Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Diagnostic Value of HLA Typing in Pathogenesis of Cardiomyopathy

Author(s): Habib Haybar, Saeid Shahrabi, Mohammad Shahjahani and Hadi Rezaeeyan*

Volume 19, Issue 2, 2019

Page: [132 - 138] Pages: 7

DOI: 10.2174/1871529X19666181205151340

Price: $65

Abstract

Development of cardiomyopathy (CM) is dependent upon several factors. However, the reaction of the immune response against myocardial tissue due to microbial and viral infections plays an important role in this disease. Therefore, the purpose of this study is to investigate the relationship between HLAs and their pathogenic mechanisms in the incidence of CM. Relevant literature was identified by a PubMed search (1989-2017) of English-language papers using the terms “Cardiomyopathy”, “Human leukocyte antigen or HLA”, “immune response”, and “polymorphism”. If CM patients are afflicted with viral and microbial infections, HLA class II molecules, which are not expressed on myocardial tissue in normal conditions, are mainly expressed on it. As a result, these HLAs present self- antigens and provoke autoimmune responses against myocardial tissue. On the other hand, the occurrence of polymorphism as well as disrupted expression of miRNAs can affect HLA expression, leading to hypertrophy and fibrosis of cardiac muscle. Finally, it is inferred that the expression evaluation of HLAs as well as identification of polymorphisms in their coding genes can be effective diagnostic factors in the detection of people susceptible to CM.

Keywords: Human leukocyte antigen, cardiomyopathy, immune response, polymorphism, cardiac muscle diseases, myocardial tissue.

Graphical Abstract

[1]
Jefferies, J.L.; Towbin, J.A. Dilated cardiomyopathy. Lancet, 2010, 375(9716), 752-762.
[2]
Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W.J.; Monserrat, L.; Pankuweit, S.; Rapezzi, C.; Seferovic, P.; Tavazzi, L.; Keren, A. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J., 2007, 29(2), 270-276.
[3]
Maron, B.J.; Towbin, J.A.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.J.; Seidman, C.E.; Young, J.B. American Heart Association Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. ontemporary definitions and classification of the cardiomyopathies: an American heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation, 2006, 113(14), 1807-1816.
[4]
Jahanban‐Esfahlan, R.; de la Guardia, M.; Ahmadi, D.; Yousefi, B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J. Cell. Physiol., 2018, 233(3), 2019-2031.
[5]
Carlquist, J.F.; Menlove, R.L.; Murray, M.B.; O’connell, J.B.; Anderson, J.L. HLA class II (DR and DQ) antigen associations in idiopathic dilated cardiomyopathy. Validation study and meta-analysis of published HLA association studies. Circulation, 1991, 83(2), 515-522.
[6]
Liu, W.; Li, W.; Sun, N. Association of HLA-DQ with idiopathic dilated cardiomyopathy in a northern Chinese Han population. Cell. Mol. Immunol., 2004, 1, 311-314.
[7]
McCluskey, J.; Peh, C.A. The human leucocyte antigens and clinical medicine: An overview. Rev. Immunogenet., 1999, 1(1), 3-20.
[8]
Bodis, G.; Toth, V.; Schwarting, A. Role of human leukocyte antigens (HLA) in autoimmune diseases. HLA Typing; Springer, 2018, pp. 11-29.
[9]
Praest, P.; Liaci, A.M.; Förster, F.; Wiertz, E.J. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol. Immunol, 2018. pii: S0161-5890(18)30099-3.
[10]
McShan, A.C.; Natarajan, K.; Kumirov, V.K.; Flores-Solis, D.; Jiang, J.; Badstübner, M.; Toor, J.S.; Bagshaw, C.R.; Kovrigin, E.L.; Margulies, D.H.; Sgourakis, N.G. Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. Nat. Chem. Biol., 2018, 14(8), 811.
[11]
Luo, W.; Wang, X.; Qu, H.; Qin, G.; Zhang, H.; Lin, Q. Genomic structure and expression pattern of MHC IIα and IIβ genes reveal an unusual immune trait in lined seahorse Hippocampus erectus. Fish Shellfish Immunol., 2016, 58, 521-529.
[12]
Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major histocompatibility complex (MHC) class I and MHC class II proteins: Conformational plasticity in antigen presentation. Front. Immunol., 2017, 8, 292.
[13]
Hunt, D.F.; Henderson, R.A.; Shabanowitz, J.; Sakaguchi, K.; Michel, H.; Sevilir, N.; Cox, A.L.; Appella, E.; Engelhard, V.H. Characterization of peptides bound to the class I MHC molecule HLA-A2. 1 by mass spectrometry. Science, 1992, 255(5049), 1261-1263.
[14]
Shahrabi, S.; Hadad, E.; Asnafi, A.; Behzad, M.; Ehsanpour, A.; Saki, N. Human leukocyte antigens in cancer metastasis: Prognostic approach and therapeutic susceptibility. Histol. Histopathol., 2019, 34(2), 111-124.
[15]
Rock, K.L.; Reits, E.; Neefjes, J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol., 2016, 37(11), 724-737.
[16]
Shahrabi, S.; Behzad, M.M.; Jaseb, K.; Saki, N. Thrombocytopenia in leukemia: Pathogenesis and prognosis. Histol. Histopathol., 2018, 11976.
[17]
Nguyen, H.; James, E.A. Immune recognition of citrullinated epitopes. Immunology, 2016, 149(2), 131-138.
[18]
Rose, N.R. Viral damage or ‘molecular mimicry’-placing the blame in myocarditis. Nat. Med., 2000, 6(6), 631.
[19]
Hammond, E.H.; Menlove, R.L.; Yowell, R.L.; Anderson, J.L. Vascular HLA-DR expression correlates with pathologic changes suggestive of ischemia in idiopathic dilated cardiomyopathy. Clin. Immunol. Immunopathol., 1993, 68(2), 197-203.
[20]
Jang, Y.; Lincoff, A.M.; Plow, E.F.; Topol, E.J. Cell adhesion molecules in coronary artery disease. J. Am. Coll. Cardiol., 1994, 24(7), 1591-1601.
[21]
Wojnicz, R.; Nowalany-Kozielska, E.; Wodniecki, J.; Szczurek-Katański, K.; Nożyński, J.; Zembala, M.; Rozek, M.M. Immunohistological diagnosis of myocarditis: Potential role of sarcolemmal induction of the MHC and ICAM-1 in the detection of autoimmune mediated myocyte injury. Eur. Heart J., 1998, 19(10), 1564-1572.
[22]
Jitschin, R.; Braun, M.; Büttner, M.; Dettmer-Wilde, K.; Bricks, J.; Berger, J.; Eckart, M.J.; Krause, S.W.; Oefner, P.J.; Le Blanc, K.; Mackensen, A.; Mougiakakos, D. CLL-cells induce IDOhi CD14+ HLA-DRlo myeloid derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood, 2014, 124(5), 750-760.
[23]
Zhang, W-C.; Wang, Y-G.; Wei, W-H.; Xiong, X.; Liu, K-L.; Wang, D-H.; Hu, X.F.; Peng, Y.D.; Wu, J.J.; Cheng, L.X. Activated circulating myeloid-derived suppressor cells in patients with dilated cardiomyopathy. Cell. Physiol. Biochem., 2016, 38(6), 2438-2451.
[24]
Chen, M.; Zhao, J.; Ali, I.; Marry, S.; Augustine, J.; Bhuckory, M.; Lynch, A.; Kissenpfennig, A.; Xu, H. SOCS3 deficiency in myeloid cells promotes retinal degeneration and angiogenesis through arginase-1 up-regulation in experimental autoimmune uveoretinitis. Am. J. Pathol., 2018.
[25]
Fan, Q.; Gu, D.; Liu, H.; Yang, L.; Zhang, X.; Yoder, M.C.; Kaplan, M.H.; Xie, J. Defective TGF-β signaling in bone marrow–derived cells prevents hedgehog-induced skin tumors. Cancer Res., 2014, 74(2), 471-483.
[26]
Yasukawa, H.; Yajima, T.; Duplain, H.; Iwatate, M.; Kido, M.; Hoshijima, M.; Weitzman, M.D.; Nakamura, T.; Woodard, S.; Xiong, D.; Yoshimura, A.; Chien, K.R.; Knowlton, K.U. The suppressor of cytokine signaling–1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J. Clin. Invest., 2003, 111(4), 469-478.
[27]
Taylor, P.M.; Rose, M.L.; Yacoub, M.H.; Pigott, R. Induction of vascular adhesion molecules during rejection of human cardiac allografts. Transplantation, 1992, 54(3), 451-457.
[28]
Seko, Y.; Sato, O.; Takagi, A.; Tada, Y.; Matsuo, H.; Yagita, H.; Okumura, K.; Yazaki, Y. Restricted usage of T-cell receptor Vα-Vβ genes in infiltrating cells in aortic tissue of patients with Takayasu’s arteritis. Circulation, 1996, 93(10), 1788-1790.
[29]
Chen, D.; Liu, J.; Rui, B.; Gao, M.; Zhao, N.; Sun, S.; Bi, A.; Yang, T.; Guo, Y.; Yin, Z.; Luo, L. GSTpi protects against angiotensin II-induced proliferation and migration of vascular smooth muscle cells by preventing signal transducer and activator of transcription 3 activation. Biochimica et Biophysica Acta (bba)-. Molecular Cell Res, 2014, 1843(2), 454-463.
[30]
Wojciechowska, C.; Wodniecki, J.; Wojnicz, R.; Romuk, E.; Jacheć, W.; Tomasik, A.; Skrzep-Poloczek, B.; Spinczyk, B.; Nowalany-Kozielska, E. Neopterin and beta-2 microglobulin relations to immunity and inflammatory status in nonischemic dilated cardiomyopathy patients. Mediators Inflamm., 2014, 2014, 585067.
[31]
Zhao, Y.; Wang, C.; Wang, C.; Hong, X.; Miao, J.; Liao, Y.; Zhou, L.; Liu, Y. An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Sci. Rep., 2018, 8(1), 8996.
[32]
Gitau, S.C.; Li, X.; Zhao, D.; Guo, Z.; Liang, H.; Qian, M.; Lv, L.; Li, T.; Xu, B.; Wang, Z.; Zhang, Y.; Xu, C.; Lu, Y.; Du, Z.; Shan, H.; Yang, B. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling. Front. Med., 2015, 9(4), 444-456.
[33]
Tian, H.; Yu, D.; Hu, Y.; Zhang, P.; Yang, Y.; Hu, Q.; Li, M. Angiotensin II upregulates cyclophilin A by enhancing ROS production in rat cardiomyocytes. Mol. Med. Rep., 2018, 18(5), 4349-4355.
[34]
Lou, J.; Han, D.; Yu, H.; Yu, G.; Jin, M.; Kim, S. Cytoprotective effect of taurine against hydrogen peroxide-induced oxidative stress in UMR-106 cells through the Wnt/β-catenin signaling pathway. Biomol. Ther. (Seoul), 2018, 26(6), 584-590.
[35]
Pankuweit, S.; Ruppert, V.; Jónsdóttir, Þ.; Müller, H-H.; Meyer, T. Failure GCNoH. The HLA class II allele DQB1* 0309 is associated with dilated cardiomyopathy. Gene, 2013, 531(2), 180-183.
[36]
Borrás, S.G.; Racca, L.; Cotorruelo, C.; Biondi, C.; Beloscar, J.; Racca, A. Distribution of HLA-DRB1 alleles in Argentinean patients with Chagas’ disease cardiomyopathy. Immunol. Invest., 2009, 38(3-4), 268-275.
[37]
Naruse, T.; Matsuzawa, Y.; Ota, M.; Katsuyama, Y.; Matsumori, A.; Hara, M.; Nagai, S.; Morimoto, S.; Sasayama, S.; Inoko, H. HLA‐DQB1* 0601 is primarily associated with the susceptibility to cardiac sarcoidosis. Tissue Antigens, 2000, 56(1), 52-57.
[38]
Shichi, D.; Matsumori, A.; Naruse, T.; Inoko, H.; Kimura, A. HLA‐DPβ chain may confer the susceptibility to hepatitis C virus‐associated hypertrophic cardiomyopathy. Int. J. Immunogenet., 2008, 35(1), 37-43.
[39]
Shankarkumar, U.; Pitchappan, R.; Pethaperumal, S. Human leukocyte antigens in hypertrophic cardiomyopathy patients in South India. Asian Cardiovasc. Thorac. Ann., 2004, 12(2), 107-110.
[40]
Limas, C.J.; Limas, C. HLA antigens in idiopathic dilated cardiomyopathy. Heart, 1989, 62(5), 379-383.
[41]
Horton, R.; Wilming, L.; Rand, V.; Lovering, R.C.; Bruford, E.A.; Khodiyar, V.K.; Lush, M.J.; Povey, S.; Talbot, C.C., Jr; Wright, M.W.; Wain, H.M.; Trowsdale, J.; Ziegier, A.; Beck, S. Gene map of the extended human MHC. Nat. Rev. Genet., 2004, 5(12), 889.
[42]
Voorter, C.; Gerritsen, K.; Groeneweg, M.; Wieten, L.; Tilanus, M. The role of gene polymorphism in HLA class I splicing. Int. J. Immunogenet., 2016, 43(2), 65-78.
[43]
Liu, W.; Li, W-m.; Yang, S-S.; Gao, C.; Li, S-J.; Li, Y.; Kong, Y.H.; Gan, R.T. Association of HLA class II DRB1, DPA1 and DPB1 polymorphism with genetic susceptibility to idiopathic dilated cardiomyopathy in Chinese Han nationality. Autoimmunity, 2006, 39(6), 461-467.
[44]
Portig, I.; Sandmoeller, A.; Kreilinger, S.; Maisch, B. HLA-DQB1* polymorphism and associations with dilated cardiomyopathy, inflammatory dilated cardiomyopathy and myocarditis. Autoimmunity, 2009, 42(1), 33-40.
[45]
Li, X.; Luo, R.; Jiang, R.; Chen, R.; Hua, W. Human leukocyte antigen-DQ beta 1 chain (DQB1) gene polymorphisms are associated with dilated cardiomyopathy: A systematic review and meta-analysis. Heart & Lung: J. Acute Crit. Care, 2012, 41(4), 360-367.
[46]
Lin, A.; Yan, W.; Xu, H.; Tang, L.; Chen, X.; Zhu, M.; Zhou, M.Y. 14 bp deletion polymorphism in the HLA‐G gene is a risk factor for idiopathic dilated cardiomyopathy in a Chinese Han population. Tissue Antigens, 2007, 70(5), 427-431.
[47]
Hiroi, S.; Harada, H.; Nishi, H.; Satoh, M.; Nagai, R.; Kimura, A. Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem. Biophys. Res. Commun., 1999, 261(2), 332-339.
[48]
Jin, B.; Ni, H.; Geshang, Q.; Li, Y.; Shen, W.; Shi, H. HLA-DR4 antigen and idiopathic dilated cardiomyopathy susceptibility: a meta‐analysis involving 11,761 subjects. Tissue Antigens, 2011, 77(2), 107-111.
[49]
Jin, B.; Wu, B.; Wen, Z.; Shi, H.; Zhu, J. HLA-DR3 antigen in the resistance to idiopathic dilated cardiomyopathy. Braz. J. Med. Biol. Res., 2016, 49(4), e5131.
[50]
Limas, C.; Limas, C.J.; Boudoulas, H.; Bair, R.; Graber, H.; Sparks, L.; Wooley, C.F. Anti-β-receptor antibodies in familial cardiomyopathy: Correlation with HLA-DR and HLA-DQ gene polymorphisms. Am. Heart J., 1994, 127(2), 382-386.
[51]
Vickers, K.C.; Rye, K-A.; Tabet, F. MicroRNAs in the onset and development of cardiovascular disease. Clin. Sci., 2014, 126(3), 183-194.
[52]
Jiang, X.; Tsitsiou, E.; Herrick, S.E.; Lindsay, M.A. MicroRNAs and the regulation of fibrosis. FEBS J., 2010, 277(9), 2015-2021.
[53]
Vettori, S.; Gay, S.; Distler, O. Suppl 1: Role of MicroRNAs in Fibrosis. Open Rheumatol. J., 2012, 6, 130.
[54]
Lu, L-F.; Boldin, M.P.; Chaudhry, A.; Lin, L-L.; Taganov, K.D.; Hanada, T.; Yoshimura, A.; Baltimore, D.; Rudensky, A.Y. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell, 2010, 142(6), 914-929.
[55]
Lochhead, R.B.; Ma, Y.; Zachary, J.F.; Baltimore, D.; Zhao, J.L.; Weis, J.H.; O’Connell, R.M.; Weis, J.J. MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog., 2014, 10(6), e1004212.
[56]
Stickel, N.; Hanke, K.; Marschner, D.; Prinz, G.; Köhler, M.; Melchinger, W.; Pfeifer, D.; Schmitt-Graeff, A.; Brummer, T.; Heine, A.; Brossart, P.; Wolf, D.; von Bubnoff, N.; Finke, J.; Duyster, J.; Ferrara, J.; Salzer, U.; Zeiser, R. MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia, 2017, 31(12), 2732.
[57]
Wang, X.; Ha, T.; Liu, L.; Zou, J.; Zhang, X.; Kalbfleisch, J.; Gao, X.; Williams, D.; Li, C. Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc. Res., 2012, 97(3), 432-442.
[58]
Zhao, R.; Dong, R.; Yang, Y.; Wang, Y.; Ma, J.; Wang, J.; Li, H.; Zheng, S. MicroRNA-155 modulates bile duct inflammation by targeting the suppressor of cytokine signaling 1 in biliary atresia. Pediatr. Res., 2017, 82(6), 1007.
[59]
Corsten, M.F.; Papageorgiou, A.; Verhesen, W.; Carai, P.; Lindow, M.; Obad, S.; Summer, G.; Coort, S.L.; Hazebroek, M.; van Leeuwen, R.; Gijbels, M.J.; Wijnands, E.; Biessen, E.A.; De Winther, M.P.; Stassen, F.R.; Carmeliet, P.; Kauppinen, S.; Schroen, B.; Heymans, S. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ. Res., 2012, 112, 267443.
[60]
Jiang, S.; Li, X.; Wang, X.; Ban, Q.; Hui, W.; Jia, B. MicroRNA profiling of the intestinal tissue of Kazakh sheep after experimental Echinococcus granulosus infection, using a high-throughput approach. Parasite, 2016, 23, 23.
[61]
Fang, L.; Ellims, A.H.; Moore, X.; White, D.A.; Taylor, A.J.; Chin-Dusting, J.; Dart, A.M. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J. Transl. Med., 2015, 13(1), 314.
[62]
Mari, L.; Hoefnagel, S.J.; Zito, D.; van de Meent, M.; van Endert, P.; Calpe, S.; Sancho Serra, M.D.C.; Heemskerk, M.H.M.; van Laarhoven, H.W.M.; Hulshof, M.C.C.M.; Gisbertz, S.S.; Medema, J.P.; van Berge Henegouwen, M.I.; Meijer, S.L.; Bergman, J.J.G.H.M.; Milano, F.; Krishnadath, K.K. microRNA 125a regulates MHC-I expression on esophageal adenocarcinoma cells, associated with suppression of anti-tumor immune response and poor outcomes of patients. Gastroenterology, 2018, 155(3), 784-798.
[63]
Wang, X.; Ha, T.; Zou, J.; Ren, D.; Liu, L.; Zhang, X.; Kalbfleisch, J.; Gao, X.; Williams, D.; Li, C. MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-mediated apoptotic signalling and TRAF6. Cardiovasc. Res., 2014, 102(3), 385-395.
[64]
Wei, L.; Kaul, V.; Qu, X.; Xiong, X.; Lau, A.H.; Iwai, N.; Martinez, O.M.; Krams, S.M. Absence of MIR-182 augments cardiac allograft survival. Transplantation, 2017, 101(3), 524-530.
[65]
Li, N.; Hwangbo, C.; Jaba, I.M.; Zhang, J.; Papangeli, I.; Han, J.; Mikush, N.; Larrivée, B.; Eichmann, A.; Chun, H.J.; Young, L.H.; Tirziu, D. miR-182 modulates myocardial hypertrophic response induced by angiogenesis in heart. Sci. Rep., 2016, 6, 21228.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy