[1]
Jefferies, J.L.; Towbin, J.A. Dilated cardiomyopathy. Lancet, 2010, 375(9716), 752-762.
[2]
Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W.J.; Monserrat, L.; Pankuweit, S.; Rapezzi, C.; Seferovic, P.; Tavazzi, L.; Keren, A. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J., 2007, 29(2), 270-276.
[3]
Maron, B.J.; Towbin, J.A.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.J.; Seidman, C.E.; Young, J.B. American Heart Association Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. ontemporary definitions and classification of the cardiomyopathies: an American heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation, 2006, 113(14), 1807-1816.
[4]
Jahanban‐Esfahlan, R.; de la Guardia, M.; Ahmadi, D.; Yousefi, B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J. Cell. Physiol., 2018, 233(3), 2019-2031.
[5]
Carlquist, J.F.; Menlove, R.L.; Murray, M.B.; O’connell, J.B.; Anderson, J.L. HLA class II (DR and DQ) antigen associations in idiopathic dilated cardiomyopathy. Validation study and meta-analysis of published HLA association studies. Circulation, 1991, 83(2), 515-522.
[6]
Liu, W.; Li, W.; Sun, N. Association of HLA-DQ with idiopathic dilated cardiomyopathy in a northern Chinese Han population. Cell. Mol. Immunol., 2004, 1, 311-314.
[7]
McCluskey, J.; Peh, C.A. The human leucocyte antigens and clinical medicine: An overview. Rev. Immunogenet., 1999, 1(1), 3-20.
[8]
Bodis, G.; Toth, V.; Schwarting, A. Role of human leukocyte antigens (HLA) in autoimmune diseases. HLA Typing; Springer, 2018, pp. 11-29.
[9]
Praest, P.; Liaci, A.M.; Förster, F.; Wiertz, E.J. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol. Immunol, 2018. pii: S0161-5890(18)30099-3.
[10]
McShan, A.C.; Natarajan, K.; Kumirov, V.K.; Flores-Solis, D.; Jiang, J.; Badstübner, M.; Toor, J.S.; Bagshaw, C.R.; Kovrigin, E.L.; Margulies, D.H.; Sgourakis, N.G. Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. Nat. Chem. Biol., 2018, 14(8), 811.
[11]
Luo, W.; Wang, X.; Qu, H.; Qin, G.; Zhang, H.; Lin, Q. Genomic structure and expression pattern of MHC IIα and IIβ genes reveal an unusual immune trait in lined seahorse Hippocampus erectus. Fish Shellfish Immunol., 2016, 58, 521-529.
[12]
Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major histocompatibility complex (MHC) class I and MHC class II proteins: Conformational plasticity in antigen presentation. Front. Immunol., 2017, 8, 292.
[13]
Hunt, D.F.; Henderson, R.A.; Shabanowitz, J.; Sakaguchi, K.; Michel, H.; Sevilir, N.; Cox, A.L.; Appella, E.; Engelhard, V.H. Characterization of peptides bound to the class I MHC molecule HLA-A2. 1 by mass spectrometry. Science, 1992, 255(5049), 1261-1263.
[14]
Shahrabi, S.; Hadad, E.; Asnafi, A.; Behzad, M.; Ehsanpour, A.; Saki, N. Human leukocyte antigens in cancer metastasis: Prognostic approach and therapeutic susceptibility. Histol. Histopathol., 2019, 34(2), 111-124.
[15]
Rock, K.L.; Reits, E.; Neefjes, J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol., 2016, 37(11), 724-737.
[16]
Shahrabi, S.; Behzad, M.M.; Jaseb, K.; Saki, N. Thrombocytopenia in leukemia: Pathogenesis and prognosis. Histol. Histopathol., 2018, 11976.
[17]
Nguyen, H.; James, E.A. Immune recognition of citrullinated epitopes. Immunology, 2016, 149(2), 131-138.
[18]
Rose, N.R. Viral damage or ‘molecular mimicry’-placing the blame in myocarditis. Nat. Med., 2000, 6(6), 631.
[19]
Hammond, E.H.; Menlove, R.L.; Yowell, R.L.; Anderson, J.L. Vascular HLA-DR expression correlates with pathologic changes suggestive of ischemia in idiopathic dilated cardiomyopathy. Clin. Immunol. Immunopathol., 1993, 68(2), 197-203.
[20]
Jang, Y.; Lincoff, A.M.; Plow, E.F.; Topol, E.J. Cell adhesion molecules in coronary artery disease. J. Am. Coll. Cardiol., 1994, 24(7), 1591-1601.
[21]
Wojnicz, R.; Nowalany-Kozielska, E.; Wodniecki, J.; Szczurek-Katański, K.; Nożyński, J.; Zembala, M.; Rozek, M.M. Immunohistological diagnosis of myocarditis: Potential role of sarcolemmal induction of the MHC and ICAM-1 in the detection of autoimmune mediated myocyte injury. Eur. Heart J., 1998, 19(10), 1564-1572.
[22]
Jitschin, R.; Braun, M.; Büttner, M.; Dettmer-Wilde, K.; Bricks, J.; Berger, J.; Eckart, M.J.; Krause, S.W.; Oefner, P.J.; Le Blanc, K.; Mackensen, A.; Mougiakakos, D. CLL-cells induce IDOhi CD14+ HLA-DRlo myeloid derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood, 2014, 124(5), 750-760.
[23]
Zhang, W-C.; Wang, Y-G.; Wei, W-H.; Xiong, X.; Liu, K-L.; Wang, D-H.; Hu, X.F.; Peng, Y.D.; Wu, J.J.; Cheng, L.X. Activated circulating myeloid-derived suppressor cells in patients with dilated cardiomyopathy. Cell. Physiol. Biochem., 2016, 38(6), 2438-2451.
[24]
Chen, M.; Zhao, J.; Ali, I.; Marry, S.; Augustine, J.; Bhuckory, M.; Lynch, A.; Kissenpfennig, A.; Xu, H. SOCS3 deficiency in myeloid cells promotes retinal degeneration and angiogenesis through arginase-1 up-regulation in experimental autoimmune uveoretinitis. Am. J. Pathol., 2018.
[25]
Fan, Q.; Gu, D.; Liu, H.; Yang, L.; Zhang, X.; Yoder, M.C.; Kaplan, M.H.; Xie, J. Defective TGF-β signaling in bone marrow–derived cells prevents hedgehog-induced skin tumors. Cancer Res., 2014, 74(2), 471-483.
[26]
Yasukawa, H.; Yajima, T.; Duplain, H.; Iwatate, M.; Kido, M.; Hoshijima, M.; Weitzman, M.D.; Nakamura, T.; Woodard, S.; Xiong, D.; Yoshimura, A.; Chien, K.R.; Knowlton, K.U. The suppressor of cytokine signaling–1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J. Clin. Invest., 2003, 111(4), 469-478.
[27]
Taylor, P.M.; Rose, M.L.; Yacoub, M.H.; Pigott, R. Induction of vascular adhesion molecules during rejection of human cardiac allografts. Transplantation, 1992, 54(3), 451-457.
[28]
Seko, Y.; Sato, O.; Takagi, A.; Tada, Y.; Matsuo, H.; Yagita, H.; Okumura, K.; Yazaki, Y. Restricted usage of T-cell receptor Vα-Vβ genes in infiltrating cells in aortic tissue of patients with Takayasu’s arteritis. Circulation, 1996, 93(10), 1788-1790.
[29]
Chen, D.; Liu, J.; Rui, B.; Gao, M.; Zhao, N.; Sun, S.; Bi, A.; Yang, T.; Guo, Y.; Yin, Z.; Luo, L. GSTpi protects against angiotensin II-induced proliferation and migration of vascular smooth muscle cells by preventing signal transducer and activator of transcription 3 activation. Biochimica et Biophysica Acta (bba)-. Molecular Cell Res, 2014, 1843(2), 454-463.
[30]
Wojciechowska, C.; Wodniecki, J.; Wojnicz, R.; Romuk, E.; Jacheć, W.; Tomasik, A.; Skrzep-Poloczek, B.; Spinczyk, B.; Nowalany-Kozielska, E. Neopterin and beta-2 microglobulin relations to immunity and inflammatory status in nonischemic dilated cardiomyopathy patients. Mediators Inflamm., 2014, 2014, 585067.
[31]
Zhao, Y.; Wang, C.; Wang, C.; Hong, X.; Miao, J.; Liao, Y.; Zhou, L.; Liu, Y. An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Sci. Rep., 2018, 8(1), 8996.
[32]
Gitau, S.C.; Li, X.; Zhao, D.; Guo, Z.; Liang, H.; Qian, M.; Lv, L.; Li, T.; Xu, B.; Wang, Z.; Zhang, Y.; Xu, C.; Lu, Y.; Du, Z.; Shan, H.; Yang, B. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling. Front. Med., 2015, 9(4), 444-456.
[33]
Tian, H.; Yu, D.; Hu, Y.; Zhang, P.; Yang, Y.; Hu, Q.; Li, M. Angiotensin II upregulates cyclophilin A by enhancing ROS production in rat cardiomyocytes. Mol. Med. Rep., 2018, 18(5), 4349-4355.
[34]
Lou, J.; Han, D.; Yu, H.; Yu, G.; Jin, M.; Kim, S. Cytoprotective effect of taurine against hydrogen peroxide-induced oxidative stress in UMR-106 cells through the Wnt/β-catenin signaling pathway. Biomol. Ther. (Seoul), 2018, 26(6), 584-590.
[35]
Pankuweit, S.; Ruppert, V.; Jónsdóttir, Þ.; Müller, H-H.; Meyer, T. Failure GCNoH. The HLA class II allele DQB1* 0309 is associated with dilated cardiomyopathy. Gene, 2013, 531(2), 180-183.
[36]
Borrás, S.G.; Racca, L.; Cotorruelo, C.; Biondi, C.; Beloscar, J.; Racca, A. Distribution of HLA-DRB1 alleles in Argentinean patients with Chagas’ disease cardiomyopathy. Immunol. Invest., 2009, 38(3-4), 268-275.
[37]
Naruse, T.; Matsuzawa, Y.; Ota, M.; Katsuyama, Y.; Matsumori, A.; Hara, M.; Nagai, S.; Morimoto, S.; Sasayama, S.; Inoko, H. HLA‐DQB1* 0601 is primarily associated with the susceptibility to cardiac sarcoidosis. Tissue Antigens, 2000, 56(1), 52-57.
[38]
Shichi, D.; Matsumori, A.; Naruse, T.; Inoko, H.; Kimura, A. HLA‐DPβ chain may confer the susceptibility to hepatitis C virus‐associated hypertrophic cardiomyopathy. Int. J. Immunogenet., 2008, 35(1), 37-43.
[39]
Shankarkumar, U.; Pitchappan, R.; Pethaperumal, S. Human leukocyte antigens in hypertrophic cardiomyopathy patients in South India. Asian Cardiovasc. Thorac. Ann., 2004, 12(2), 107-110.
[40]
Limas, C.J.; Limas, C. HLA antigens in idiopathic dilated cardiomyopathy. Heart, 1989, 62(5), 379-383.
[41]
Horton, R.; Wilming, L.; Rand, V.; Lovering, R.C.; Bruford, E.A.; Khodiyar, V.K.; Lush, M.J.; Povey, S.; Talbot, C.C., Jr; Wright, M.W.; Wain, H.M.; Trowsdale, J.; Ziegier, A.; Beck, S. Gene map of the extended human MHC. Nat. Rev. Genet., 2004, 5(12), 889.
[42]
Voorter, C.; Gerritsen, K.; Groeneweg, M.; Wieten, L.; Tilanus, M. The role of gene polymorphism in HLA class I splicing. Int. J. Immunogenet., 2016, 43(2), 65-78.
[43]
Liu, W.; Li, W-m.; Yang, S-S.; Gao, C.; Li, S-J.; Li, Y.; Kong, Y.H.; Gan, R.T. Association of HLA class II DRB1, DPA1 and DPB1 polymorphism with genetic susceptibility to idiopathic dilated cardiomyopathy in Chinese Han nationality. Autoimmunity, 2006, 39(6), 461-467.
[44]
Portig, I.; Sandmoeller, A.; Kreilinger, S.; Maisch, B. HLA-DQB1* polymorphism and associations with dilated cardiomyopathy, inflammatory dilated cardiomyopathy and myocarditis. Autoimmunity, 2009, 42(1), 33-40.
[45]
Li, X.; Luo, R.; Jiang, R.; Chen, R.; Hua, W. Human leukocyte antigen-DQ beta 1 chain (DQB1) gene polymorphisms are associated with dilated cardiomyopathy: A systematic review and meta-analysis. Heart & Lung: J. Acute Crit. Care, 2012, 41(4), 360-367.
[46]
Lin, A.; Yan, W.; Xu, H.; Tang, L.; Chen, X.; Zhu, M.; Zhou, M.Y. 14 bp deletion polymorphism in the HLA‐G gene is a risk factor for idiopathic dilated cardiomyopathy in a Chinese Han population. Tissue Antigens, 2007, 70(5), 427-431.
[47]
Hiroi, S.; Harada, H.; Nishi, H.; Satoh, M.; Nagai, R.; Kimura, A. Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem. Biophys. Res. Commun., 1999, 261(2), 332-339.
[48]
Jin, B.; Ni, H.; Geshang, Q.; Li, Y.; Shen, W.; Shi, H. HLA-DR4 antigen and idiopathic dilated cardiomyopathy susceptibility: a meta‐analysis involving 11,761 subjects. Tissue Antigens, 2011, 77(2), 107-111.
[49]
Jin, B.; Wu, B.; Wen, Z.; Shi, H.; Zhu, J. HLA-DR3 antigen in the resistance to idiopathic dilated cardiomyopathy. Braz. J. Med. Biol. Res., 2016, 49(4), e5131.
[50]
Limas, C.; Limas, C.J.; Boudoulas, H.; Bair, R.; Graber, H.; Sparks, L.; Wooley, C.F. Anti-β-receptor antibodies in familial cardiomyopathy: Correlation with HLA-DR and HLA-DQ gene polymorphisms. Am. Heart J., 1994, 127(2), 382-386.
[51]
Vickers, K.C.; Rye, K-A.; Tabet, F. MicroRNAs in the onset and development of cardiovascular disease. Clin. Sci., 2014, 126(3), 183-194.
[52]
Jiang, X.; Tsitsiou, E.; Herrick, S.E.; Lindsay, M.A. MicroRNAs and the regulation of fibrosis. FEBS J., 2010, 277(9), 2015-2021.
[53]
Vettori, S.; Gay, S.; Distler, O. Suppl 1: Role of MicroRNAs in Fibrosis. Open Rheumatol. J., 2012, 6, 130.
[54]
Lu, L-F.; Boldin, M.P.; Chaudhry, A.; Lin, L-L.; Taganov, K.D.; Hanada, T.; Yoshimura, A.; Baltimore, D.; Rudensky, A.Y. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell, 2010, 142(6), 914-929.
[55]
Lochhead, R.B.; Ma, Y.; Zachary, J.F.; Baltimore, D.; Zhao, J.L.; Weis, J.H.; O’Connell, R.M.; Weis, J.J. MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog., 2014, 10(6), e1004212.
[56]
Stickel, N.; Hanke, K.; Marschner, D.; Prinz, G.; Köhler, M.; Melchinger, W.; Pfeifer, D.; Schmitt-Graeff, A.; Brummer, T.; Heine, A.; Brossart, P.; Wolf, D.; von Bubnoff, N.; Finke, J.; Duyster, J.; Ferrara, J.; Salzer, U.; Zeiser, R. MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia, 2017, 31(12), 2732.
[57]
Wang, X.; Ha, T.; Liu, L.; Zou, J.; Zhang, X.; Kalbfleisch, J.; Gao, X.; Williams, D.; Li, C. Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc. Res., 2012, 97(3), 432-442.
[58]
Zhao, R.; Dong, R.; Yang, Y.; Wang, Y.; Ma, J.; Wang, J.; Li, H.; Zheng, S. MicroRNA-155 modulates bile duct inflammation by targeting the suppressor of cytokine signaling 1 in biliary atresia. Pediatr. Res., 2017, 82(6), 1007.
[59]
Corsten, M.F.; Papageorgiou, A.; Verhesen, W.; Carai, P.; Lindow, M.; Obad, S.; Summer, G.; Coort, S.L.; Hazebroek, M.; van Leeuwen, R.; Gijbels, M.J.; Wijnands, E.; Biessen, E.A.; De Winther, M.P.; Stassen, F.R.; Carmeliet, P.; Kauppinen, S.; Schroen, B.; Heymans, S. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ. Res., 2012, 112, 267443.
[60]
Jiang, S.; Li, X.; Wang, X.; Ban, Q.; Hui, W.; Jia, B. MicroRNA profiling of the intestinal tissue of Kazakh sheep after experimental Echinococcus granulosus infection, using a high-throughput approach. Parasite, 2016, 23, 23.
[61]
Fang, L.; Ellims, A.H.; Moore, X.; White, D.A.; Taylor, A.J.; Chin-Dusting, J.; Dart, A.M. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J. Transl. Med., 2015, 13(1), 314.
[62]
Mari, L.; Hoefnagel, S.J.; Zito, D.; van de Meent, M.; van Endert, P.; Calpe, S.; Sancho Serra, M.D.C.; Heemskerk, M.H.M.; van Laarhoven, H.W.M.; Hulshof, M.C.C.M.; Gisbertz, S.S.; Medema, J.P.; van Berge Henegouwen, M.I.; Meijer, S.L.; Bergman, J.J.G.H.M.; Milano, F.; Krishnadath, K.K. microRNA 125a regulates MHC-I expression on esophageal adenocarcinoma cells, associated with suppression of anti-tumor immune response and poor outcomes of patients. Gastroenterology, 2018, 155(3), 784-798.
[63]
Wang, X.; Ha, T.; Zou, J.; Ren, D.; Liu, L.; Zhang, X.; Kalbfleisch, J.; Gao, X.; Williams, D.; Li, C. MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-mediated apoptotic signalling and TRAF6. Cardiovasc. Res., 2014, 102(3), 385-395.
[64]
Wei, L.; Kaul, V.; Qu, X.; Xiong, X.; Lau, A.H.; Iwai, N.; Martinez, O.M.; Krams, S.M. Absence of MIR-182 augments cardiac allograft survival. Transplantation, 2017, 101(3), 524-530.
[65]
Li, N.; Hwangbo, C.; Jaba, I.M.; Zhang, J.; Papangeli, I.; Han, J.; Mikush, N.; Larrivée, B.; Eichmann, A.; Chun, H.J.; Young, L.H.; Tirziu, D. miR-182 modulates myocardial hypertrophic response induced by angiogenesis in heart. Sci. Rep., 2016, 6, 21228.