Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Green Synthesis of Hydantoins and Derivatives

Author(s): Lluvia Itzel López-López*, Denisse de Loera*, Ernesto Rivera-Avalos and Aidé Sáenz-Galindo

Volume 17, Issue 2, 2020

Page: [176 - 184] Pages: 9

DOI: 10.2174/1570193X16666181206100225

Price: $65

Abstract

The hydantoin moiety is found in several bioactive compounds with important pharmacological properties such as antimicrobial, antifungal, anti-androgens, anticancer and the historical action anticonvulsant. Because of these reasons, the synthesis of these compounds and their derivatives is important to review considering the philosophy of the green chemistry. In this review, we present the actual importance in the green synthesis of hydantoins and their derivatives using green methods, such as microwave and ultrasound irradiation, ionic liquids, solid-phase and solvent-free synthesis. Finally, several green protocols reported have been discussed.

Keywords: Free solvent synthesis, green synthesis, hydantoins, microwave, solid synthesis, ultrasound.

Graphical Abstract

[1]
Ware, E. The chemistry of the hydantoins. Chem. Rev., 1950, 46(3), 403-470.
[http://dx.doi.org/10.1021/cr60145a001] [PMID: 24537833]
[2]
Konnert, L.; Lamaty, F.; Martinez, J.; Colacino, E. Recent advances in the synthesis of hydantoins: The state of the art of a valuable scaffold. Chem. Rev., 2017, 117(23), 13757-13809.
[http://dx.doi.org/10.1021/acs.chemrev.7b00067] [PMID: 28644621]
[3]
Yang, C.; Schanne, F.A.X.; Yoganathan, S.; Stephani, R.A. Synthesis of N-1′, N-3′-disubstituted spirohydantoins and their anticonvulsant activities in pilocarpine model of temporal lobe epilepsy. Bioorg. Med. Chem. Lett., 2016, 26(12), 2912-2914.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.040] [PMID: 27133483]
[4]
Nique, F.; Hebbe, S.; Triballeau, N.; Peixoto, C.; Lefrancois, J.M.; Jary, H.; Alvey, L.; Manioc, M.; Housseman, C.; Klaassen, H.; Van Beeck, K.; Guedin, D.; Namour, F.; Minet, D.; Van der Aar, E.; Feyen, J.; Fletcher, S.; Blanque, R.; Robin-Jagerschmidt, C.; Deprez, P. Identification of a 4-(hydroxymethyl)diarylhydantoin as a selective androgen receptor modulator. J. Med. Chem., 2012, 55(19), 8236-8247.
[http://dx.doi.org/10.1021/jm300281x] [PMID: 22957947]
[5]
Nique, F.; Hebbe, S.; Peixoto, C.; Annoot, D.; Lefrancois, J.M.; Duval, E.; Michoux, L.; Triballeau, N.; Lemoullec, J.M.; Mollat, P.; Thauvin, M.; Prange, T.; Minet, D.; Clement-Lacroix, P.; Robin-Jagerschmidt, C.; Fleury, D.; Guedin, D.; Deprez, P. Discovery of diarylhydantoins as new selective androgen receptor modulators. J. Med. Chem., 2012, 55(19), 8225-8235.
[http://dx.doi.org/10.1021/jm300249m] [PMID: 22897611]
[6]
Fujisaki, F.; Furutachi, M.; Fujiwara, R.; Okabe, M.; Aki, H.; Kashige, N.; Miake, F.; Sumoto, K. Preparation and antibacterial evaluation of some symmetrical twin-drug type bivalent molecules. Heterocycles, 2015, 91(8), 1668-1677.
[http://dx.doi.org/10.3987/COM-15-13263]
[7]
Sekulic, T.; Smolinski, A.; Trisovic, N.P.; Uscumlic, G.S.; Bozic, B.Dj. Chemometric study of the antiproliferative activity of some new hydantoin derivatives: Assessment of activity and chromatographic lipophilicity data. J. Braz. Chem. Soc., 2015, 26(7), 1379-1386.
[http://dx.doi.org/10.5935/0103-5053.20150106]
[8]
Evdokimov, N.M.; Magedov, I.V.; McBrayer, D.; Kornienko, A. Isatin derivatives with activity against apoptosis-resistant cancer cells. Bioorg. Med. Chem. Lett., 2016, 26(6), 1558-1560.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.015] [PMID: 26883150]
[9]
Nomura, K.; Ono, H.; Otsuka, K.; Tanaka, S.; Ueda, K.; Wakabayashi, T. Antidiabetic hydantoins. JP 58213717A, 1983.
[10]
Lavey, B.J.; Kozlowski, J.A.; Zhou, G.; Tong, L.; Yu, W.; Wong, M.K. C.; Shankar, B.B.; Shih, N.-Y.; Siddiqui, M.A.; Rosner, K.E.; Dai, C.; Popovici-Muller, J.; Girijavallabhan, V.M.; Li, D.; Micula, A.M.; Kim, S.-H.; Yang, D.Y.; Rizvi, R. Hydantoin derivatives for the treatment of inflammatory disorders and their preparation. PCT Int. Appl., WO 2007084451 A1 2007.
[11]
Czopek, A.; Byrtus, H.; Zagorska, A.; Siwek, A.; Kazek, G.; Bednarski, M.; Sapa, J.; Pawlowski, M. Design, synthesis, anticonvulsant, and antiarrhythmic properties of novel N-Mannich base and amide derivatives of β-tetralinohydantoin. Pharmacol. Rep., 2016, 68(5), 886-893.
[http://dx.doi.org/10.1016/j.pharep.2016.04.018] [PMID: 27351944]
[12]
Han, J.; Dong, H.; Xu, Z.; Wang, J.; Wang, M. Synthesis and activity of novel acylthiourea with hydantoin. Int. J. Mol. Sci., 2013, 14(10), 19526-19539.
[http://dx.doi.org/10.3390/ijms141019526] [PMID: 24077124]
[13]
The Generic Agrochemical Portal. Available at:. agchemaccess.com/Iprodione.html (Accesed on August 11, 2017).
[14]
Klaassen, T.; Kasel, D.; Harlfinger, S.; Fuhr, U. Quantification of mephenytoin and its metabolites 4′-hydroxymephenytoin and nirvanol in human urine using a simple sample processing method. Rapid Commun. Mass Spectrom., 2004, 18(15), 1675-1680.
[http://dx.doi.org/10.1002/rcm.1539] [PMID: 15282764]
[15]
Djakovic-Sekulic, T.; Lozanov-Crvenkovic, Z.; Mandic, A.; Uscumlic, G.; Keleman, S. Quantitative structure-retention relationship study of some 5-substituted-5-phenylhydantoins. Chromatographia, 2011, 73, 51-57.
[http://dx.doi.org/10.1007/s10337-010-1831-3]
[16]
Read, W.T. Researches on hydantoins. Synthesis of the soporific, 4,4-phenylethyl-hydantoin (nirvanol). J. Am. Chem. Soc., 1922, 44(8), 1746-1755.
[http://dx.doi.org/10.1021/ja01429a017]
[17]
Snyder, H.R., Jr; Davis, C.S.; Bickerton, R.K.; Halliday, R.P. 1-[(5-arylfurfurylidene)amino]hydantoins. A new class of muscle relaxants. J. Med. Chem., 1967, 10(5), 807-810.
[http://dx.doi.org/10.1021/jm00317a011] [PMID: 6048486]
[18]
Sabounchei, S.J.; Shahriary, P.; Salehzadeh, S.; Gholiee, Y.; Nematollahi, D.; Chehregani, A.; Amani, A.; Afsartala, Z. Pd(II) and Pd(IV) complexes with 5-methyl-5-(4-pyridyl)hydantoin: synthesis, physicochemical, theoretical, and pharmacological investigation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 1019-1031.
[http://dx.doi.org/10.1016/j.saa.2014.08.002] [PMID: 25171052]
[19]
Khanfar, M.A.; Asal, B.A.; Mudit, M.; Kaddoumi, A.; El Sayed, K.A. The marine natural-derived inhibitors of glycogen synthase kinase-3beta phenylmethylene hydantoins: In vitro and in vivo activities and pharmacophore modeling. Bioorg. Med. Chem., 2009, 17(16), 6032-6039.
[http://dx.doi.org/10.1016/j.bmc.2009.06.054] [PMID: 19616957]
[20]
Mudit, M.; Khanfar, M.; Muralidharan, A.; Thomas, S.; Shah, G.V.; van Soest, R.W.M.; El Sayed, K.A. Discovery, design, and synthesis of anti-metastatic lead phenylmethylene hydantoins inspired by marine natural products. Bioorg. Med. Chem., 2009, 17(4), 1731-1738.
[http://dx.doi.org/10.1016/j.bmc.2008.12.053] [PMID: 19195897]
[21]
Schneider, N.; Hauer, B.; Ditrich, K.; O’Neil, M.; Turner, N. Preparation of beta-amino acids, US Patent 9096841 B2, 2015.
[22]
Bucherer, H.T.; Lieb, V.A. Syntheses of hydantoins. II. Formation of substituted hydantoins from aldehydes and ketones. J. Prakt. Chem., 1934, 141, 5-43.
[http://dx.doi.org/10.1002/prac.19341410102]
[23]
Biltz, H. Constitution of the products of the interaction of substituted carbamides on benzyl and certain new methods for the preparation of 5,5-diphenylhydantoin. Ber. Dtsch. Chem. Ges., 1908, 41, 1379-1393.
[http://dx.doi.org/10.1002/cber.190804101255]
[24]
Teng, X.; Degterev, A.; Jagtap, P.; Xing, X.; Choi, S.; Denu, R.; Yuan, J.; Cuny, G.D. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(22), 5039-5044.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.077]
[25]
Poupaert, J.H.; De Keyser, J.L.; Vandervorst, D.; Dumont, P. Phase-transfer catalysis by poly (ethyleneglycol) 600 in the Biltz synthesis of phenytoin. Bull. Soc. Chim. Belg., 1984, 93, 493-495.
[http://dx.doi.org/10.1002/bscb.19840930612]
[26]
Alizadeh, A.; Sheikhi, E. One-pot synthesis of functionalized hydantoin derivatives via a four-component reaction between an amine, an arylsulfonyl isocyanate and an alkyl propiolate or dialkyl acetylenedicarboxylate in the presence of triphenylphosphine. Tetrahedron Lett., 2007, 48, 4887-4890.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.061]
[27]
Chen, Y.; Sub, L.; Yang, X. a, Pan, W.; Fang, H. Enantioselective synthesis of 3,5-disubstituted thiohydantoins and hydantoins. Tetrahedron, 2015, 71, 9234-9239.
[http://dx.doi.org/10.1016/j.tet.2015.10.041]
[28]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Washington, 1998.
[29]
[30]
Kappe, C.O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry; 2nd ed., John Wiley & Sons, Inc.: New Jersy,, 2012.
[http://dx.doi.org/10.1002/9783527647828]
[31]
Gong, Y.D.; Sohn, H.Y.; Kurth, M.J. Microwave-mediated intramolecular carbanilide cyclization to hydantoins. Employing barium hydroxide catalysis. J. Org. Chem., 1998, 63, 4854-4856.
[http://dx.doi.org/10.1021/jo980419w]
[32]
Paul, S.; Gupta, R.; Gupta, M.; Loupy, A. Microwave assisted synthesis of 1,5-disubstituted hydantoins and thiohydantoins in solvent-free conditions. Synthesis, 2002, 1, 75-78.
[http://dx.doi.org/10.1055/s-2002-19308]
[33]
Muccioli, G.G.; Poupaert, J.H.; Wouters, J.; Norberg, B.; Poppitz, W.; Scribad, G.K.E.; Lambert, D.M. A rapid and efficient microwave-assisted synthesis of hydantoins and thiohydantoins. Tetrahedron, 2003, 59, 1301-1307.
[http://dx.doi.org/10.1016/S0040-4020(03)00033-4]
[34]
Lamiri, M.; Bougrin, K.; Daou, B.; Soufiaoui, M.; Nicolas, E.; Giralt, E. Microwave-assisted solvent-free regiospecific synthesis of 5-alkylidene and 5-arylidenehydantoins. Synth. Commun., 2006, 36(11), 1575-1584.
[http://dx.doi.org/10.1080/00397910600589007]
[35]
Faghihi, K.; Zamani, K.; Mobinikhaledi, A. Facile synthesis of hydantoin derivatives under microwave irradiation. Turk. J. Chem., 2004, 28, 345-350.
[36]
Rivero, I.A.; Reynoso-Soto, E.A.; Ochoa-Teran, A. Microwave-assisted synthesis of cycloalkanespirohydantoins and piperidinespirohydantoins as precursors of restricted α-amino acids. ARKIVOC, 2011, 2, 260-271.
[37]
Prevet, H.; Flipo, M.; Roussel, P.; Deprez, B.; Willand, N. Microwave-assisted synthesis of functionalized spirohydantoins as 3-D privileged fragments for scouting the chemical space. Tetrahedron Lett., 2016, 57, 2888-2894.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.065]
[38]
Mei-Jung, L.; Chung-Ming, S. Microwave-assisted traceless synthesis of thiohydantoin. Tetrahedron Lett., 2003, 44, 8739-8742.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.156]
[39]
Lee, M.; Sun, C. Traceless synthesis of hydantoin by focused microwave irradiation. Tetrahedron Lett., 2004, 45(2), 437-440.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.123]
[40]
Faghihi, K.; Hagibeygi, M. New polyamides containing azobenzene unites and hydantoin derivatives in main chain: Synthesis and characterization. Eur. Polym. J., 2003, 39, 2307-2314.
[http://dx.doi.org/10.1016/S0014-3057(03)00178-2]
[41]
Faghihi, K.; Zamani, K.; Mirsamie, A.; Sangi, M. Microwave-assisted rapid synthesis of novel optically active poly(amide-imide)s containing hydantoins and thiohydantoins in main chain. Eur. Polym. J., 2003, 39, 247-254.
[http://dx.doi.org/10.1016/S0014-3057(02)00200-8]
[42]
Faghihi, K.; Mirsamie, A. Rapid synthesis of novel optically poly(amide-imide)s derived from N,N'-(pyromellitoyl)-Bis-L-alanine diacid chloride and hydantoin derivatives under microwave irradiation. Chin. J. Polym. Sci., 2005, 23(1), 63-69.
[http://dx.doi.org/10.1142/S0256767905000126]
[43]
Li, J.T.; Liu, X.R.; Sun, M.X. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation. Ultrason. Sonochem., 2010, 17(1), 55-57.
[http://dx.doi.org/10.1016/j.ultsonch.2009.04.010] [PMID: 19467908]
[44]
Sadjadi, S.; Sadjadi, S.; Hekmatshoar, R. Ultrasound-promoted greener synthesis of benzoheterocycle derivatives catalyzed by nanocrystalline copper(II) oxide. Ultrason. Sonochem., 2010, 17(5), 764-767.
[http://dx.doi.org/10.1016/j.ultsonch.2010.01.017] [PMID: 2029926]
[45]
Arani, N.M.; Safari, J. A rapid and efficient ultrasound-assisted synthesis of 5,5-diphenylhydantoins and 5,5-diphenyl-2-thiohydan-toins. Ultrason. Sonochem., 2011, 18(2), 640-643.
[http://dx.doi.org/10.1016/j.ultsonch.2010.09.001] [PMID: 20920873]
[46]
Safari, J.; Javadian, L. Montmorillonite K-10 as a catalyst in the synthesis of 5,5-disubstituted hydantoins under ultrasound irradiation. J. Chem. Sci., 2013, 125(5), 981-987.
[http://dx.doi.org/10.1007/s12039-013-0427-5]
[47]
DeWitt, S.H.; Kiely, J.S.; Stankovic, C.J.; Schroeder, M.C.; Cody, D.M.; Pavia, M.R. “Diversomers”: An approach to nonpeptide, nonoligomeric chemical diversity. Proc. Natl. Acad. Sci. USA, 1993, 90(15), 6909-6913.
[http://dx.doi.org/10.1073/pnas.90.15.6909] [PMID: 8394002]
[48]
Short, K.M.; Ching, B.W.; Mjalli, A.M.M. The synthesis of hydantoin 4-1mides on solid support. Tetrahedron Lett., 1996, 37(42), 7489-7492.
[http://dx.doi.org/10.1016/0040-4039(96)01699-1]
[49]
Scicinski, J.J.; Barker, M.D.; Murray, P.J.; Jarvie, E.M. The solid phase synthesis of a series of tri-substituted hydantoin ligands for the somatostatin SST5 receptor. Bioorg. Med. Chem. Lett., 1998, 8(24), 3609-3614.
[http://dx.doi.org/10.1016/S0960-894X(98)00647-7] [PMID: 9934480]
[50]
Chong, P.Y.; Petillo, P.A. Solid phase hydantoin synthesis: An efficient and direct conversion of Fmoc-protected dipeptides to hydantoins. Tetrahedron Lett., 1999, 40(13), 2493-2496.
[http://dx.doi.org/10.1016/S0040-4039(99)00243-9]
[51]
Lamothe, M.; Lannuzel, M.; Perez, M. Solid-phase preparation of hydantoins through a new cyclization/cleavage step. J. Comb. Chem., 2002, 4(1), 73-78.
[http://dx.doi.org/10.1021/cc0100520] [PMID: 11831884]
[52]
Hanessian, S.; Yang, R.Y. Solution and solid phase synthesis of 5-alkoxyhydantoin libraries with a three-fold functional diversity. Tetrahedron Lett., 1996, 37(33), 5835-5838.
[http://dx.doi.org/10.1016/0040-4039(96)01244-0]
[53]
Colacino, E.; Lamaty, F.; Martinez, J.; Parrot, I. Microwave-assisted solid-phase synthesis of hydantoin derivatives. Tetrahedron Lett., 2007, 48, 317-5320.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.084]
[54]
Dadiboyena, S.; Nefzi, A. Parallel Solid-Phase Synthesis of disubstituted 3-(1H-benzo[d]imidazol-2-yl)imidazolidine-2,4-diones and 3-(1H-benzo[d]imidazol-2-yl)-2-thioxoimidazolidin-4-ones. Tetrahedron Lett., 2011, 52(52), 7030-7033.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.064] [PMID: 22199408]
[55]
Gerona-Navarro, G.; Gonzalez-Muniz, R.; Fernandez-Carvajal, A.; Gonzalez-Ros, J.M.; Ferrer-Montiel, A.; Carreno, C.; Albericio, F.; Royo, M. Solid-phase synthesis of a library of amphipatic hydantoins. Discovery of new hits for TRPV1 blockade. ACS Comb. Sci., 2011, 13(5), 458-465.
[http://dx.doi.org/10.1021/co1000986] [PMID: 21671576]
[56]
Lopez, L.I.; Saenz, A.; Flores Gallegos, A.C.; Ascacio-Valdes, J.; Muniz-Marquez, D.; Rodriguez-Herrera, R. Green solvents. Organic solvents. Properties, applications and health effects; Nova Science Publishers, Inc.: New York, 2017, pp. 1-26.
[57]
Capello, C.; Fischer, U.; Hungerbuhler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9, 927-934.
[http://dx.doi.org/10.1039/b617536h]
[58]
Baccolini, G.; Boga, C.; Camilla Delpivo, C.; Micheletti, G. Facile synthesis of hydantoins and thiohydantoins in aqueous solution. Tetrahedron Lett., 2011, 52, 1713-1717.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.002]
[59]
Espino, M.; Fernandez, M.A.; Gomez, F.J.V. Natural designer solvents for greening analytical chemistry. Trends Analyt. Chem., 2016, 76, 126-136.
[http://dx.doi.org/10.1016/j.trac.2015.11.006]
[60]
Maiti, B.; Chanda, K.; Sun, C.M. Traceless synthesis of hydantoin fused tetrahydro-β-carboline on ionic liquid support in green media. Org. Lett., 2009, 11(21), 4826-4829.
[http://dx.doi.org/10.1021/ol901857h] [PMID: 19807116]
[61]
(a)Kassaee, M.Z.; Masrouri, H.; Movahedi, F. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl. Catal. A Gen., 2011, 395, 28-33.
(b)Forouzani, M. Synthesis, characterization and catalytic properties of magnetic nano supported molybdat sulfuric acid (Fe3O4@MSA NPs) in base catalyzed synthesized of 2-substituted aryl(amino) and (indolyl) kojic acid derivatives under solvent-free conditions. World J. Org. Chem., 2016, 4(1), 1-7.
[http://dx.doi.org/10.12691/wjoc-4-1-1]
[62]
Safari, J.; Javadian, L. A one-pot synthesis of 5,5-disubstituted hydantoin derivatives using magnetic Fe3O4 nanoparticles as a reusable heterogeneous catalyst. C. R. Chim., 2013, 16, 1165-1171.
[http://dx.doi.org/10.1016/j.crci.2013.06.005]
[63]
Constable, D.J.C.; Curzons, A.D.; Freitas dos Santos, L.M.; Geen, G.R.; Hannah, R.E.; Hayler, J.D.; Kitteringham, J.; McGuire, M.A.; Richardson, J.E.; Smith, P.; Webbd, R.L.; Yud, M. Green chemistry measures for process research and development. Green Chem., 2001, 3, 7-9.
[http://dx.doi.org/10.1039/b007875l]
[64]
Van Aken, K.; Strekowski, L.; Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem., 2006, 2(1), 3.
[http://dx.doi.org/10.1186/1860-5397-2-3] [PMID: 16542013]
[65]
Morales-Galicia, M.L.; Martinez, J.O.; Reyes-Sanchez, L.B.; Hernandez, O.M.; Arroyo Razo, G.A.; Adolfo Obaya-Valdivia, A.; Miranda-Ruvalcaba, R. Que tan verde es un experimento? Educ. Quim, 2011, 22(3), 240-248.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy