Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Study of the Fragmentation Pathways of Sulfonamides by High-resolution Mass Spectrometry: Application to their Detection in Plasma by Direct Infusion

Author(s): Maroula G. Kokotou*

Volume 16, Issue 5, 2020

Page: [513 - 519] Pages: 7

DOI: 10.2174/1573412915666181205115350

Price: $65

Abstract

Background: The high resolving and accuracy power of the HRMS instrument enabled us to identify the product ions and to propose detailed fragmentation pathways and diagnostic fragment ions.

Methods: In the present work, the fragmentation pathways of five sulfonamides antibiotics, namely sulfamerazine, sulfathiazole, sulfadiazine, sulfadimethoxine and sulfamethoxazole, by High-Resolution Mass Spectrometry (HRMS) are presented. The HRMS spectra were recorded with a Q-TOF (Time of Flight) spectrometer with Electrospray Ionization (ESI) in both negative and positive mode.

Results: Specific characteristic ions for each one of the sulfonamide antibiotics under positive ESI mode are proposed for the first time. Fragment ions of this particular class of analytes may be used to rapidly identify compounds with common structural features.

Conclusion: The direct infusion of plasma samples, avoiding any prior chromatographic steps, to identify the existence of sulfonamide antibiotics is demonstrated herein.

Keywords: Antibiotics, analysis, fragmentation pathway, high resolution mass spectrometry, plasma, sulfonamides.

Graphical Abstract

[1]
Krauss, M.; Singer, H.; Hollender, J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal. Bioanal. Chem., 2010, 397(3), 943-951.
[http://dx.doi.org/10.1007/s00216-010-3608-9] [PMID: 20232059]
[2]
Niessen, W.M.A. Fragmentation of toxicologically relevant drugs in positive-ion liquid chromatography-tandem mass spectrometry. Mass Spectrom. Rev., 2011, 30(4), 626-663.
[http://dx.doi.org/10.1002/mas.20332] [PMID: 21294151]
[3]
Niessen, W.M.A. Fragmentation of toxicologically relevant drugs in negative-ion liquid chromatography-tandem mass spectrometry. Mass Spectrom. Rev., 2012, 31(6), 626-665.
[http://dx.doi.org/10.1002/mas.20359] [PMID: 22829116]
[4]
Siddiqui, M.R.Z.; AlOthman, A.; Rahman, N. Analytical techniques in pharmaceutical analysis: a review. Arab. J. Chem., 2017, 10(1), S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[5]
AlOthman, Z.A.; Rahman, N.; Siddiqui, M.R. Review on pharmaceutical impurities, stability studies and degradation products. Rev. Adv. Sci. Eng., 2013, 2(2), 155-166.
[http://dx.doi.org/10.1166/rase.2013.1039]
[6]
Rahman, N.; Azmi, S.N.H.; Wu, H.F. The importance of impurity analysis in pharmaceutical products: an integrated approach. Accredit. Qual. Assur., 2006, 11(1-2), 69-74.
[http://dx.doi.org/10.1007/s00769-006-0095-y]
[7]
Niessen, W.M.A. Analysis of antibiotics by liquid chromatography-mass spectrometry. J. Chromatogr. A, 1998, 812(1-2), 53-75.
[http://dx.doi.org/10.1016/S0021-9673(98)00281-7] [PMID: 9691309]
[8]
Niessen, W.M.A. Mass spectrometry of antibiotics.Encyclopedia of mass spectrometry; Nibbering, N.M.M., Ed.; Elsevier Ltd.: Oxford, 2005, Vol. 4, pp. 822-837.
[9]
Wang, Z.; Hop, C.E.C.A.; Kim, M-S.; Huskey, S-E.W.; Baillie, T.A.; Guan, Z. The unanticipated loss of SO2 from sulfonamides in collision-induced dissociation. Rapid Commun. Mass Spectrom., 2003, 17(1), 81-86.
[http://dx.doi.org/10.1002/rcm.877] [PMID: 12478558]
[10]
Hu, N.; Liu, P.; Jiang, K.; Zhou, Y.; Pan, Y. Mechanism study of SO2 elimination from sulfonamides by negative electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom., 2008, 22(17), 2715-2722.
[http://dx.doi.org/10.1002/rcm.3672] [PMID: 18668633]
[11]
Meng, Z.; Shi, Z.; Su, M.; Sun, H. In vitro metabolism analysis of sulfamerazine in mice liver by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Curr. Pharm. Anal., 2018, 14(1), 17-22.
[12]
Tolika, E.P.; Samanidou, V.F.; Papadoyannis, I.N. An overview of chromatographic analysis of sulfonamides in pharmaceutical preparations and biological fluids. Curr. Pharm. Anal., 2010, 6(3), 198-212.
[http://dx.doi.org/10.2174/157341210791936803]
[13]
Tolika, E.P.; Samanidou, V.F.; Papadoyannis, I.N. Development and validation of an HPLC method for the simultaneous determination of ten sulfonamide residues in bovine, porcine and chicken tissues according to 2002/657/EC. Curr. Pharm. Anal., 2012, 8(1), 56-67.
[http://dx.doi.org/10.2174/157341212798995476]
[14]
Yu, W.; Liu, Z.; Gao, S.; Cui, S.; Yang, X.; Qiu, W.; Zhang, A.; Yu, A.; Huan, Y. Determination of sulfonamides in blood using acetonitrile-salt aqueous two-phase extraction coupled with high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. Anal. Methods, 2013, 5(21), 5983-5989.
[http://dx.doi.org/10.1039/c3ay40902c]
[15]
Zhang, Y.; Zhou, W.E.; Li, S.H.; Ren, Z.Q.; Li, W.Q.; Zhou, Y.; Feng, X.S.; Wu, W.J.; Zhang, F. A simple, accurate, time-saving and green method for the determination of 15 sulfonamides and metabolites in serum samples by ultra-high performance supercritical fluid chromatography. J. Chromatogr. A, 2016, 1432, 132-139.
[http://dx.doi.org/10.1016/j.chroma.2015.12.075] [PMID: 26780846]
[16]
Wei, Y.; Kai, L.; Zhongling, L.; Hanqi, Z.; Xiangqun, J. Novelty aqueous two-phase extraction system based on ionic liquid for determination of sulfonamides in blood coupled with high-performance liquid chromatography. Microchem. J., 2018, 136(1), 263-269.
[17]
Hu, S.; Zhao, M.; Xi, Y.; Mao, Q.; Zhou, X.; Chen, D.; Yan, P. Nontargeted screening and determination of sulfonamides: A dispersive micro solid-phase extraction approach to the analysis of milk and honey samples using Liquid Chromatography−High- Resolution Mass Spectrometry. J. Agric. Food Chem., 2017, 65(9), 1984-1991.
[http://dx.doi.org/10.1021/acs.jafc.6b05773] [PMID: 28209053]
[18]
Jansomboon, W.; Boontanon, S.K.; Boontanon, N.; Polprasert, C.; Thi Da, C. Monitoring and determination of sulfonamide antibiotics (sulfamethoxydiazine, sulfamethazine, sulfamethoxazole and sulfadiazine) in imported Pangasius catfish products in Thailand using liquid chromatography coupled with tandem mass spectrometry. Food Chem., 2016, 212(1), 635-640.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.026] [PMID: 27374578]
[19]
Wen, C-H.; Lin, S-L.; Fuh, M-R. Determination of sulfonamides in animal tissues by modified QuEChERS and liquid chromatography tandem mass spectrometry. Talanta, 2017, 164(1), 85-91.
[http://dx.doi.org/10.1016/j.talanta.2016.11.006] [PMID: 28107999]
[20]
Demarque, D.P.; Crotti, A.E.M.; Vessecchi, R.; Lopes, J.L.C.; Lopes, N.P. Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep., 2016, 33(3), 432-455.
[http://dx.doi.org/10.1039/C5NP00073D] [PMID: 26673733]
[21]
Ferrer, I.; Thurman, E.M. Measuring the mass of an electron by LC/TOF-MS: a study of “twin ions”. Anal. Chem., 2005, 77(10), 3394-3400.
[http://dx.doi.org/10.1021/ac0485942] [PMID: 15889935]
[22]
Lin, L.; Yu, Q.; Yan, X.; Hang, W.; Zheng, J.; Xing, J.; Huang, B. Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer. Analyst (Lond.), 2010, 135(11), 2970-2978.
[http://dx.doi.org/10.1039/c0an00265h] [PMID: 20856980]
[23]
González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J.L. Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease. Anal. Bioanal. Chem., 2014, 406(28), 7137-7148.
[http://dx.doi.org/10.1007/s00216-014-8102-3] [PMID: 25230597]
[24]
Rudnicki, K.; Landová, P.; Wrońska, M.; Domagała, S.; Čáslavský, J.; Vávrová, M.; Skrzypek, S. Quantitative determination of the veterinary drug monensin in horse feed samples by square wave voltammetry (SWV) and direct infusion electrospray ionization tandem mass spectrometry (DI-ESI-MS/MS). Microchem. J., 2018, 141(3), 220-228.
[http://dx.doi.org/10.1016/j.microc.2018.05.032]

© 2024 Bentham Science Publishers | Privacy Policy