Review Article

靶向核糖体生物发生关键分子纤维蛋白以避免化学抗性

卷 26, 期 33, 2019

页: [6020 - 6032] 页: 13

弟呕挨: 10.2174/0929867326666181203133332

价格: $65

摘要

背景:癌症患者固有的或获得性的化学抗性一直是癌症治疗中的永久限制。扩大对基本细胞过程的了解为治疗靶向打开了新窗口。核糖体生物发生是一个具有潜力的过程,这是由于其在细胞发育中的基本作用以及其上调对肿瘤发生的贡献。已经研究了核糖体生物发生的抑制成分,并显示出有趣的结果。然而,到目前为止,尚未开发出重要的关键成分甲基转移酶纤维蛋白(FBL),它会影响核糖体的丰度和组成。 方法:在这篇文献综述中,我们描述了癌症核糖体生物发生的相关方面,以强调FBL作为治疗靶标的潜力,以降低抗癌治疗的遗传毒性作用。 结果:值得注意的是,19q13细胞遗传带的扩增,包括编码FBL的基因,与胰腺细胞的细胞生存力和耐药性以及胰腺癌患者生存期缩短的趋势相关。化合物CX-5461已实现了针对核糖体生物发生的靶向作用,更具体而言,与化学疗法(如5-氟尿嘧啶或奥沙利铂)的次级作用相比。已在具有活跃或突变的p53状态的卵巢癌,黑色素瘤和白血病模型中报道了这种Pol I抑制剂的细胞依赖性活性,为逃避p53耐药性提供了一种有希望的机制。 结论:靶向关键的核糖体生物发生成分以降低癌细胞的遗传毒性活性看起来很有希望。因此,我们认为,靶向关键蛋白rRNA甲基转移酶FBL由于在核糖体生物发生中起关键作用,与乳腺癌患者低表达时生存率提高的相关性以及与p53的相关性,显示出巨大的潜力。

关键词: 核糖体生物发生,纤维蛋白(FBL),核糖体RNA,rRNA甲基转移酶,治疗靶标,病毒,癌症,p53,化学持久性。

[1]
Brighenti, E.; Treré, D.; Derenzini, M. Targeted cancer therapy with ribosome biogenesis inhibitors: a real possibility? Oncotarget, 2015, 6(36), 38617-38627.
[http://dx.doi.org/10.18632/oncotarget.5775] [PMID: 26415219]
[2]
Orsolic, I.; Jurada, D.; Pullen, N.; Oren, M.; Eliopoulos, A.G.; Volarevic, S. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin. Cancer Biol., 2016, 37-38, 36-50.
[http://dx.doi.org/10.1016/j.semcancer.2015.12.004] [PMID: 26721423]
[3]
Pelletier, J.; Thomas, G.; Volarević, S. Corrigendum: Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat. Rev. Cancer, 2018, 18(2), 134.
[http://dx.doi.org/10.1038/nrc.2018.3] [PMID: 29368746]
[4]
Belin, S.; Beghin, A.; Solano-Gonzàlez, E.; Bezin, L.; Brunet-Manquat, S.; Textoris, J.; Prats, A.C.; Mertani, H.C.; Dumontet, C.; Diaz, J.J. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One, 2009, 4(9)e7147
[http://dx.doi.org/10.1371/journal.pone.0007147] [PMID: 19779612]
[5]
Burger, K.; Mühl, B.; Rohrmoser, M.; Coordes, B.; Heidemann, M.; Kellner, M.; Gruber-Eber, A.; Heissmeyer, V.; Strässer, K.; Eick, D. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA. J. Biol. Chem., 2013, 288(29), 21173-21183.
[http://dx.doi.org/10.1074/jbc.M113.483719] [PMID: 23744076]
[6]
Helm, M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res., 2006, 34(2), 721-733.
[http://dx.doi.org/10.1093/nar/gkj471] [PMID: 16452298]
[7]
Shubina, M.Y.; Musinova, Y.R.; Sheval, E.V. Nucleolar methyltransferase fibrillarin: evolution of structure and functions. Biochemistry (Mosc.), 2016, 81(9), 941-950.
[http://dx.doi.org/10.1134/S0006297916090030] [PMID: 27682166]
[8]
Sloan, K.E.; Warda, A.S.; Sharma, S.; Entian, K.D.; Lafontaine, D.L.J.; Bohnsack, M.T. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol., 2017, 14(9), 1138-1152.
[http://dx.doi.org/10.1080/15476286.2016.1259781] [PMID: 27911188]
[9]
Nicolas, E.; Parisot, P.; Pinto-Monteiro, C.; de Walque, R.; De Vleeschouwer, C.; Lafontaine, D.L.J. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat. Commun., 2016, 7, 11390.
[http://dx.doi.org/10.1038/ncomms11390] [PMID: 27265389]
[10]
Woods, S.J.; Hannan, K.M.; Pearson, R.B.; Hannan, R.D. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochim. Biophys. Acta, 2015, 1849(7), 821-829.
[http://dx.doi.org/10.1016/j.bbagrm.2014.10.007] [PMID: 25464032]
[11]
Holmberg Olausson, K.; Nistér, M.; Lindström, M.S. p53 -Dependent and -Independent Nucleolar Stress Responses. Cells, 2012, 1(4), 774-798.
[http://dx.doi.org/10.3390/cells1040774] [PMID: 24710530]
[12]
Derenzini, M.; Montanaro, L.; Trerè, D. Ribosome biogenesis and cancer. Acta Histochem., 2017, 119(3), 190-197.
[http://dx.doi.org/10.1016/j.acthis.2017.01.009] [PMID: 28168996]
[13]
van Riggelen, J.; Yetil, A.; Felsher, D.W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer, 2010, 10(4), 301-309.
[http://dx.doi.org/10.1038/nrc2819] [PMID: 20332779]
[14]
Ruggero, D. Translational control in cancer etiology. Cold Spring Harb. Perspect. Biol., 2013, 5(2), 1-27.
[http://dx.doi.org/10.1101/cshperspect.a012336] [PMID: 22767671]
[15]
Marcel, V.; Ghayad, S.E.; Belin, S.; Therizols, G.; Morel, A.P.; Solano-Gonzàlez, E.; Vendrell, J.A.; Hacot, S.; Mertani, H.C.; Albaret, M.A.; Bourdon, J.C.; Jordan, L.; Thompson, A.; Tafer, Y.; Cong, R.; Bouvet, P.; Saurin, J.C.; Catez, F.; Prats, A.C.; Puisieux, A.; Diaz, J.J. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell, 2013, 24(3), 318-330.
[http://dx.doi.org/10.1016/j.ccr.2013.08.013] [PMID: 24029231]
[16]
Deffrasnes, C.; Marsh, G.A.; Foo, C.H.; Rootes, C.L.; Gould, C.M.; Grusovin, J.; Monaghan, P.; Lo, M.K.; Tompkins, S.M.; Adams, T.E.; Lowenthal, J.W.; Simpson, K.J.; Stewart, C.R.; Bean, A.G.; Wang, L.F. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection. PLoS Pathog., 2016, 12(3)e1005478
[http://dx.doi.org/10.1371/journal.ppat.1005478] [PMID: 27010548]
[17]
Rodriguez-Corona, U.; Sobol, M.; Rodriguez-Zapata, L.C.; Hozak, P.; Castano, E. Fibrillarin from archaea to human. Biol. Cell, 2015, 107(6), 159-174.
[http://dx.doi.org/10.1111/boc.201400077] [PMID: 25772805]
[18]
Tessarz, P.; Santos-Rosa, H.; Robson, S.C.; Sylvestersen, K.B.; Nelson, C.J.; Nielsen, M.L.; Kouzarides, T. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature, 2014, 505(7484), 564-568.
[http://dx.doi.org/10.1038/nature12819] [PMID: 24352239]
[19]
Yanagida, M.; Hayano, T.; Yamauchi, Y.; Shinkawa, T.; Natsume, T.; Isobe, T.; Takahashi, N. Human fibrillarin forms a sub-complex with splicing factor 2-associated p32, protein arginine methyltransferases, and tubulins α 3 and β 1 that is independent of its association with preribosomal ribonucleoprotein complexes. J. Biol. Chem., 2004, 279(3), 1607-1614.
[http://dx.doi.org/10.1074/jbc.M305604200] [PMID: 14583623]
[20]
Bank RP protein data. 2IPX Human Fibrillarin. Available from: http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=2IPX#DSSPRefAnchor(Accessed date: 1 Jan,. 2017.
[21]
Sun, Q.; Zhu, X.; Qi, J.; An, W.; Lan, P.; Tan, D. Molecular architecture of the 90S small subunit pre-ribosome. eLife, 2017, 6, 1-28.
[http://dx.doi.org/10.7554/eLife.22086]
[22]
Rose, A.S.; Hildebrand, P.W. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res., 2015, 43(W1)W576-9
[http://dx.doi.org/10.1093/nar/gkv402] [PMID: 25925569]
[23]
Rose, A.S.; Bradley, A.R.; Valasatava, Y.; Duarte, J.M.; Prlić, A.; Rose, P.W. Web-based molecular graphics for large complexes., 2016.
[http://dx.doi.org/10.1145/2945292.2945324]
[24]
Human Fibrillarin (2IPX) 3D structure, Available at: https://www.rcsb.org/3d-view/2IPX/1 (Accessed date: 25 Jan, . 2018.
[25]
Melén, K.; Tynell, J.; Fagerlund, R.; Roussel, P.; Hernandez-Verdun, D.; Julkunen, I. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin. Virol. J., 2012, 9, 167.
[http://dx.doi.org/10.1186/1743-422X-9-167] [PMID: 22909121]
[26]
Ponti, D.; Troiano, M.; Bellenchi, G.C.; Battaglia, P.A.; Gigliani, F. The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol., 2008, 9, 32.
[http://dx.doi.org/10.1186/1471-2121-9-32] [PMID: 18559082]
[27]
Marcel, V.; Catez, F.; Diaz, J-J. Ribosome heterogeneity in tumorigenesis: the rRNA point of view. Mol. Cell. Oncol., 2015, 2(3)e983755
[http://dx.doi.org/10.4161/23723556.2014.983755] [PMID: 27305893]
[28]
Kuuselo, R.; Savinainen, K.; Azorsa, D.O.; Basu, G.D.; Karhu, R.; Tuzmen, S.; Mousses, S.; Kallioniemi, A. Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res., 2007, 67(5), 1943-1949.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3387] [PMID: 17332321]
[29]
Lee, J.H.; Giovannetti, E.; Hwang, J.H.; Petrini, I.; Wang, Q.; Voortman, J.; Wang, Y.; Steinberg, S.M.; Funel, N.; Meltzer, P.S.; Wang, Y.; Giaccone, G. Loss of 18q22.3 involving the carboxypeptidase of glutamate-like gene is associated with poor prognosis in resected pancreatic cancer. Clin. Cancer Res., 2012, 18(2), 524-533.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1903] [PMID: 22128300]
[30]
Cenik, C.; Cenik, E.S.; Byeon, G.W.; Grubert, F.; Candille, S.I.; Spacek, D.; Alsallakh, B.; Tilgner, H.; Araya, C.L.; Tang, H.; Ricci, E.; Snyder, M.P. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res., 2015, 25(11), 1610-1621.
[http://dx.doi.org/10.1101/gr.193342.115] [PMID: 26297486]
[31]
Sharma, S.; Lafontaine, D.L.J. ‘View from a bridge’: A new perspective on eukaryotic rRNA base modification. Trends Biochem. Sci., 2015, 40(10), 560-575.
[http://dx.doi.org/10.1016/j.tibs.2015.07.008] [PMID: 26410597]
[32]
Scala, F.; Brighenti, E.; Govoni, M.; Imbrogno, E.; Fornari, F.; Treré, D.; Montanaro, L.; Derenzini, M. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene, 2016, 35(8), 977-989.
[http://dx.doi.org/10.1038/onc.2015.147] [PMID: 25961931]
[33]
Quin, J.E.; Devlin, J.R.; Cameron, D.; Hannan, K.M.; Pearson, R.B.; Hannan, R.D. Targeting the nucleolus for cancer intervention. Biochim. Biophys. Acta, 2014, 1842(6), 802-816.
[http://dx.doi.org/10.1016/j.bbadis.2013.12.009] [PMID: 24389329]
[34]
Hein, N.; Hannan, K.M.; George, A.J.; Sanij, E.; Hannan, R.D. The nucleolus: an emerging target for cancer therapy. Trends Mol. Med., 2013, 19(11), 643-654.
[http://dx.doi.org/10.1016/j.molmed.2013.07.005] [PMID: 23953479]
[35]
Diwakarla, C.; Hannan, K.; Hein, N.; Yip, D. Advanced pancreatic ductal adenocarcinoma - Complexities of treatment and emerging therapeutic options. World J. Gastroenterol., 2017, 23(13), 2276-2285.
[http://dx.doi.org/10.3748/wjg.v23.i13.2276] [PMID: 28428707]
[36]
Esposito, D.; Crescenzi, E.; Sagar, V.; Loreni, F.; Russo, A.; Russo, G. Human rpL3 plays a crucial role in cell response to nucleolar stress induced by 5-FU and L-OHP. Oncotarget, 2014, 5(22), 11737-11751.
[http://dx.doi.org/10.18632/oncotarget.2591] [PMID: 25473889]
[37]
Burger, K.; Mühl, B.; Harasim, T.; Rohrmoser, M.; Malamoussi, A.; Orban, M.; Kellner, M.; Gruber-Eber, A.; Kremmer, E.; Hölzel, M.; Eick, D. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J. Biol. Chem., 2010, 285(16), 12416-12425.
[http://dx.doi.org/10.1074/jbc.M109.074211] [PMID: 20159984]
[38]
Drygin, D.; Lin, A.; Bliesath, J.; Ho, C.B.; O’Brien, S.E.; Proffitt, C.; Omori, M.; Haddach, M.; Schwaebe, M.K.; Siddiqui-Jain, A.; Streiner, N.; Quin, J.E.; Sanij, E.; Bywater, M.J.; Hannan, R.D.; Ryckman, D.; Anderes, K.; Rice, W.G. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res., 2011, 71(4), 1418-1430.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1728] [PMID: 21159662]
[39]
Schlosser, I.; Hölzel, M.; Mürnseer, M.; Burtscher, H.; Weidle, U.H.; Eick, D. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res., 2003, 31(21), 6148-6156.
[http://dx.doi.org/10.1093/nar/gkg794] [PMID: 14576301]
[40]
Bywater, M.J.; Poortinga, G.; Sanij, E.; Hein, N.; Peck, A.; Cullinane, C.; Wall, M.; Cluse, L.; Drygin, D.; Anderes, K.; Huser, N.; Proffitt, C.; Bliesath, J.; Haddach, M.; Schwaebe, M.K.; Ryckman, D.M.; Rice, W.G.; Schmitt, C.; Lowe, S.W.; Johnstone, R.W.; Pearson, R.B.; McArthur, G.A.; Hannan, R.D. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell, 2012, 22(1), 51-65.
[http://dx.doi.org/10.1016/j.ccr.2012.05.019] [PMID: 22789538]
[41]
Cornelison, R.; Dobbin, Z.C.; Katre, A.A.; Jeong, D.H.; Zhang, Y.; Chen, D.; Petrova, Y.; Llaneza, D.C.; Steg, A.D.; Parsons, L.; Schneider, D.A.; Landen, C.N. Targeting RNA-polymerase I in both chemosensitive and chemoresistant populations in epithelial ovarian cancer. Clin. Cancer Res., 2017, 23(21), 6529-6540.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0282] [PMID: 28778862]
[42]
Hein, N.; Cameron, D.P.; Hannan, K.M.; Nguyen, N.N.; Fong, C.Y.; Sornkom, J.; Wall, M.; Pavy, M.; Cullinane, C.; Diesch, J.; Devlin, J.R.; George, A.J.; Sanij, E.; Quin, J.; Poortinga, G.; Verbrugge, I.; Baker, A.; Drygin, D.; Harrison, S.J.; Rozario, J.D.; Powell, J.A.; Pitson, S.M.; Zuber, J.; Johnstone, R.W.; Dawson, M.A.; Guthridge, M.A.; Wei, A.; McArthur, G.A.; Pearson, R.B.; Hannan, R.D. Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood, 2017, 129(21), 2882-2895.
[http://dx.doi.org/10.1182/blood-2016-05-718171] [PMID: 28283481]
[43]
Lee, H.C.; Wang, H.; Baladandayuthapani, V.; Lin, H.; He, J.; Jones, R.J.; Kuiatse, I.; Gu, D.; Wang, Z.; Ma, W.; Lim, J.; O’Brien, S.; Keats, J.; Yang, J.; Davis, R.E.; Orlowski, R.Z. RNA polymerase I inhibition with CX-5461 as a novel therapeutic strategy to target MYC in multiple myeloma. Br. J. Haematol., 2017, 177(1), 80-94.
[http://dx.doi.org/10.1111/bjh.14525] [PMID: 28369725]
[44]
Xu, H.; Di Antonio, M.; McKinney, S.; Mathew, V.; Ho, B.; O’Neil, N.J.; Santos, N.D.; Silvester, J.; Wei, V.; Garcia, J.; Kabeer, F.; Lai, D.; Soriano, P.; Banáth, J.; Chiu, D.S.; Yap, D.; Le, D.D.; Ye, F.B.; Zhang, A.; Thu, K.; Soong, J.; Lin, S.C.; Tsai, A.H.; Osako, T.; Algara, T.; Saunders, D.N.; Wong, J.; Xian, J.; Bally, M.B.; Brenton, J.D.; Brown, G.W.; Shah, S.P.; Cescon, D.; Mak, T.W.; Caldas, C.; Stirling, P.C.; Hieter, P.; Balasubramanian, S.; Aparicio, S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun., 2017, 8(205), 14432.
[http://dx.doi.org/10.1038/ncomms14432] [PMID: 28211448]
[45]
A Phase I/II Study of CX5461. National Library of Medicine, Bethesda (MD) (US), [2018 Jan 16] https://clinicaltrials.gov/ct2/show/NCT02719977
[46]
Drygin, D.; Siddiqui-Jain, A.; O’Brien, S.; Schwaebe, M.; Lin, A.; Bliesath, J.; Ho, C.B.; Proffitt, C.; Trent, K.; Whitten, J.P.; Lim, J.K.; Von Hoff, D.; Anderes, K.; Rice, W.G. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res., 2009, 69(19), 7653-7661.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1304] [PMID: 19738048]
[47]
Study evaluating effects of CX-3543 in patients with relapsed or refractory B-Cell chronic lymphocytic leukemia. National Library of Medicine, Bethesda (MD) (US), Available at: https://clinicaltrials.gov/ct2/show/NCT00485966(Accessed date:16 January,. 2018.
[48]
Dose-escalation study of quarfloxin in patients with advanced solid tumors or lymphomas. National Library of Medicine, Bethesda (MD) (US), Available at: https://clinicaltrials.gov/ct2/show/NCT00955292(Accessed date: 16 January, . 2018.
[49]
Quarfloxin in patients with low to intermediate grade neuroendocrine carcinoma. National Library of Medicine, Bethesda (MD) (US), Available at: https://clinicaltrials.gov/ct2/show/NCT00780663(Accessed date: 16 January, . 2018.
[50]
Dose-escalation study of CX-3543 in patients with advanced solid tumors or lymphomas. National Library of Medicine, Bethesda (MD) (US), Available at: https://clinicaltrials.gov/ct2/show/NCT00955786(Accessed date: 16 January, . 2018.
[51]
Peltonen, K.; Colis, L.; Liu, H.; Jäämaa, S.; Moore, H.M.; Enbäck, J.; Laakkonen, P.; Vaahtokari, A.; Jones, R.J.; af Hällström, T.M.; Laiho, M. Identification of novel p53 pathway activating small-molecule compounds reveals unexpected similarities with known therapeutic agents. PLoS One, 2010, 5(9)e12996
[http://dx.doi.org/10.1371/journal.pone.0012996] [PMID: 20885994]
[52]
Peltonen, K.; Colis, L.; Liu, H.; Trivedi, R.; Moubarek, M.S.; Moore, H.M.; Bai, B.; Rudek, M.A.; Bieberich, C.J.; Laiho, M. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell, 2014, 25(1), 77-90.
[http://dx.doi.org/10.1016/j.ccr.2013.12.009] [PMID: 24434211]
[53]
Kerry, L.E.; Pegg, E.E.; Cameron, D.P.; Budzak, J.; Poortinga, G.; Hannan, K.M.; Hannan, R.D.; Rudenko, G. Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Negl. Trop. Dis., 2017, 11(3)e0005432
[http://dx.doi.org/10.1371/journal.pntd.0005432] [PMID: 28263991]
[54]
Alcindor, T.; Beauger, N. Oxaliplatin: a review in the era of molecularly targeted therapy. Curr. Oncol., 2011, 18(1), 18-25.
[http://dx.doi.org/10.3747/co.v18i1.708] [PMID: 21331278]
[55]
Martinez-Balibrea, E.; Martínez-Cardús, A.; Ginés, A.; Ruiz de Porras, V.; Moutinho, C.; Layos, L.; Manzano, J.L.; Bugés, C.; Bystrup, S.; Esteller, M.; Abad, A. Tumor-Related Molecular Mechanisms of Oxaliplatin Resistance. Mol. Cancer Ther., 2015, 14(8), 1767-1776.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0636] [PMID: 26184483]
[56]
Yang, F.; Teves, S.S.; Kemp, C.J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta, 2014, 1845(1), 84-89.
[http://dx.doi.org/10.1016/j.bbcan.2013.12.002] [PMID: 24361676]
[57]
Alberts, D.S.; Peng, Y.M.; Bowden, G.T.; Dalton, W.S.; Mackel, C. Pharmacology of mitoxantrone: mode of action and pharmacokinetics. Invest. New Drugs, 1985, 3(2), 101-107.
[http://dx.doi.org/10.1007/BF00174156] [PMID: 4040505]
[58]
Rots, M.G.; Pieters, R.; Kaspers, G.J.L.; Veerman, A.J.P.; Peters, G.J.; Jansen, G. Classification of ex vivo methotrexate resistance in acute lymphoblastic and myeloid leukaemia. Br. J. Haematol., 2000, 110(4), 791-800.
[http://dx.doi.org/10.1046/j.1365-2141.2000.02070.x] [PMID: 11054060]
[59]
Chan, E.S.; Cronstein, B.N. Mechanisms of action of methotrexate. Bull Hosp Jt Dis (2013), 2013, 71(Suppl. 1), S5-S8.
[PMID: 24219035]
[60]
Russo, A.; Pagliara, V.; Albano, F.; Esposito, D.; Sagar, V.; Loreni, F.; Irace, C.; Santamaria, R.; Russo, G. Regulatory role of rpL3 in cell response to nucleolar stress induced by Act D in tumor cells lacking functional p53. Cell Cycle, 2016, 15(1), 41-51.
[http://dx.doi.org/10.1080/15384101.2015.1120926] [PMID: 26636733]
[61]
Hollstein, U. Actinomycin. Chemistry and mechanism of action. Chem. Rev., 1974, 74(6), 625-652.
[http://dx.doi.org/10.1021/cr60292a002]
[62]
Cortes, C.L.; Veiga, S.R.; Almacellas, E.; Hernández-Losa, J.; Ferreres, J.C.; Kozma, S.C.; Ambrosio, S.; Thomas, G.; Tauler, A. Effect of low doses of actinomycin D on neuroblastoma cell lines. Mol. Cancer, 2016, 15(1), 1-13.
[http://dx.doi.org/10.1186/s12943-015-0489-8] [PMID: 26728659]
[63]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740(0), 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[64]
Fu, X.; Xu, L.; Qi, L.; Tian, H.; Yi, D.; Yu, Y.; Liu, S.; Li, S.; Xu, Y.; Wang, C. BMH-21 inhibits viability and induces apoptosis by p53-dependent nucleolar stress responses in SKOV3 ovarian cancer cells. Oncol. Rep., 2017, 38(2), 859-865.
[http://dx.doi.org/10.3892/or.2017.5750] [PMID: 28656213]
[65]
Liu, L.F.; Duann, P.; Lin, C.T.; D’Arpa, P.; Wu, J. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci., 1996, 803, 44-49.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb26375.x] [PMID: 8993499]
[66]
Sedlacek, H.H. Mechanisms of action of flavopiridol. Crit. Rev. Oncol. Hematol., 2001, 38(2), 139-170.
[http://dx.doi.org/10.1016/S1040-8428(00)00124-4] [PMID: 11311660]
[67]
Whittaker, S.R.; Te Poele, R.H.; Chan, F.; Linardopoulos, S.; Walton, M.I.; Garrett, M.D.; Workman, P. The cyclin-dependent kinase inhibitor seliciclib (R-roscovitine; CYC202) decreases the expression of mitotic control genes and prevents entry into mitosis. Cell Cycle, 2007, 6(24), 3114-3131.
[http://dx.doi.org/10.4161/cc.6.24.5142] [PMID: 18075315]
[68]
Zandomeni, R.; Mittleman, B.; Bunick, D.; Ackerman, S.; Weinmann, R. Mechanism of action of dichloro-beta-D-ribofuranosylbenzimidazole: effect on in vitro transcription. Proc. Natl. Acad. Sci. USA, 1982, 79(10), 3167-3170.
[http://dx.doi.org/10.1073/pnas.79.10.3167] [PMID: 6954467]
[69]
Peters, G.J.; van Triest, B.; Backus, H.H.J.; Kuiper, C.M.; van der Wilt, C.L.; Pinedo, H.M. Molecular downstream events and induction of thymidylate synthase in mutant and wild-type p53 colon cancer cell lines after treatment with 5-fluorouracil and the thymidylate synthase inhibitor raltitrexed. Eur. J. Cancer, 2000, 36(7), 916-924.
[http://dx.doi.org/10.1016/S0959-8049(00)00026-5] [PMID: 10785598]
[70]
Peters, G.J.; Backus, H.H.J.; Freemantle, S.; van Triest, B.; Codacci-Pisanelli, G.; van der Wilt, C.L.; Smid, K.; Lunec, J.; Calvert, A.H.; Marsh, S.; McLeod, H.L.; Bloemena, E.; Meijer, S.; Jansen, G.; van Groeningen, C.J.; Pinedo, H.M. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim. Biophys. Acta, 2002, 1587(2-3), 194-205.
[http://dx.doi.org/10.1016/S0925-4439(02)00082-0] [PMID: 12084461]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy