoma brucei. J. Biochem., 2013, 288, 27456-27468.
[113]
Jakobsen, H.J.; Lawesson, S.O. Preparation, tautomeric structure and hydrogen bonding studies of thioisomaltol (2-acetyl-3-hydroxythiophene) and some related 3-hydroxythiophenes. Tetrahedron, 1965, 21, 3331-3349.
[114]
Balkrishna, S.J.; Hodage, A.S.; Kumar, S.; Panini, P.; Kumar, S. Sensitive and regenerable organochalcogen probes for the colorimetric detection of thiols. RSC Advances, 2014, 4, 11535-11538.
[115]
Hornfeldt, A.B.; Gronowitz, S. Unsaturated γ-thiolactones. III. Preparation and tautomeric structure of some methyl-, bromo-, and methoxy-substituted thiolen-2-ones. Ark. Kemi, 1963, 21, 239-257.
[116]
Tumula, N.; Jatangi, N.; Palakodety, R.K.; Balasubramanian, S.; Nakka, M.I. 2-Catalyzed oxidative N-S bond formation: Metal-free regiospecific synthesis of N-fused and 3,4-disubstituted 5-imino-1,2,4-thiadiazoles. J. Org. Chem., 2017, 82, 5310-5316.
[117]
Pedersen, E.B.; Lawesson, S.O. C- and O-methylation of thallium(I)-salts of 3-thiolene-2-ones. Tetrahedron, 1971, 27, 3861-3868.
[118]
Hashmi, A.S.K.; Frost, T.M.; Bats, J.W. Highly selective gold-catalyzed arene synthesis. J. Am. Chem. Soc., 2000, 122, 11553-11554.
[119]
Hashmi, A.S.K.; Frost, T.M.; Bats, J.W. Gold catalysis: On the phenol synthesis. Org. Lett., 2001, 3, 3769-3771.
[120]
(a) Echavarren, A.M.; Mendez, M.; Munoz, M.P.; Nevado, C.; Martin-Matute, B.; Nieto-Oberhuber, C.; Cardenas, D.J. Metal cyclopropyl carbenes in the reactions of alkynes with alkenes and furans. Pure Appl. Chem., 2004, 76, 453-463.
(b) Echavarren, A.M.; Nevado, C.; Oberhuber, C.N.; Munoz, M.P.; Lopez, S. Intramolecular Reactions of Alkynes with Alkenes Catalyzed by Platinum and Gold. NATO Science Series II Mathematics Physics and Chemistry, 2008, 246, 99-117.
[121]
Mendez, M.; Munoz, M.P.; Echavarren, A.M. Platinum-catalyzed hydroxy- and alkoxycyclization of enynes. J. Am. Chem. Soc., 2000, 122, 11549-11550.
[122]
Mendez, M.; Munoz, M.P.; Nevado, C.; Cardenas, D.J.; Echavarren, A.M. Cyclizations of enynes catalyzed by PtCl2 or other transition metal chlorides: divergent reaction pathways. J. Am. Chem. Soc., 2001, 123, 10511-10520.
[123]
Steinborn, D.; Nunthel, R.; Krause, K. Zur acetalbildung aus alkoholen und acetylen mit platin- und palladiumverbindungen als katalysator. J. Organomet. Chem., 1991, 414, C54-C58.
[124]
Steinborn, D.; Nunthel, R.; Sieler, J.; Kempe, R. Zur synthese und charakterisierung von platincyclobutadienkomplexen durch reduktion von hexachloroplatinsäure. Chem. Ber., 1993, 126, 2393-2396.
[125]
Steinborn, D.; Gerisch, M.; Heinemann, F.W.; Scholz, J.; Schenzel, K.Z. Zur struktur und konstitution von dichloro(tetraalkylcyclobutadien)platin(ii)-komplexen. Allg. Anorg. Chem, 1995, 621, 1421-1425.
[126]
Kataoka, Y.; Matsumoto, O.; Tani, K. Addition of methanol to nonactivated internal alkynes catalyzed by dichloro(diphosphine)platinum(II) complex /silver salt systems. Organometallics, 1996, 15, 5246-5249.
[127]
Hiscox, W.; Jennings, P.W. Catalytic hydration of alkynes with Zeise’s dimer. Organometallics, 1990, 9, 1997-1999.
[128]
Hartman, J.W.; Hiscox, W.C.; Jennings, P.W. Catalytic hydration of alkynes with platinum(II) complexes. J. Org. Chem., 1993, 58, 7613-7614.
[129]
Fernandez-Rivas, C.; Mendez, M.; Echavarren, A.M. Metal-catalyzed carbocyclization by intramolecular reaction of allylsilanes and allylstannanes with alkynes. J. Am. Chem. Soc., 2000, 122, 1221-1222.
[130]
Fernandez-Rivas, C.; Mendez, M.; Nieto-Oberhuber, C.; Echavarren, A.M. Reaction of allylsilanes and allylstannanes with alkynes catalyzed by electrophilic late transition metal chlorides. J. Org. Chem., 2002, 67, 5197-5201.
[131]
Munoz, M.P.; Mendez, M.; Nevado, C.; Cardenas, D.J.; Echavarren, A.M. Hydroxy- and alkoxycyclizations of enynes catalyzed by PtCl2. Synthesis, 2003, 18, 2898-2902.
[132]
Kato, Y.; Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. Doyle-Kirmse reaction of allylic sulfides with diazoalkane-free (2-furyl)carbenoid transfer. Org. Lett., 2003, 5, 2619-2621.
[133]
Ohe, K. Transition metal-catalyzed and -promoted reactions via carbene and vinylidene complexes generated from alkynes. Bull. Korean Chem. Soc., 2007, 28, 2153-2161.
[134]
(a) Nair, V.; Nair, S.M.; Mathai, S.; Liebscher, J.; Ziemer, B.; Narsimulu, K. The Rh(II) catalyzed reaction of diethyl diazomalonate with thietanes: a facile synthesis of tetrahydrothiophene derivatives via sulfonium ylides. Tetrahedron Lett., 2004, 45, 5759-5762.
(b) Wang, J. “Synthetic reactions of M=C and M=N bonds: Ylide formation, rearrangement, and 1,3-dipolar cycloaddition”, Comprehensive Organometallic Chemistry III From Fundamentals to Applications, Applications II: Transition Metal Compounds in Organic Synthesis 2, 2007. 11, 151-178
[135]
Evans, P.A.; Baum, E.W. Diastereoselective intramolecular temporary silicon-tethered rhodium-catalyzed [4+2+2] cycloisomerization reactions: regiospecific incorporation of substituted 1,3-butadienes. J. Am. Chem. Soc., 2004, 126, 11150-11151.
[136]
Evans, P.A.; Robinson, J.E.; Baum, E.W.; Fazal, A.N. Intermolecular transition metal-catalyzed [4 + 2 + 2] cycloaddition reactions: a new approach to the construction of eight-membered rings. J. Am. Chem. Soc., 2002, 124, 8782-8783.
[137]
Varela, J.A.; Castedo, L.; Saa, C. “Formal” ruthenium-catalyzed [4+2+2] cycloaddition of 1,6-diynes to 1,3-dienes: formation of cyclooctatrienes vs vinylcyclohexadienes. Org. Lett., 2003, 5, 2841-2844.
[138]
Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev., 2013, 113, 3084-3213.
[139]
Yu, Z.X.; Wang, Y.; Wang, Y. Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles. Chem. Asian J., 2010, 5, 1072-1088.
[140]
Lee, H.Y.; Kim, H.Y.; Tae, H.; Kim, B.G.; Lee, J. One-pot three-component tandem metathesis/Diels-Alder reaction. Org. Lett., 2003, 5, 3439-3442.
[141]
Diver, S.T.; Giessert, A. Enyne metathesis (enyne bond reorganization). J. Chem. Rev, 2004, 104, 1317-1382.
[142]
Lipshutz, B.H.; Ghorai, S. PQS: A new platform for micellar catalysis. RCM reactions in water, with catalyst recycling. Org. Lett., 2009, 11, 705-708.
[143]
Polshettiwar, V.; Varma, R.S. Olefin ring closing metathesis and hydrosilylation reaction in aqueous medium by Grubbs second generation ruthenium catalyst. J. Org. Chem., 2008, 73, 7417-7419.
[144]
Dondas, H.A.; Clique, B.; Cetinkaya, B.; Grigg, R.; Kilner, C.; Morris, J.; Sridharan, V.Δ. 3-Aryl/heteroaryl substituted heterocycles via sequential Pd-catalyzed termolecular cascade/ring closing metathesis (RCM). Tetrahedron, 2005, 61, 10652-10666.
[145]
Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Met. Chem, 2017, 47, 163-187.
[146]
Orru, R.V.A.; de Greef, M. Recent advances in solution-phase multi-component methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 1471-1499.
[147]
Kaur, N. Ionic liquids: promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14, 3-23.
[148]
Kaur, N. Benign approaches for the microwave-assisted synthesis of five-membered 1,2-N,N-heterocycles. J. Heterocycl. Chem., 2015, 52, 953-973.
[149]
Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[150]
Kaur, N. Photochemical reactions as key steps in five-membered N-heterocycles synthesis. Synth. Commun., 2018, 48(11), 1259-1284.
[151]
Lu, P.; Sanchez, C.; Cornella, J.; Larrosa, I. Silver-catalyzed protodecarboxylation of heteroaromatic carboxylic acids. Org. Lett., 2009, 11, 5710-5713.
[152]
Gewald, K.; Schinke, E.; Bottcher, H. Heterocyclen aus CH-aciden nitrilen, VIII. 2-Amino-thiophene aus methylenaktiven nitrilen, carbonylver-bindungen und schwefel. Chem. Ber., 1966, 99, 94-100.
[153]
Peet, N.P.; Sunder, S.; Barbuch, R.J.; Vinogradoff, A.P. Mechanistic observations in the Gewald syntheses of 2-aminothiophenes. J. Heterocycl. Chem., 1986, 23, 129-134.
[154]
Frutos Hoener, A.P.; Henkel, B.; Gauvin, J.C. Novel one-pot microwave assisted Gewald synthesis of 2-acyl amino thiophenes on solid support. Synlett, 2003, 63-66.
[155]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43, 6250-6284.
[156]
Hu, Y.; Chen, Z.C.; Le, Z.G.; Zheng, Q.G. Organic reactions in ionic liquids: Gewald synthesis of 2‐aminothiophenes catalyzed by ethylenediammonium diacetate. Synth. Commun., 2004, 34, 3801-3806.
[157]
Sabnis, R.W.; Rangnekar, D.W.; Sonawane, N.D. 2-Aminothiophenes by the Gewald reaction. J. Heterocycl. Chem., 1999, 36, 333-345.
[158]
Gewald, K. Zur reaktion von α-oxo-mercaptanen mit nitrilen. Angew. Chem., 1961, 73, 114-114.
[159]
Castanedo, G.M.; Sutherlin, D.P. Synthesis of tetrasubstituted thiophenes on solid-support using the Gewald reaction. Tetrahedron Lett., 2001, 42, 7181-7184.
[160]
Rajagopal, R.; Jyothi, T.M.; Daniel, T.; Srinivasan, K.V.; Rao, B.S. Calcined Mg-Al hydrotalcite as a heterogeneous base catalyst for Gewald aminothiophene synthesis. Synth. Commun., 2001, 31, 3113-3117.
[161]
Lutjens, H.; Zickgraf, A.; Figler, H.; Linden, J.; Olsson, R.A.; Scammells, P.J. 2-Amino-3-benzoylthiophene allosteric enhancers of A1 adenosine agonist binding: New 3, 4-, and 5-modifications. J. Med. Chem., 2003, 46, 1870-1877.
[162]
Hu, Y.; Wei, P.; Huang, H.; Han, S.Q.; Ouyang, P.K. Synthesis of 2-aminothiophenes on ionic liquid phase support using the Gewald reaction. Synth. Commun., 2006, 36, 1543-1548.
[163]
Zhang, H.; Yang, G.; Chen, J.; Chen, Z. Synthesis of thiophene derivatives on soluble polymer-support using Gewald reaction. Synthesis, 2004, 18, 3055-3059.
[164]
Eller, G.A.; Holzer, W. First synthesis of 3-acetyl-2-aminothiophenes using the Gewald reaction. Molecules, 2006, 11, 371-376.
[165]
Hesse, S.; Perspicace, E.; Kirsch, G. Microwave-assisted synthesis of 2-aminothiophene-3-carboxylic acid derivatives, 3H-thieno [2,3-d] pyrimidin-4-one and 4-chlorothieno [2,3-d] pyrimidine. Tetrahedron Lett., 2007, 48, 5261-5264.
[166]
Treu, M.; Karner, T.; Kousek, R.; Berger, H.; Mayer, M.; McConnell, D.B.; Stadler, A. Microwave-assisted parallel synthesis of fused heterocycles in a novel parallel multimode reactor. J. Comb. Chem., 2008, 10, 863-868.
[167]
Bhakuni, B.S.; Balkrishna, S.J.; Kumar, A.; Kumar, S. An efficient copper mediated synthetic methodology for benzo[d]isothiazol-3(2H)-ones and related sulfur-nitrogen heterocycles. Tetrahedron Lett., 2012, 53, 1354-1357.
[168]
Chawla, A.; Kaur, R.; Goyal, A. Importance of microwave reactions in the synthesis of novel benzimidazole derivatives: A review. J. Chem. Pharm. Res., 2011, 3, 925-944.
[169]
Naik, T.R.R.; Naik, H.S.B.; Raghavendra, M.; Naik, S.G.K. Synthesis of thieno [2,3-b]benzo [1,8]naphthyridine-2-carboxylic acids under microwave irradiation and interaction with DNA studies. ARKIVOC, 2006, (xv), 84-94.
[170]
Puterova, Z.; Krutosikova, A.; Veghc, D. Gewald reaction: synthesis, properties and applications of substituted 2-aminothiophenes. ARKIVOC, 2010, (i), 209-246.
[171]
Kamila, S.; Ankati, H.; Mendoza, K.; Biehl, E.R. Synthesis of novel pyridobenzimidazoles bonded to indoleorbenzo[b]thiophenestructures. The Open Org. Chem. J., 2011, 5, 127-134.
[172]
Chakrabarti, J.K.; Hotten, T.M.; Tupper, D.E. 2-Methylthienobenzodiazepine. U.S. Patent 5,627,178, May 6,. 1997.
[173]
Grossman, R.B.; Buchwald, S.L. Reductive cyclization of ester-containing enynes with a practical titanocene reagent. Synthesis of bicyclic cyclopentenones and iminocyclopentenes. J. Org. Chem., 1992, 57, 5803-5805.
[174]
Berk, S.C.; Grossman, R.B.; Buchwald, S.L. Titanocene-catalyzed conver-sion of enynes to bicyclic cyclopentenones. J. Am. Chem. Soc., 1993, 115, 4912-4913.
[175]
Berk, S.C.; Grossman, R.B.; Buchwald, S.L. Development of a titanocene-catalyzed enyne cyclization/isocyanide insertion reaction. J. Am. Chem. Soc., 1994, 116, 8593-8601.
[176]
Hicks, F.A.; Buchwald, S.L. Highly enantioselective catalytic Pauson-Khand type formation of bicyclic cyclopentenones. J. Am. Chem. Soc., 1996, 118, 11688-11689.
[177]
Sturla, S.J.; Buchwald, S.L. Catalytic asymmetric cyclocarbonylation of nitrogen-containing enynes. J. Org. Chem., 1999, 64, 5547-5550.
[178]
Sturla, S.J.; Buchwald, S.L. Monocyclopentadienyltitanium aryloxide complexes: Preparation, characterization, and application in cyclization reactions. Organometallics, 2002, 21, 739-748.
[179]
Hartley, R.C.; McKiernan, G.J. Titanium reagents for the alkylidenation of carboxylic acid and carbonic acid derivatives. J. Chem. Soc., Perkin Trans. 1, 2002, 2763-2793.
[180]
Roberts, F.C.; Hartley, C.R. Titanium reagents for the synthesis of 2-substituted benzo[b]thiophenes on the solid phase. J. Org. Chem., 2004, 69, 6145-6148.
[181]
McMurry, J.E. Carbonyl-coupling reactions using low-valent titanium. Chem. Rev., 1989, 89, 1513-1524.
[182]
Furstner, A.; Jumbam, D.N. Titanium-induced syntheses of furans, benzofurans and indoles. Tetrahedron, 1992, 48, 5991-6010.
[183]
Furstner, A.; Jumbam, D.N.; Wiedmann, H. Titanium-induced syntheses of furans and indoles. Tetrahedron Lett., 1991, 6695-6696.
[184]
Furstner, A.; Jumbam, D.N. Reversed chemoselectivity in titanium-induced coupling reactions: syntheses of salvadoricine and diazepam. J. Chem. Soc. Chem. Commun., 1993, 211-212.
[185]
Wang, B.; Meng, Y.; Zhou, Y.; Ren, L.; Wu, J.; Yu, W.; Chang, J. Synthesis of 5-amino and 3,5-diamino substituted 1,2,4-thiadiazoles by I2-mediated oxidative N-S bond formation. J. Org. Chem., 2017, 82, 5898-5903.
[186]
Furstner, A.; Weintritt, H.; Hupperts, A. A new, titanium-mediated approach to pyrroles: first synthesis of lukianol A and lamellarin O dimethyl ether. J. Org. Chem., 1995, 60, 6637-6641.
[187]
Furstner, A.; Hupperts, A.; Ptock, A.; Jansen, E. “Site selective” formation of low-valent titanium reagents: an “instant” procedure for the reductive coupling of oxo amides to indoles. J. Org. Chem., 1994, 59, 5215-5229.
[188]
Furstner, A.; Ptock, A.; Weintritt, H.; Goddard, R.; Kruger, C. Titaninduzierte zipper-reaktionen. Angew Chem. Int, 1995, 107, 725-728.
[189]
Furstner, A.; Ernst, A. Syntheses of camalexin, indolopyridocoline and flavopereirine. Tetrahedon, 1995, 51, 773-786.
[190]
Furstner, A.; Hupperts, A. Carbonyl coupling reactions catalytic in titanium and the use of commercial titanium powder for organic synthesis. J. Am. Chem. Soc., 1995, 117, 4468-4475.
[191]
Furstner, A.; Ernt, A.; Krause, H.; Ptok, A. Low-valent titanium induced indole formation: syntheses of secofascaplysin, indolopyridocoline and an endothelin-receptor-antagonist. Tetrahedron, 1996, 52, 7329-7344.
[192]
Choudhary, P.; Sharma, V.; Om, H.; Devi, P. Titanium chloride catalyzed organic synthesis. J. Mod. Chem. Appl, 2012, 1, 1-38.
[193]
Kini, D.; Kumar, H.; Ghate, M. Microwave assisted liquid phase synthesis of benzimidazolo benzothiophenes for antimicrobial activity. E-J. Chem., 2009, 6, S25-S32.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy