Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Efficacy of Novel Schiff base Derivatives as Antifungal Compounds in Combination with Approved Drugs Against Candida Albicans

Author(s): Manzoor Ahmad Malik, Shabir Ahmad Lone, Parveez Gull, Ovas Ahmad Dar, Mohmmad Younus Wani, Aijaz Ahmad* and Athar Adil Hashmi*

Volume 15, Issue 6, 2019

Page: [648 - 658] Pages: 11

DOI: 10.2174/1573406415666181203115957

Price: $65

Abstract

Background: The increasing incidence of fungal infections, especially caused by Candida albicans, and their increasing drug resistance has drastically increased in recent years. Therefore, not only new drugs but also alternative treatment strategies are promptly required.

Methods: We previously reported on the synergistic interaction of some azole and non-azole compounds with fluconazole for combination antifungal therapy. In this study, we synthesized some non-azole Schiff-base derivatives and evaluated their antifungal activity profile alone and in combination with the most commonly used antifungal drugs- fluconazole (FLC) and amphotericin B (AmB) against four drug susceptible, three FLC resistant and three AmB resistant clinically isolated Candida albicans strains. To further analyze the mechanism of antifungal action of these compounds, we quantified total sterol contents in FLC-susceptible and resistant C. albicans isolates.

Results: A pyrimidine ring-containing derivative SB5 showed the most potent antifungal activity against all the tested strains. After combining these compounds with FLC and AmB, 76% combinations were either synergistic or additive while as the rest of the combinations were indifferent. Interestingly, none of the combinations was antagonistic, either with FLC or AmB. Results interpreted from fractional inhibitory concentration index (FICI) and isobolograms revealed 4-10-fold reduction in MIC values for synergistic combinations. These compounds also inhibit ergosterol biosynthesis in a concentration-dependent manner, supported by the results from docking studies.

Conclusion: The results of the studies conducted advocate the potential of these compounds as new antifungal drugs. However, further studies are required to understand the other mechanisms and in vivo efficacy and toxicity of these compounds.

Keywords: Candida albicans, Schiff base compounds, synergy, ergosterol biosynthesis, molecular docking, Infectious diseases.

Graphical Abstract

[1]
Lindahl, J.F.; Grace, D. The consequences of human actions on risks for infectious diseases: A review. Infect. Ecol. Epidemiol., 2015, 5(1), 30048.
[2]
Zowalaty, M.E.; Ibrahim, N.A.; Salama, M.; Shameli, K.; Usman, M.; Zainuddin, N. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomedicine, 2013, 8, 4467-4479.
[3]
Devi, J.; Devi, S.; Kumar, A. Synthesis, antibacterial evaluation and QSAR analysis of Schiff base complexes derived from [2,2′-(ethylenedioxy)bis(ethylamine)] and aromatic aldehydes. Med. Chem. Commun, 2016, 7(5), 932-947.
[4]
Perlin, D.S.; Shor, E.; Zhao, Y. Update on antifungal drug resistance. Curr. Clin. Microbiol. Rep., 2015, 2(2), 84-95.
[5]
Shapiro, R.S.; Robbins, N.; Cowen, L.E. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev., 2011, 75(2), 213-267.
[6]
Ahmad, A.; Wani, M.Y.; Patel, M.; Sobral, A.; Duse, A.; Aqlan, F.; Al-Bogami, A. Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. Med. Chem. Commun, 2017, 8(12), 2195-2207.
[7]
Sanglard, D. Emerging threats in antifungal-resistant fungal pathogens. Front. Med., 2016, 3(11), 1-10.
[8]
Belanger, E.S.; Yang, E.; Forrest, G.N. Combination antifungal therapy: When, where, and why. Curr. Clin. Microbiol. Rep., 2015, 2(2), 67-75.
[9]
Carrillo-Muñoz, A.J.; Finquelievich, J.; Tur-Tur, C.; Eraso, E.; Jauregizar, N.; Quindós, G.; Giusiano, G. Combination antifungal therapy: A strategy for the management of invasive fungal infections. Rev. Esp. Quimioter., 2014, 27(3), 141-158.
[10]
Mukherjee, P.K.; Sheehan, D.J.; Hitchcock, C.A.; Ghannoum, M.A. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev., 2005, 18(1), 163-194.
[11]
Spitzer, M.; Robbins, N.; Wright, G.D. Combinatorial strategies for combating invasive fungal infections. Virulence, 2017, 8(2), 169-185.
[12]
Hatipoglu, N.; Hatipoglu, H. Combination antifungal therapy for invasive fungal infections in children and adults. Expert Rev. Anti Infect. Ther., 2013, 11(5), 523-535.
[13]
Wani, M.Y.; Ahmad, A.; Kumar, S.; Sobral, A.J. Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents. Microb. Pathog., 2017, 9(105), 57-62.
[14]
Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg. Med. Chem., 2015, 23(15), 4172-4180.
[15]
Ahmad, A.; Wani, M.Y.; Khan, A.; Manzoor, N.; Molepo, J. Synergistic interactions of Eugenol-tosylate and its congeners with fluconazole against Candida albicans. PLoS One, 2015, 10(12)e0145053
[16]
Wani, M.Y.; Ahmad, A.; Malik, M.A.; Sobral, A.J. Mononuclear transition metal complexes containing iodo-imidazole ring endowed with potential anti-Candidaactivity. Med. Chem. Res., 2016, 25(11), 2557-2566.
[17]
Ahmad, A.; Khan, A.; Manzoor, N.; Khan, L.A. Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb. Pathog., 2010, 48(1), 35-41.
[18]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K.M. Schiff bases in medicinal chemistry: A patent review (2010-2015). Expert Opin. Ther. Pat., 2017, 27(1), 63-79.
[19]
Lam, P.L.; Lee, K.K.H.; Kok, S.H.L.; Gambari, R.; Lam, K.H.; Ho, C.L.; Ma, X.; Lo, Y.H.; Wong, W.Y.; Dong, Q.C.; Bian, Z.X.; Chui, C.H. Antifungal study of substituted 4-pyridylmethylene-4′-aniline Schiff bases. RSC Adv, 2016, 6(106), 104575-104581.
[20]
Malik, M.A.; Dar, O.A.; Gull, P.; Wani, M.Y.; Hashmi, A.A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm, 2018, 9, 409-436.
[21]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff Bases: A versatile pharmacophore. J. Catal., 2013, 2013, 1-14.
[22]
Petrović, Z.D.; Đorović, J.; Simijonović, D.; Petrović, V.P.; Marković, Z. Experimental and theoretical study of antioxidative properties of some salicylaldehyde and vanillic Schiff bases. RSC Adv, 2015, 5(31), 24094-24100.
[23]
El-Gamel, N.E.A. Coordination behaviour and biopotency of metal NNsalen complexes. RSC Adv, 2012, 2(13), 5870-5876.
[24]
Da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8.
[25]
Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem., 2013, 21(13), 3648-3666.
[26]
Dong, Y.W.; Fan, R.Q.; Wang, P.; Wei, L.G.; Wang, X.M.; Zhang, H.J.; Gao, S.; Yang, Y.L.; Wang, Y.L. Synthesis and characterization of substituted Schiff-base ligands and their d10 metal complexes: structure-induced luminescence tuning behaviors and applications in co-sensitized solar cells. Dalt Trans., 2015, 44, 5306-5322.
[27]
Chen, W.; Ou, W.; Wang, L.; Hao, Y.; Cheng, J.; Li, J.; Liu, Y.N. Synthesis and biological evaluation of hydroxyl-substituted Schiff-bases containing ferrocenyl moieties. Dalt Trans., 2013, 42, 15678-15686.
[28]
Yao, Y.H.; Li, J.; Yuan, L.F.; Zhang, Z.Q.; Zhang, F.X. Novel porphyrin-Schiff base conjugates: Synthesis, characterization and in vitro photodynamic activities. RSC Adv, 2016, 6(51), 45681-45688.
[29]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Ibrahim, H.H.; Al-Tamimi, A.A. Antioxidant, antimicrobial, and theoretical studies of the thiosemicarbazone derivative Schiff base 2-(2-imino-1-methylimidazolidin-4-ylidene) hydrazinecarbothioamide (IMHC). Org. Med. Chem. Lett., 2012, 2(1), 4.
[30]
Nath, M.; Saini, P.K. Chemistry and applications of organotin(IV) complexes of Schiff bases. Dalt Trans., 2011, 40(27), 7077-7121.
[31]
Li, X.; Houb, Y.; Yuec, L.; Liua, S.; Duc, J.; Sund, S. Potential targets for antifungal drug discovery based on growth and virulence in Candida albicans. Antimicrob. Agents Chemother., 2015, 59(10), 5885-5891.
[32]
Mahmoud, A.G.; Louis, B.R. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[33]
Wong, S.S.W.; Samaranayake, L.P.; Seneviratne, C.J. In pursuit of the ideal antifungal agent for Candida infections: High-throughput screening of small molecules. Drug Discov. Today, 2014, 19(11), 1721-1730.
[34]
Gomathi, G.; Srinivasan, T.; Velmurugan, D.; Gopalakrishnan, R. A bluish-green emitting organic compound methyl 3-[(E)-(2-hydroxy-1-naphthyl) methylidene] carbazate: Spectroscopic, thermal, fluorescence, antimicrobial and molecular docking studies. RSC Adv, 2015, 5(56), 44742-44748.
[35]
Lian, W.J.; Wang, X.T.; Xie, C.Z.; Tian, H.; Song, X.Q.; Pan, H.T.; Qiao, X.; Xu, J.Y. Mixed-ligand copper(II) Schiff base complexes: The role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalt Trans., 2016, 45(22), 9073-9087.
[36]
Martínez, R.F.; Ávalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Light, M.E.; Palacios, J.C. Tautomerism in Schiff bases. The cases of 2-hydroxy-1-naphthaldehyde and 1-hydroxy-2-naphthaldehyde investigated in solution and the solid state. Org. Biomol. Chem., 2011, 9(24), 8268-8275.
[37]
Carreño, A.; Gacitúa, M.; Páez-Hernández, D.; Polanco, R.; Preite, M.; Fuentes, J.A.; Mora, G.C.; Chávez, I.; Arratia-Pérez, R. Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond. New J. Chem., 2015, 39(10), 7822-7831.
[38]
Sun, W.; Weingarten, R.A.; Xu, M.; Southall, N.; Dai, S.; Shinn, P.; Sanderson, P.E.; Williamson, P.R.; Frank, K.M.; Zheng, W. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg. Microbes Infect., 2016, 5(11)e116
[39]
Capobianco, J.O.; Doran, C.C.; Goldman, R.C.; De, B. A non-azole inhibitor of lanosterol l4α-methy1 demethylase in Candida albicans. J. Antimicrob. Chemother., 1992, 30, 781-790.
[40]
CLSI - Clinical and Laboratory Standards Institute Reference method for broth dilution antifungal susceptibility testing of yeast, Approved Standard M27-A3; Clinical and Laboratory Standards Institute Standards: Wayne, PA, USA, 2008, p. 40.
[41]
Vuuren, S.V.; Viljoen, A. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med., 2011, 77(11), 1168-1182.
[42]
Trott, O.; Olson, A.J. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy